How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system?
Background and aims Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence. Methods...
Saved in:
Published in | Plant and soil Vol. 467; no. 1/2; pp. 329 - 344 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.10.2021
Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims
Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence.
Methods
An airtight, transparent growth chamber based
15
N-labelling system was used to investigate how different nitrogen application levels (0, 125, 187.5 and 250 kg N ha
−1
) and irrigation strategies (flooding irrigation or intermittent irrigation) impact the amount of BNF and its distribution in soil and rice.
Results
Nitrogen application at 125–250 kg N ha
−1
reduced the amount of BNF by 81–86%. The inhibition effect of nitrogen application on BNF at a soil depth of 1–15 cm was greater than that at 0–1 cm. Relative to the continuous flooding irrigation, intermittent irrigation enhanced rice growth and promoted the transfer of fixed nitrogen from 0-1 cm soil layer to rice, but it did not change the total amount of BNF.
Conclusions
This study indicated that BNF supplied little nitrogen for rice production at the high nitrogen application levels, but the intermittent irrigation could promote utilization of biologically fixed nitrogen. |
---|---|
AbstractList | Background and aimsBiological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence.MethodsAn airtight, transparent growth chamber based 15N-labelling system was used to investigate how different nitrogen application levels (0, 125, 187.5 and 250 kg N ha−1) and irrigation strategies (flooding irrigation or intermittent irrigation) impact the amount of BNF and its distribution in soil and rice.ResultsNitrogen application at 125–250 kg N ha−1 reduced the amount of BNF by 81–86%. The inhibition effect of nitrogen application on BNF at a soil depth of 1–15 cm was greater than that at 0–1 cm. Relative to the continuous flooding irrigation, intermittent irrigation enhanced rice growth and promoted the transfer of fixed nitrogen from 0-1 cm soil layer to rice, but it did not change the total amount of BNF.ConclusionsThis study indicated that BNF supplied little nitrogen for rice production at the high nitrogen application levels, but the intermittent irrigation could promote utilization of biologically fixed nitrogen. Background and aims Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence. Methods An airtight, transparent growth chamber based .sup.15N-labelling system was used to investigate how different nitrogen application levels (0, 125, 187.5 and 250 kg N ha.sup.-1) and irrigation strategies (flooding irrigation or intermittent irrigation) impact the amount of BNF and its distribution in soil and rice. Results Nitrogen application at 125-250 kg N ha.sup.-1 reduced the amount of BNF by 81-86%. The inhibition effect of nitrogen application on BNF at a soil depth of 1-15 cm was greater than that at 0-1 cm. Relative to the continuous flooding irrigation, intermittent irrigation enhanced rice growth and promoted the transfer of fixed nitrogen from 0-1 cm soil layer to rice, but it did not change the total amount of BNF. Conclusions This study indicated that BNF supplied little nitrogen for rice production at the high nitrogen application levels, but the intermittent irrigation could promote utilization of biologically fixed nitrogen. BACKGROUND AND AIMS: Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence. METHODS: An airtight, transparent growth chamber based ¹⁵N-labelling system was used to investigate how different nitrogen application levels (0, 125, 187.5 and 250 kg N ha⁻¹) and irrigation strategies (flooding irrigation or intermittent irrigation) impact the amount of BNF and its distribution in soil and rice. RESULTS: Nitrogen application at 125–250 kg N ha⁻¹ reduced the amount of