The Roles of Vitreous Biomechanics in Ocular Disease, Biomolecule Transport, and Pharmacokinetics

The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to i...

Full description

Saved in:
Bibliographic Details
Published inCurrent eye research Vol. 48; no. 2; pp. 195 - 207
Main Authors Luo, Richard H., Tram, Nguyen K., Parekh, Ankur M., Puri, Raima, Reilly, Matthew A., Swindle-Reilly, Katelyn E.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the in vitro testing methods used, and the vitreous humor has been hypothesized to behave differently in vivo due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and ex vivo models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.
AbstractList The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the in vitro testing methods used, and the vitreous humor has been hypothesized to behave differently in vivo due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and ex vivo models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.
The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the testing methods used, and the vitreous humor has been hypothesized to behave differently due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.
Author Swindle-Reilly, Katelyn E.
Reilly, Matthew A.
Parekh, Ankur M.
Luo, Richard H.
Puri, Raima
Tram, Nguyen K.
Author_xml – sequence: 1
  givenname: Richard H.
  surname: Luo
  fullname: Luo, Richard H.
  organization: Department of Biomedical Engineering, The Ohio State University
– sequence: 2
  givenname: Nguyen K.
  surname: Tram
  fullname: Tram, Nguyen K.
  organization: Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital
– sequence: 3
  givenname: Ankur M.
  surname: Parekh
  fullname: Parekh, Ankur M.
  organization: William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University
– sequence: 4
  givenname: Raima
  surname: Puri
  fullname: Puri, Raima
  organization: Department of Biomedical Engineering, The Ohio State University
– sequence: 5
  givenname: Matthew A.
  surname: Reilly
  fullname: Reilly, Matthew A.
  organization: Department of Ophthalmology and Visual Sciences, The Ohio State University
– sequence: 6
  givenname: Katelyn E.
  surname: Swindle-Reilly
  fullname: Swindle-Reilly, Katelyn E.
  organization: Department of Ophthalmology and Visual Sciences, The Ohio State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35179421$$D View this record in MEDLINE/PubMed
BookMark eNp9kFtPwyAYhomZcQf9CRp-wDo5tNDeqfOYLJkx09uGUsjQFhboYvbvpW7z0htIXp6XL98zBgPrrALgEqMZRjm6RoRjynI6I4iQeFAagxMwwilDCYnhAIx6JumhIRiH8IlQH6RnYEgzzIuU4BEQq7WCb65RAToNP0znldsGeGdcq-RaWCMDNBYu5bYRHt6boERQ09_3WIqpgisvbNg4302hsDV8XQvfCum-jFVdrJ-DUy2aoC4O9wS8Pz6s5s_JYvn0Mr9dJDLFtEsKjTCRUvCaMJ5xoVPJa8XqLJe6EEXKaeRYJSnjmitRY5ZmrKiqinGcY8XpBGT7f6V3IXily403rfC7EqOyV1YelZW9svKgLPau9r3NtmpV_dc6OorAzR4wVru42rfzTV12Ytc4r-Pu0oSS_j_jBwylfTc
CitedBy_id crossref_primary_10_1080_03602532_2024_2368247
crossref_primary_10_1002_cpz1_607
crossref_primary_10_7759_cureus_43990
crossref_primary_10_1016_j_biopha_2024_116154
crossref_primary_10_1016_j_xphs_2024_06_004
crossref_primary_10_1016_j_clae_2024_102185