BNF by 81–86%. The inhibition effect of nitrogen application on BNF at a soil depth of 1–15 cm was greater than that at 0–1 cm. Relative to the continuous flooding irrigation, intermittent irrigation enhanced rice growth and promoted the transfer of fixed nitrogen from 0-1 cm soil layer to rice, but it did not change the total amount of BNF. CONCLUSIONS: This study indicated that BNF supplied little nitrogen for rice production at the high nitrogen application levels, but the intermittent irrigation could promote utilization of biologically fixed nitrogen. Background and aims Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence. Methods An airtight, transparent growth chamber based 15 N-labelling system was used to investigate how different nitrogen application levels (0, 125, 187.5 and 250 kg N ha −1 ) and irrigation strategies (flooding irrigation or intermittent irrigation) impact the amount of BNF and its distribution in soil and rice. Results Nitrogen application at 125–250 kg N ha −1 reduced the amount of BNF by 81–86%. The inhibition effect of nitrogen application on BNF at a soil depth of 1–15 cm was greater than that at 0–1 cm. Relative to the continuous flooding irrigation, intermittent irrigation enhanced rice growth and promoted the transfer of fixed nitrogen from 0-1 cm soil layer to rice, but it did not change the total amount of BNF. Conclusions This study indicated that BNF supplied little nitrogen for rice production at the high nitrogen application levels, but the intermittent irrigation could promote utilization of biologically fixed nitrogen. |
Audience | Academic |
Author | Lin, Xinwu Sun, Delin Wang, Hui Sun, Xiaoli Zhang, Yanhui Jin, Haiyang Liu, Qi Liu, Benjuan Ma, Jing Cherubini, Francesco Lin, Zhibin Tang, Haoye Liu, Hongtao Arp, Hans Peter H. Xie, Zubin Chen, Zhe Wang, Xiaojie Hu, Tianlong Bei, Qicheng |
Author_xml | – sequence: 1 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui – sequence: 2 givenname: Tianlong surname: Hu fullname: Hu, Tianlong – sequence: 3 givenname: Hui surname: Wang fullname: Wang, Hui – sequence: 4 givenname: Haiyang surname: Jin fullname: Jin, Haiyang – sequence: 5 givenname: Qi surname: Liu fullname: Liu, Qi – sequence: 6 givenname: Zhibin surname: Lin fullname: Lin, Zhibin – sequence: 7 givenname: Benjuan surname: Liu fullname: Liu, Benjuan – sequence: 8 givenname: Hongtao surname: Liu fullname: Liu, Hongtao – sequence: 9 givenname: Zhe surname: Chen fullname: Chen, Zhe – sequence: 10 givenname: Xinwu surname: Lin fullname: Lin, Xinwu – sequence: 11 givenname: Xiaojie surname: Wang fullname: Wang, Xiaojie – sequence: 12 givenname: Jing surname: Ma fullname: Ma, Jing – sequence: 13 givenname: Delin surname: Sun fullname: Sun, Delin – sequence: 14 givenname: Xiaoli surname: Sun fullname: Sun, Xiaoli – sequence: 15 givenname: Haoye surname: Tang fullname: Tang, Haoye – sequence: 16 givenname: Qicheng surname: Bei fullname: Bei, Qicheng – sequence: 17 givenname: Francesco surname: Cherubini fullname: Cherubini, Francesco – sequence: 18 givenname: Hans Peter H. surname: Arp fullname: Arp, Hans Peter H. – sequence: 19 givenname: Zubin surname: Xie fullname: Xie, Zubin |
BookMark | eNp9kctq3TAQhkVJoSeXFygUBN1041QX6-JVCaFNAoFuUshOyLZkdJAlV9Jpc56ir1yd49JAFkELaYb_mxnNfwpOQgwGgPcYXWKExOeMMUZtgwhuEEMdbcQbsMFM0IYhyk_ABiFKGiS6x3fgNOctOsSYb8Cf2_gbjhGOzlqTTCgwuJLiZALUy-LdoIuLAXrzy_gMdRihS8lNa3ZJeihuMBm6ealP2Lvo41Qh_1zGuqdVfYRLrq1ySa7fHZOuVtHjuId5n4uZv5yDt1b7bC7-3Wfgx7evD9e3zf33m7vrq_tmaDEtTTcIaqggWEjT9pz0iLVYI9IJwXpCeE-kbEcretxJPcoOE0kZI6S3BmPaW3oGPq11lxR_7kwuanZ5MN7rYOIuK8Ipl0RI0lXpxxfSbdylUKdThEmEO0Qxq6rLVTVpb5QLNpa6nXpGM7uhumVdzV9xIVsuWiQqQFZgSDHnZKxakpt12iuM1MFUtZqqqqnqaKo6QPIFNLhyXG_t5vzrKF3RXPuEyaTnb7xKfVipbS4x_R-xlbxrKeP0L0S9w0A |
CitedBy_id | crossref_primary_10_1007_s11104_022_05654_4 crossref_primary_10_1038_s41598_024_78243_3 crossref_primary_10_3390_agriculture14020211 crossref_primary_10_1016_j_pedsph_2023_09_002 crossref_primary_10_1016_j_pedsph_2023_12_007 crossref_primary_10_1016_j_agee_2023_108372 crossref_primary_10_3390_ijerph19148707 crossref_primary_10_1016_j_apsoil_2024_105690 crossref_primary_10_1016_j_apsoil_2024_105590 crossref_primary_10_1007_s42398_023_00267_8 |
Cites_doi | 10.3389/fmicb.2012.00236 10.1128/aem.55.10.2522-2526.1989 10.1111/j.1462-2920.2005.00841.x 10.1038/nature15743 10.1016/j.scitotenv.2018.08.318 10.1016/j.soilbio.2018.12.028 10.1371/journal.pone.0042149 10.1007/BF01048695 10.1016/j.soilbio.2013.01.008 10.1016/j.syapm.2008.09.007 10.1007/s11104-009-9970-8 10.1038/35000193 10.1080/00380768.1981.10431278 10.1128/AEM.67.5.2255-2262.2001 10.1186/s40168-019-0757-8 10.2307/3899624 10.1016/S1002-0160(19)60809-X 10.1007/s00374-020-01497-2 10.1038/nrmicro954 10.1007/BF00384277 10.1038/srep21690 10.1016/S0168-1656(01)00334-0 10.1023/A:1004737422842 10.1080/00380768.2017.1407625 10.3389/fmicb.2018.01794 10.1016/j.envpol.2010.09.019 10.1007/s11368-008-0047-8 10.1146/annurev.arplant.57.032905.105159 10.1007/BF02206900 10.2136/sssaj1971.03615995003500010047x 10.1007/BF02374291 10.1046/j.1462-2920.2003.00491.x 10.1007/s11104-016-2851-z 10.1111/j.1462-2920.2006.01028.x 10.1146/annurev-ecolsys-102710-145034 10.1111/j.1439-037X.2006.00247.x 10.1128/AEM.02546-18 10.1023/A:1024175307238 10.1080/00380768.1986.10557538 10.1023/A:1008014424247 10.1038/srep19355 10.1093/femsec/fiaa255 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-021-05093-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 344 |
ExternalDocumentID | A678467407 10_1007_s11104_021_05093_7 48694356 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31870500; 41501273 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Special Project on the Basis of the National Science and Technology of China grantid: 2015FY110700 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JLS JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 2~F 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABBHK ABQSL ABULA ABXSQ ACBXY ACHIC ACKIV ADINQ ADULT ADYPR AEBTG AEFIE AEKMD AEUPB AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW AQVQM BBWZM BDATZ CAG COF DATOO EJD EN4 FINBP FSGXE GQ6 H13 IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SA0 SBY SCLPG T16 TEORI UZXMN VFIZW WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c413t-9c73e372178e4b62b0541a029775b226b2884df7b198ad8912835522bfe113bf3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 15:26:30 EDT 2025 Fri Jul 25 19:19:23 EDT 2025 Tue Jun 10 20:38:30 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Tue Jul 01 01:47:13 EDT 2025 Fri Feb 21 02:47:09 EST 2025 Thu Jun 19 20:10:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Biological nitrogen fixation gene N direct labelling Nitrogen fertilizer Irrigation practices |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-9c73e372178e4b62b0541a029775b226b2884df7b198ad8912835522bfe113bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9610-2874 |
PQID | 2580190315 |
PQPubID | 54098 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636827829 proquest_journals_2580190315 gale_infotracacademiconefile_A678467407 crossref_primary_10_1007_s11104_021_05093_7 crossref_citationtrail_10_1007_s11104_021_05093_7 springer_journals_10_1007_s11104_021_05093_7 jstor_primary_48694356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211001 20211000 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211001 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Dixon, Kahn (CR6) 2004; 2 Reed, Cleveland, Townsend (CR28) 2011; 42 CR18 CR17 Lu, Rosencrantz, Liesack, Conrad (CR19) 2006; 8 Inubushi, Watanabe (CR12) 1986; 32 Wang, Liu, Ma, Zhang, Hu, Zhang, Feng, Pan, Xu, Liu, Lin, Zhu, Bei, Xie (CR37) 2019; 131 Bouffaud, Renoud, Moënne-Loccoz, Muller (CR4) 2016; 6 Zehr, McPeynolds (CR42) 1989; 55 Bais, Weir, Perry, Gilroy, Vivanco (CR1) 2006; 57 Gaby, Buckley (CR8) 2012; 7 Tadakatsu, Junko, Kiwamu (CR34) 2017; 63 Ohyama, Kumazawa (CR24) 1981; 27 Rao, Rao (CR27) 1984; 81 Rosenblueth, Ormeño-Orrillo, López-López, Rogel, Reyes-Hernández, Martinez-Romero, Reddy, Martinez-Romero (CR30) 2018; 9 Fan, Delgado-Baquerizo, Guo, Wang, Wu, Zhu, Yu, Yao, Zhu, Chu (CR7) 2019; 7 Knauth, Hurek, Brar, Reinhold-Hurek (CR14) 2005; 7 Bei, Liu, Tang, Cadisch, Rasche, Xie (CR2) 2013; 59 Roger, Watanabe (CR29) 1996; 9 Zheng, Zhang, Zheng, Di (CR45) 2008; 8 Yamamuro (CR40) 1986; 20 Hoobs, Schimel (CR11) 1984; 37 Kox, Lüke, Fritz, Elzen, Alen, Camp, Lamers, Jetten, Ettwig (CR15) 2016; 406 Mårtensson, Díez, Wartiainen (CR22) 2009; 325 Gao (CR9) 1998; 10 Zhang, Davidson, Mauzerall, Searchinger, Dumas, Shen (CR44) 2015; 528 Bodelier, Roslev, Henckel, Frenzel (CR3) 2000; 403 Yoshida, Ancajas (CR41) 1971; 35 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello (CR5) 2010; 59 Ma, Bei, Wang, Liu, Cadisch, Lin, Zhu, Sun, Xie (CR21) 2019; 29 Valiente, Ucha, Quesada, Leganes, Carreres (CR36) 2000; 221 Zeng, Ali, Zhang, Ouyang, Qiu, Wu, Zhang (CR43) 2011; 159 Wang, Ke, Wu, Lu (CR39) 2009; 32 Irisarri, Gonnet, Monza (CR13) 2001; 91 Ma, Bei, Wang, Lan, Liu, Lin, Liu, Lin, Liu, Zhang, Jin, Hu, Zhu, Xie (CR20) 2019; 649 Ladha, Reddy (CR16) 2003; 252 Patra, Le Roux, Abbadie, Clays-Josserand, Poly, Loiseau, Louault (CR25) 2007; 193 Nag, Shriti, Das (CR23) 2019; 11 Poly, Ranjard, Nazaret, Gourbiere, Monrozier (CR26) 2001; 67 Smercina, Evans, Friesen, Tiemann (CR33) 2019; 85 Santiago-Ventura, Daez, Ventura, Watanabe, App (CR31) 1986; 93 Scherer, Ernst, Chen, Böger (CR32) 1984; 62 Wang, Bei, Yang, Zhang, Hao, Li, Feng, Xie (CR38) 2020; 56 Tan, Hurek, Reinhold-Hurek (CR35) 2003; 5 Großkopf, LaRoche (CR10) 2012; 3 T Großkopf (5093_CR10) 2012; 3 JC Gaby (5093_CR8) 2012; 7 NT Hoobs (5093_CR11) 1984; 37 X Zhang (5093_CR44) 2015; 528 P Nag (5093_CR23) 2019; 11 EF Valiente (5093_CR36) 2000; 221 ZY Tan (5093_CR35) 2003; 5 F Zeng (5093_CR43) 2011; 159 J Ma (5093_CR21) 2019; 29 JP Zehr (5093_CR42) 1989; 55 KS Gao (5093_CR9) 1998; 10 JG Caporaso (5093_CR5) 2010; 59 KK Fan (5093_CR7) 2019; 7 HP Bais (5093_CR1) 2006; 57 AK Patra (5093_CR25) 2007; 193 PLE Bodelier (5093_CR3) 2000; 403 DN Smercina (5093_CR33) 2019; 85 Y Tadakatsu (5093_CR34) 2017; 63 JK Ladha (5093_CR16) 2003; 252 T Ohyama (5093_CR24) 1981; 27 5093_CR17 BM Santiago-Ventura (5093_CR31) 1986; 93 L Mårtensson (5093_CR22) 2009; 325 VR Rao (5093_CR27) 1984; 81 P Irisarri (5093_CR13) 2001; 91 R Dixon (5093_CR6) 2004; 2 Y Lu (5093_CR19) 2006; 8 S Knauth (5093_CR14) 2005; 7 5093_CR18 ML Bouffaud (5093_CR4) 2016; 6 MAR Kox (5093_CR15) 2016; 406 SC Reed (5093_CR28) 2011; 42 T Yoshida (5093_CR41) 1971; 35 Y Zheng (5093_CR45) 2008; 8 K Inubushi (5093_CR12) 1986; 32 M Rosenblueth (5093_CR30) 2018; 9 F Poly (5093_CR26) 2001; 67 S Scherer (5093_CR32) 1984; 62 QC Bei (5093_CR2) 2013; 59 YN Wang (5093_CR39) 2009; 32 J Ma (5093_CR20) 2019; 649 PA Roger (5093_CR29) 1996; 9 XJ Wang (5093_CR37) 2019; 131 S Yamamuro (5093_CR40) 1986; 20 XJ Wang (5093_CR38) 2020; 56 |
References_xml | – volume: 3 start-page: 236 year: 2012 ident: CR10 article-title: Direct and Indirect Costs of Dinitrogen Fixation in Crocosphaera watsonii WH8501 and Possible Implications for the Nitrogen Cycle publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00236 – volume: 55 start-page: 2522 year: 1989 end-page: 2526 ident: CR42 article-title: Use of degenerate oligonucleotides for amplification of the gene from the marine cyanobacterium publication-title: Appl Environ Microbiol doi: 10.1128/aem.55.10.2522-2526.1989 – ident: CR18 – volume: 7 start-page: 1725 year: 2005 end-page: 1733 ident: CR14 article-title: Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00841.x – volume: 528 start-page: 51 issue: 7580 year: 2015 end-page: 59 ident: CR44 article-title: Managing nitrogen for sustainable development publication-title: Nature doi: 