crossref_primary_10_1007_s11242_023_02052_x
Cites_doi 10.1016/j.jbiomech.2020.109921
10.3389/fbioe.2018.00199
10.1167/tvst.8.3.56
10.1098/rsif.2020.0849
10.1007/s00347-015-0031-9
10.1007/s10544-015-9988-z
10.1167/IOVS.12-9791
10.1016/J.CLINBIOMECH.2019.09.007
10.1016/j.jchemneu.2017.12.008
10.1167/iovs.13-13026
10.1088/0031-9155/50/19/021
10.1167/iovs.03-0820
10.1016/j.compbiomed.2020.103955
10.1167/iovs.10-5813
10.1001/archopht.1991.01080070078039
10.1016/j.ejpb.2020.01.008
10.1016/j.compbiomed.2021.104612
10.1167/tvst.4.4.8
10.1016/j.jbiomech.2010.10.002
10.1016/j.jbiomech.2008.04.015
10.1016/j.bpj.2015.10.002
10.1016/j.jbiomech.2021.110310
10.1159/000353447
10.1016/S1350-9462(99)00016-6
10.1016/j.preteyeres.2020.100847
10.1097/MD.0000000000014230
10.1167/iovs.14-15225
10.1016/j.ajo.2007.10.014
10.1038/eye.2008.21
10.1038/eye.1992.119
10.1016/j.drudis.2019.05.005
10.1016/j.ejps.2018.03.023
10.1016/j.mehy.2015.05.020
10.18240/ijo.2019.08.10
10.1016/J.EXER.2020.108006
10.1016/j.survophthal.2015.11.008
10.1155/2019/3467381
10.3389/fmed.2021.749351
10.1016/j.ijpharm.2018.07.070
10.1002/jps.23808
10.1186/s40662-015-0020-8
10.4103/ijo.IJO_886_19
10.1007/s00397-017-0997-0
10.1167/iovs.07-1456
10.1088/0031-9155/58/6/1969
10.1111/aos.12623
10.1136/bcr-2020-239480
10.1016/j.jconrel.2005.03.010
10.1016/j.exer.2021.108802
10.1016/J.EJPB.2020.06.024
10.2147/prom.s153718
10.1111/aos.14012
10.1167/iovs.61.4.33
10.1016/B978-0-08-100147-9.00005-5
10.1167/iovs.03-1017
10.1007/s11095-010-0356-7
10.1016/j.ajo.2020.06.020
10.1016/j.preteyeres.2020.100845
10.1016/j.jbiomech.2019.109582
10.1002/jbm.b.34778
10.1111/bph.14024
10.1002/jps.24480
10.1007/s10384-020-00720-9
10.1167/iovs.13-12609
10.3389/fbioe.2018.00153
10.3390/pharmaceutics11080371
10.1016/J.BRAINRESBULL.2021.01.004
10.1371/journal.pone.0149961
10.1371/journal.pone.0209217
10.1023/A:1022207026982
10.1136/bjo.85.1.6
10.1002/acn3.523
10.1080/02713683.2020.1826977
10.1167/TVST.9.3.23
10.1002/masy.200550918
10.1007/s10237-020-01360-1
10.1016/J.JBIOMECH.2013.02.006
10.1007/s10237-009-0159-0
10.1016/j.jaapos.2008.11.006
10.1016/j.medengphy.2011.09.011
10.1167/IOVS.17-21812
10.1089/jop.2012.0138
10.3390/pharmaceutics12030269
10.1088/0031-9155/55/2/008
10.1023/A:1007517912927
10.1007/s00417-006-0394-3
ContentType Journal Article
Copyright 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022
DBID 0YH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1080/02713683.2022.2033271
DatabaseName Taylor & Francis_OA刊
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis_OA刊
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2202
EndPage 207
ExternalDocumentID 10_1080_02713683_2022_2033271
35179421
2033271
Genre Reviews
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
00X
03L
0BK
0R~
0YH
29F
36B
4.4
5GY
5RE
AAJNR
AALUX
AAMIU
AAPUL
AAPXX
AAQRR
ABBKH
ABDBF
ABEIZ
ABLJU
ABLKL
ABPTK
ABUPF
ACENM
ACFUF
ACGEJ
ACGFS
ACLSK
ACNCT
ADCVX
ADFCX
ADRBQ
ADXPE
AECIN
AENEX
AEOZL
AEYQI
AFKVX
AFWLO
AGDLA
AGFJD
AGRBW
AGYJP
AIJEM
AIRBT
AJWEG
AKBVH
ALIIL
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMDAE
BABNJ
BLEHA
BOHLJ
CCCUG
CS3
DKSSO
DU5
EAP
EBS
ESX
F5P
HZ~
J.N