10.1038/nature15743 – volume: 649 start-page: 686 year: 2019 end-page: 694 ident: CR20 article-title: Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.318 – volume: 131 start-page: 81 year: 2019 end-page: 89 ident: CR37 article-title: Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.12.028 – volume: 7 start-page: e42149 year: 2012 ident: CR8 article-title: A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase publication-title: PLoS ONE doi: 10.1371/journal.pone.0042149 – volume: 9 start-page: 39 year: 1996 end-page: 77 ident: CR29 article-title: Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors publication-title: Fertilizer Res doi: 10.1007/BF01048695 – volume: 59 start-page: 25 year: 2013 end-page: 31 ident: CR2 article-title: Heterotrophic and phototrophic N fixation and distribution of fixed N in a flooded rice–soil system publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.01.008 – volume: 32 start-page: 27 issue: 1 year: 2009 end-page: 36 ident: CR39 article-title: Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2008.09.007 – volume: 20 start-page: 100 year: 1986 end-page: 107 ident: CR40 article-title: Behavior of nitrogen in paddy soils publication-title: Jpn Agric Res Q – volume: 325 start-page: 207 year: 2009 end-page: 218 ident: CR22 article-title: Diazotrophic diversity, gene expression and nitrogenase activity in a rice paddy field in Fujian, China publication-title: Plant Soil doi: 10.1007/s11104-009-9970-8 – volume: 403 start-page: 421 year: 2000 end-page: 424 ident: CR3 article-title: Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots publication-title: Nature doi: 10.1038/35000193 – volume: 27 start-page: 263 year: 1981 end-page: 265 ident: CR24 article-title: A simple method for the preparation, purification and storage of15N2gas for biological nitrogen fixation studies publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1981.10431278 – volume: 67 start-page: 2255 year: 2001 end-page: 2262 ident: CR26 article-title: Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.5.2255-2262.2001 – volume: 7 start-page: 143 year: 2019 ident: CR7 article-title: Suppressed N fixation and diazotrophs after four decades of fertilization publication-title: Mirobiome doi: 10.1186/s40168-019-0757-8 – volume: 37 start-page: 402 year: 1984 end-page: 405 ident: CR11 article-title: Fire effects on nitrogen mineralization and fixation in mountain shrub and grassland communities publication-title: J Range Mamag doi: 10.2307/3899624 – volume: 29 start-page: 374 year: 2019 end-page: 387 ident: CR21 article-title: Paddy System with a Hybrid Rice Enhances Cyanobacteria Nostoc and Increases N2 Fixation publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60809-X – volume: 56 start-page: 1189 year: 2020 end-page: 1199 ident: CR38 article-title: Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and N -DNA-stable isotope probing publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01497-2 – volume: 59 start-page: 399 year: 2010 end-page: 405 ident: CR5 article-title: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336.Charyulu PBBN, Nayak DN, Rao VR (1981) N incorporation as influence of rice variety, organic matter and combined nitrogen publication-title: Plant Soil – volume: 2 start-page: 621 year: 2004 end-page: 631 ident: CR6 article-title: Genetic regulation of biological nitrogen fixation publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro954 – volume: 62 start-page: 418 year: 1984 end-page: 423 ident: CR32 article-title: Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation publication-title: Oecologia doi: 10.1007/BF00384277 – volume: 6 start-page: 21690 year: 2016 ident: CR4 article-title: Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere? publication-title: Sci Rep doi: 10.1038/srep21690 – volume: 91 start-page: 95 year: 2001 end-page: 103 ident: CR13 article-title: Cyanobacteria in