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
O9-
P2P
PQEST
PQQKQ
RNANH
RVRKI
TFDNU
TFL
TFW
UEQFS
V1S
~1N
.55
.GJ
34G
39C
53G
5VS
AALIY
AAORF
ABJNI
ABLIJ
ABWCV
ABXYU
ABZEW
ACIEZ
ACKZS
ADFOM
ADFZZ
AEIIZ
AFFNX
AFLEI
AJVHN
ALYBC
AWYRJ
BRMBE
CAG
CGR
COF
CUY
CVF
CYYVM
CZDIS
DRXRE
DWTOO
EBC
EBD
ECM
EIF
EJD
EMB
EMK
EMOBN
EPL
H13
JENTW
M44
NPM
NUSFT
QQXMO
RIG
SV3
TBQAZ
TDBHL
TERGH
TUROJ
TUS
X7M
ZGI
ZXP
AAYXX
CITATION
ID FETCH-LOGICAL-c413t-9f012cca7d26757af4c7de6d58cf9a9473c416bc367f7ead164569bbb67181e73
IEDL.DBID 0YH
ISSN 0271-3683
IngestDate Fri Aug 23 01:18:11 EDT 2024
Wed Oct 16 00:41:11 EDT 2024
Tue Jul 04 18:16:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords drug diffusion
Vitreous humor
vitreous liquefaction
intravitreal transport
viscoelasticity
biotransport
aging
biomechanics
ex vivo modeling
vitreous swelling
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-9f012cca7d26757af4c7de6d58cf9a9473c416bc367f7ead164569bbb67181e73
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/02713683.2022.2033271
PMID 35179421
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_02713683_2022_2033271
pubmed_primary_35179421
crossref_primary_10_1080_02713683_2022_2033271
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current eye research
PublicationTitleAlternate Curr Eye Res
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0072
CIT0071
CIT0074
CIT0073
CIT0032
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0077
CIT0070
Hsu HT (CIT0030) 1984; 1984
CIT0036
CIT0035
CIT0079
CIT0038
CIT0037
CIT0039
CIT0083
CIT0082
CIT0041
CIT0085
CIT0040
CIT0084
CIT0043
CIT0087
CIT0042
CIT0086
CIT0001
CIT0045
CIT0089
CIT0044
CIT0088
CIT0081
CIT0080
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0020
  doi: 10.1016/j.jbiomech.2020.109921
– ident: CIT0006
  doi: 10.3389/fbioe.2018.00199
– ident: CIT0015
  doi: 10.1167/tvst.8.3.56
– ident: CIT0016
  doi: 10.1098/rsif.2020.0849
– ident: CIT0023
  doi: 10.1007/s00347-015-0031-9
– ident: CIT0048
– ident: CIT0013
  doi: 10.1007/s10544-015-9988-z
– ident: CIT0027
  doi: 10.1167/IOVS.12-9791
– ident: CIT0075
  doi: 10.1016/J.CLINBIOMECH.2019.09.007
– ident: CIT0089
  doi: 10.1016/j.jchemneu.2017.12.008
– ident: CIT0008
  doi: 10.1167/iovs.13-13026
– ident: CIT0063
  doi: 10.1088/0031-9155/50/19/021
– ident: CIT0029
  doi: 10.1167/iovs.03-0820
– ident: CIT0069
  doi: 10.1016/j.compbiomed.2020.103955
– ident: CIT0070
  doi: 10.1167/iovs.10-5813
– ident: CIT0039
  doi: 10.1001/archopht.1991.01080070078039
– ident: CIT0018
  doi: 10.1016/j.ejpb.2020.01.008
– ident: CIT0074
  doi: 10.1016/j.compbiomed.2021.104612
– ident: CIT0087
  doi: 10.1167/tvst.4.4.8
– ident: CIT0021
  doi: 10.1016/j.jbiomech.2010.10.002
– ident: CIT0005
  doi: 10.1016/j.jbiomech.2008.04.015
– ident: CIT0059
  doi: 10.1016/j.bpj.2015.10.002
– ident: CIT0024
  doi: 10.1016/j.jbiomech.2021.110310
– ident: CIT0035
  doi: 10.1159/000353447
– ident: CIT0025
  doi: 10.1016/S1350-9462(99)00016-6
– ident: CIT0026
  doi: 10.1016/j.preteyeres.2020.100847
– ident: CIT0012
– ident: CIT0042
  doi: 10.1097/MD.0000000000014230
– ident: CIT0046
  doi: 10.1167/iovs.14-15225
– ident: CIT0054