Uruguayan rice fields: diversity, nitrogen-fixing ability and tolerance to herbicides and combined nitrogen publication-title: J Biotechnol doi: 10.1016/S0168-1656(01)00334-0 – volume: 221 start-page: 107 year: 2000 end-page: 112 ident: CR36 article-title: Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice publication-title: Plant Soil doi: 10.1023/A:1004737422842 – volume: 63 start-page: 578 issue: 6 year: 2017 end-page: 590 ident: CR34 article-title: Exploration of bacterial N -fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2017.1407625 – volume: 9 start-page: 1794 year: 2018 ident: CR30 article-title: Nitrogen fixation in cereals publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01794 – volume: 159 start-page: 84 year: 2011 end-page: 91 ident: CR43 article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.09.019 – volume: 8 start-page: 406 issue: 6 year: 2008 end-page: 414 ident: CR45 article-title: Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices publication-title: J Soils Sediments doi: 10.1007/s11368-008-0047-8 – volume: 57 start-page: 233 year: 2006 end-page: 266 ident: CR1 article-title: The role of root exudates in rhizosphere interactions with plants and other organisms publication-title: Ann Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 81 start-page: 111 year: 1984 end-page: 118 ident: CR27 article-title: Nitrogen fixation (C H reduction) in soil samples from rhizosphere of rice grown under alternate flooded and nonflooded conditions publication-title: Plant Soil doi: 10.1007/BF02206900 – volume: 35 start-page: 156 year: 1971 end-page: 158 ident: CR41 article-title: Nitrogen fixation by bacteria in the root zone of rice publication-title: Soil Sci Soc Amer Proc doi: 10.2136/sssaj1971.03615995003500010047x – ident: CR17 – volume: 93 start-page: 405 year: 1986 end-page: 411 ident: CR31 article-title: Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice publication-title: Plant Soil doi: 10.1007/BF02374291 – volume: 5 start-page: 1009 year: 2003 end-page: 1015 ident: CR35 article-title: Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice publication-title: Environ Microbiol doi: 10.1046/j.1462-2920.2003.00491.x – volume: 406 start-page: 83 year: 2016 end-page: 100 ident: CR15 article-title: Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with publication-title: Plant Soil doi: 10.1007/s11104-016-2851-z – volume: 8 start-page: 1351 year: 2006 end-page: 1360 ident: CR19 article-title: Structure and activity of bacterial community inhabiting rice roots and the rhizosphere publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2006.01028.x – volume: 42 start-page: 489 year: 2011 end-page: 512 ident: CR28 article-title: Functional ecology of free-living nitrogen fixation: a contemporary perspective publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-102710-145034 – volume: 193 start-page: 153 year: 2007 end-page: 156 ident: CR25 article-title: Effect of microbial activity and nitrogen mineralization on free-living nitrogen fixation in permanent grassland soils publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2006.00247.x – volume: 85 start-page: e02546 issue: 6 year: 2019 end-page: e2618 ident: CR33 article-title: To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02546-18 – volume: 252 start-page: 151 year: 2003 end-page: 167 ident: CR16 article-title: Nitrogen fixation in rice systems: state of knowledge and future prospects publication-title: Plant Soil doi: 10.1023/A:1024175307238 – volume: 11 start-page: 315 year: 2019 end-page: 326 ident: CR23 article-title: Microbiological strategies for enhancing biological nitrogen fication in nonlegumes. Journal of Applied Microbiology 1364–5072 Norman JS, Friesen ML (2017) Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs publication-title: ISME J – volume: 32 start-page: 561 year: 1986 end-page: 577 ident: CR12 article-title: Dynamics of available nitrogen in paddy soils publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1986.10557538 – volume: 10 start-page: 37 year: 1998 end-page: 49 ident: CR9 article-title: Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review publication-title: J Appl Phycol doi: 10.1023/A:1008014424247 – volume: 325 start-page: 207 year: 2009 ident: 5093_CR22 publication-title: Plant Soil doi: 10.1007/s11104-009-9970-8 – volume: 62 start-page: 418 year: 1984 ident: 5093_CR32 publication-title: Oecologia doi: 10.1007/BF00384277 – volume: 528 start-page: 51 issue: 7580 year: 2015 ident: 5093_CR44 publication-title: Nature doi: 10.1038/nature15743 – volume: 10 start-page: 37 year: 1998 ident: 5093_CR9 publication-title: J Appl Phycol doi: 10.1023/A:1008014424247 – volume: 56 start-page: 1189 year: 2020 ident: 5093_CR38 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01497-2 – volume: 81 start-page: 111 year: 1984 ident: 5093_CR27 publication-title: Plant Soil doi: 10.1007/BF02206900 – volume: 9 start-page: 39 year: 1996 ident: 5093_CR29 publication-title: Fertilizer Res doi: 10.1007/BF01048695 – volume: 63 start-page: 578 issue: 6 year: 2017 ident: 5093_CR34 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2017.1407625 – volume: 59 start-page: 25 year: 2013 ident: 5093_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.01.008 – volume: 85 start-page: e02546 issue: 6 year: 2019 ident: 5093_CR33 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02546-18 – volume: 5 start-page: 1009 year: 2003 ident: 5093_CR35 publication-title: Environ Microbiol doi: 10.1046/j.1462-2920.2003.00491.x – volume: 159 start-page: 84 year: 2011 ident: 5093_CR43 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.09.019 – volume: 7 start-page: 1725 year: 2005 ident: 5093_CR14 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00841.x – ident: 5093_CR17 doi: 10.1038/srep19355 – volume: 221 start-page: 107 year: 2000 ident: 5093_CR36 publication-title: Plant Soil doi: 10.1023/A:1004737422842 – volume: 37 start-page: 402 year: 1984 ident: 5093_CR11 publication-title: J Range Mamag doi: 10.2307/3899624 – volume: 252 start-page: 151 year: 2003 ident: 5093_CR16 publication-title: Plant Soil doi: 10.1023/A:1024175307238 – volume: 32 start-page: 561 year: 1986 ident: 5093_CR12 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1986.10557538 – volume: 91 start-page: 95 year: 2001 ident: 5093_CR13 publication-title: J Biotechnol doi: 10.1016/S0168-1656(01)00334-0 – volume: 55 start-page: 2522 year: 1989 ident: 5093_CR42 publication-title: Appl Environ Microbiol doi: 10.1128/aem.55.10.2522-2526.1989 – volume: 6 start-page: 21690 year: 2016 ident: 5093_CR4 publication-title: Sci Rep doi: 10.1038/srep21690 – volume: 3 start-page: 236 year: 2012 ident: 5093_CR10 publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00236 – volume: 67 start-page: 2255 year: 2001 ident: 5093_CR26 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.5.2255-2262.2001 – volume: 8 start-page: 406 issue: 6 year: 2008 ident: 5093_CR45 publication-title: J Soils Sediments doi: 10.1007/s11368-008-0047-8 – ident: 5093_CR18 doi: 10.1093/femsec/fiaa255 – volume: 406 start-page: 83 year: 2016 ident: 5093_CR15 publication-title: Plant Soil doi: 10.1007/s11104-016-2851-z – volume: 29 start-page: 374 year: 2019 ident: 5093_CR21 publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60809-X – volume: 35 start-page: 156 year: 1971 ident: 5093_CR41 publication-title: Soil Sci Soc Amer Proc doi: 10.2136/sssaj1971.03615995003500010047x – volume: 93 start-page: 405 year: 1986 ident: 5093_CR31 publication-title: Plant Soil doi: 10.1007/BF02374291 – volume: 42 start-page: 489 year: 2011 ident: 5093_CR28 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-102710-145034 – volume: 9 start-page: 1794 year: 2018 ident: 5093_CR30 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01794 – volume: 403 