  doi: 10.1016/j.ajo.2007.10.014
– ident: CIT0003
  doi: 10.1038/eye.2008.21
– ident: CIT0049
  doi: 10.1038/eye.1992.119
– ident: CIT0058
  doi: 10.1016/j.drudis.2019.05.005
– ident: CIT0009
  doi: 10.1016/j.ejps.2018.03.023
– volume: 1984
  start-page: 1361
  issue: 3
  year: 1984
  ident: CIT0030
  publication-title: Scan Electron Microsc
  contributor:
    fullname: Hsu HT
– ident: CIT0071
  doi: 10.1016/j.mehy.2015.05.020
– ident: CIT0045
  doi: 10.18240/ijo.2019.08.10
– ident: CIT0019
  doi: 10.1016/J.EXER.2020.108006
– ident: CIT0033
  doi: 10.1016/j.survophthal.2015.11.008
– ident: CIT0050
  doi: 10.1155/2019/3467381
– ident: CIT0086
  doi: 10.3389/fmed.2021.749351
– ident: CIT0014
  doi: 10.1016/j.ijpharm.2018.07.070
– ident: CIT0079
  doi: 10.1002/jps.23808
– ident: CIT0082
  doi: 10.1186/s40662-015-0020-8
– ident: CIT0041
  doi: 10.4103/ijo.IJO_886_19
– ident: CIT0007
  doi: 10.1007/s00397-017-0997-0
– ident: CIT0037
  doi: 10.1167/iovs.07-1456
– ident: CIT0055
  doi: 10.1088/0031-9155/58/6/1969
– ident: CIT0002
  doi: 10.1111/aos.12623
– ident: CIT0040
  doi: 10.1136/bcr-2020-239480
– ident: CIT0066
  doi: 10.1016/j.jconrel.2005.03.010
– ident: CIT0017
  doi: 10.1016/j.exer.2021.108802
– ident: CIT0083
  doi: 10.1016/J.EJPB.2020.06.024
– ident: CIT0053
  doi: 10.2147/prom.s153718
– ident: CIT0047
  doi: 10.1111/aos.14012
– ident: CIT0031
  doi: 10.1167/iovs.61.4.33
– ident: CIT0001
  doi: 10.1016/B978-0-08-100147-9.00005-5
– ident: CIT0022
  doi: 10.1167/iovs.03-1017
– ident: CIT0061
  doi: 10.1007/s11095-010-0356-7
– ident: CIT0076
  doi: 10.1016/j.ajo.2020.06.020
– ident: CIT0064
  doi: 10.1016/j.preteyeres.2020.100845
– ident: CIT0011
  doi: 10.1016/j.jbiomech.2019.109582
– ident: CIT0034
  doi: 10.1002/jbm.b.34778
– ident: CIT0056
  doi: 10.1111/bph.14024
– ident: CIT0078
  doi: 10.1002/jps.24480
– ident: CIT0044
  doi: 10.1007/s10384-020-00720-9
– ident: CIT0073
  doi: 10.1167/iovs.13-12609
– ident: CIT0036
  doi: 10.3389/fbioe.2018.00153
– ident: CIT0080
  doi: 10.3390/pharmaceutics11080371
– ident: CIT0051
  doi: 10.1016/J.BRAINRESBULL.2021.01.004
– ident: CIT0072
  doi: 10.1371/journal.pone.0149961
– ident: CIT0081
  doi: 10.1371/journal.pone.0209217
– ident: CIT0032
  doi: 10.1023/A:1022207026982
– ident: CIT0038
  doi: 10.1136/bjo.85.1.6
– ident: CIT0085
  doi: 10.1002/acn3.523
– ident: CIT0010
  doi: 10.1080/02713683.2020.1826977
– ident: CIT0052
  doi: 10.1167/TVST.9.3.23
– ident: CIT0004
  doi: 10.1002/masy.200550918
– ident: CIT0043
  doi: 10.1007/s10237-020-01360-1
– ident: CIT0077
  doi: 10.1016/J.JBIOMECH.2013.02.006
– ident: CIT0057
  doi: 10.1007/s10237-009-0159-0
– ident: CIT0088
  doi: 10.1016/j.jaapos.2008.11.006
– ident: CIT0062
  doi: 10.1016/j.medengphy.2011.09.011
– ident: CIT0084
  doi: 10.1167/IOVS.17-21812
– ident: CIT0028
  doi: 10.1089/jop.2012.0138
– ident: CIT0067
  doi: 10.3390/pharmaceutics12030269
– ident: CIT0060
  doi: 10.1088/0031-9155/55/2/008
– ident: CIT0065
  doi: 10.1023/A:1007517912927
– ident: CIT0068
  doi: 10.1007/s00417-006-0394-3
SSID ssj0002714
Score 2.441147
Snippet The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics...
SourceID crossref
pubmed
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 195
SubjectTerms Aging
Animals
Biomechanical Phenomena
biomechanics
biotransport
drug diffusion
ex vivo modeling
Eye Diseases
Humans
intravitreal transport
Rabbits
Retina
Swine
viscoelasticity
Vitreous Body
Vitreous humor
vitreous liquefaction
vitreous swelling
Title The Roles of Vitreous Biomechanics in Ocular Disease, Biomolecule Transport, and Pharmacokinetics
URI https://www.tandfonline.com/doi/abs/10.1080/02713683.2022.2033271
https://www.ncbi.nlm.nih.gov/pubmed/35179421
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SgngRbX3UR8lBPDXa3exuNsfWWoqggljR07J5QRG30q4H_72TZLdYQTx42kM2CUwmmfmSmW8QOkvTXIHZE0QnhpIoDjURXOVEckPB_DPRNy5A9i6ZTKOb57iOJlxWYZUWQxtPFOHOaru5c7GsI-IuAUkFNEkpoLvQ5lJRGtos8mYIrrdV9f7LZHUYQ4tjkIIvsX3qJJ7fhlkzT2vkpT_8Tmd_xjtou3Ic8cCv9C7a0EULtQcFgOa3T3yOXSinuyNvoc3b6sW8jXLQA_xgWZvw3OCnWbnQgPXx0Gbd26TfmVziWYHvXTgqHvnnmp5r94VzNV7xn_cwiAwm8mTXrzC-5XjeQ9Px9ePVhFRlFYgEi1USbsAowcIxFQJaYLmJJFM6UXEqDc95xCj8lwhJE2YYKBoAqjjhQogE7FigGd1HjWJe6EOEDQtEKnlgjJKRBkCqlGWPSYWytDF52EEXtTSzd8-ekQU1KWkl_syKP6vE30H8u8yz0l1bGF9jJKN_9D3wC7Sailr-sSgMjv4x6jHashXmfaD2CWqUiw99Cn5IKbpO07qoORiOhuMvI1XTJg
link.rule.ids 315,786,790,27533,27955,27956,59496,59497
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSMCCoOX98oCYGmjiJI7H8qgKtEVCLYIpimNbqhABlTDw77mz06pFQgxMGRzb0vnx-bPvviPkJEkyBbAnPR0b5oVRoD0pVOblwjCAfy6bxjrI9uPOMLx9ip5mYmHQrRI5tHFCEXavxsWNl9ETl7hzoFI-ixMG9C7AYCrGAgwjX4pEKJCANZ87090YSqyEFHw9rDOJ4vmtmTl8mlMv_XHwtADUXidr1cmRttxQb5AFXdRIvVUAa379oqfU-nLaS_IaWe5VT-Z1ksFEoA8o20TfDH0clWMNZJ9eYNg9Rv2O8g86Kui99UelV-69pmHLXeZcTacC6A0KNoOOnNr1C7SPIs-bZNi-Hlx2vCqvgpcDZJWeMIBKMHJcBUAXeGbCnCsdqyjJjchEyBn8F8ucxdxwmGnAqKJYSCljADJfc7ZFFou3Qu8Qargvk1z4xqg81MBIlUL5mEQq1I3Jgl1yNrFm-u7kM1J_okpamT9F86eV-XeJmLV5Wtp7C-OSjKTsj7rbboCmXTEUIAsDf-8frR6Tlc6g1027N_27fbKK6ead1_YBWSzHn_oQDiWlPLKz7hsQwdUq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkSoWBC2P8vSAmBpo4iSOx0KpyqsgRBFMUfySKkRatWHg33O2kwqQEANTBse2dL748xfffYfQUZJkEmCPeyrWxAujQHmcycwTTBOAf8o72gbIDuPBKLx6jqpownkZVmk4tHZCEXavNh_3VOoqIu4UmJRP4oQAuwtMLhUhgckiX45YyIyTd14Gi80YWqyCFDw906dK4vltmG_w9E289Me50-JPfw2tlgdH3HUrvY6WVN5AzW4OpPntAx9jG8pp_5E3UP22vDFvogz8AD8Y1SY80fhpXMwUcH18ZrLuTdLvWMzxOMd3NhwV99x1Tdu2u8K5Ci_0z9sYTAYTObHrVxjfaDxvoFH_4vF84JVlFTwBiFV4TAMowcJRGQBboJkOBZUqllEiNMtYSAm8F3NBYqopOBoQqihmnPMYcMxXlGyiWj7J1TbCmvo8EczXWopQASGV0qjHJFwa2ZgsaKGTyprp1KlnpH4lSlqaPzXmT0vztxD7avO0sL8ttKsxkpI_-m65BVpMRYz-WBj4O_8Y9RDV73v99OZyeL2LVkyxeRezvYdqxexd7cORpOAH1uk-AdfQ1FM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Roles+of+Vitreous+Biomechanics+in+Ocular+Disease%2C+Biomolecule+Transport%2C+and+Pharmacokinetics&rft.jtitle=Current+eye+research&rft.au=Luo%2C+Richard+H&rft.au=Tram%2C+Nguyen+K&rft.au=Parekh%2C+Ankur+M&rft.au=Puri%2C+Raima&rft.date=2023-02-01&rft.eissn=1460-2202&rft.volume=48&rft.issue=2&rft.spage=195&rft_id=info:doi/10.1080%2F02713683.2022.2033271&rft_id=info%3Apmid%2F35179421&rft.externalDocID=35179421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-3683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-3683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-3683&client=summon