start-page: 421 year: 2000 ident: 5093_CR3 publication-title: Nature doi: 10.1038/35000193 – volume: 20 start-page: 100 year: 1986 ident: 5093_CR40 publication-title: Jpn Agric Res Q – volume: 2 start-page: 621 year: 2004 ident: 5093_CR6 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro954 – volume: 131 start-page: 81 year: 2019 ident: 5093_CR37 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.12.028 – volume: 27 start-page: 263 year: 1981 ident: 5093_CR24 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1981.10431278 – volume: 7 start-page: e42149 year: 2012 ident: 5093_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0042149 – volume: 193 start-page: 153 year: 2007 ident: 5093_CR25 publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2006.00247.x – volume: 57 start-page: 233 year: 2006 ident: 5093_CR1 publication-title: Ann Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 7 start-page: 143 year: 2019 ident: 5093_CR7 publication-title: Mirobiome doi: 10.1186/s40168-019-0757-8 – volume: 59 start-page: 399 year: 2010 ident: 5093_CR5 publication-title: Plant Soil – volume: 649 start-page: 686 year: 2019 ident: 5093_CR20 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.318 – volume: 11 start-page: 315 year: 2019 ident: 5093_CR23 publication-title: ISME J – volume: 8 start-page: 1351 year: 2006 ident: 5093_CR19 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2006.01028.x – volume: 32 start-page: 27 issue: 1 year: 2009 ident: 5093_CR39 publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2008.09.007 |
SSID | ssj0003216 |
Score | 2.4568028 |
Snippet | Background and aims
Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to... Background and aims Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to... Background and aimsBiological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to... BACKGROUND AND AIMS: Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 329 |
SubjectTerms | Agriculture Airtightness Biomedical and Life Sciences Crop production Ecology Environmental aspects Flooding Growth chambers Irrigation Irrigation practices Labeling Life Sciences Methods Nitrogen Nitrogen fertilizers Nitrogen fixation Nitrogenation ORIGINAL ARTICLE paddies Physiological aspects Plant Physiology Plant Sciences Rice Soil depth Soil investigations Soil layers Soil Science & Conservation Soils surge irrigation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEB60KtiHoqfFq1VWEHzQQLKbZDdPcpWWQ9AnD-5t2b1N5KAkJUnR-xX9y53ZbHJWVPDtyG0mCTOz8w078w3AW8y3DK-4iAznmKCo2KHPGRMhFogp3rnCd8h9-ZovV-nndbYOTWHdWO0-Hkn6nXrf7IaRKo2opIA4S0Qk78ODDHN3KuRa8cW0_wruB57SjyiWxTq0yvxZxp1wFDbloTDxDuT87ZTUB5-LJ3AUUCNbDGp-CvfKegaHi-9tYM4oZ_DwrEGct5vBo3NPRL17BjfL5gdzDRuHoPQM_bdt0GTYL-fW7JLqhjpmase2bespN_Dq2D7VsaGRkg10TaTTvZhq-3NY7W_uO3xUN43QYluUghvbjg100R-fw-ri_NunZRQGMEQbjG19VGykKAXmiFKVqc25RXyXGBp3JTOLuM1ypVJXSZsUyjhVJETehoDOVmWSCFuJYziom7p8Acw5zByFQ6uQNsWc3Eruk2OT2hgzxGIOyagHvQns5DQk41LveZVJdxp1p73utJzD--meq4Gb45-r35F6NTkuSt6Y0H-A70cUWHqBYZtGr8S48thbwCQ0VXmBsDKfw-loEjq4eqd5pqgfXyTZHN5Mf6OT0smLqcvmGtfkIlccwRh-54fRlPYi_v7SJ_-3_CU85mTcvtjwFA769rp8haCpt6-9j9wCPn0KSQ priority: 102 providerName: Springer Nature |
Title | How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system? |
URI | https://www.jstor.org/stable/48694356 https://link.springer.com/article/10.1007/s11104-021-05093-7 https://www.proquest.com/docview/2580190315 https://www.proquest.com/docview/2636827829 |
Volume | 467 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RhAM9IChUpLTRIiFxAAt71_HjVDmQEIGoECJSOFm7XhtFquzWdlX6K_jLnVmvHYpET4ni9djxvL7xzgPgNcZbkhdcOJJzDFAiV6POSekgFnDJ3-nYVMh9PQtWa__zZraxL9wam1bZ20RjqHWV0Tvy93wWUdmz8GanF5cOTY2i3VU7QmMPxmiCo2gE4_ni7Nv3wRYLboaf0hfHDeONLZvpiufQ8_kOpShQDxThhHdckzXQXZLiHfj5z46pcUTLJ_DYIkiWdCx_Cg_y8gD2k1-17aKRH8DDeYWY7-YZ_FlV10xXrB-D0jLU4LpCoWF_7Vyzc8ocapgsNdvWtWm6gb_2BVQN60opWdewibi6I1Nsf3erzcltg5dqhiFabItU0LTdsK5h9OlzWC8XPz6sHDuCwcnQu7VOnIUiFxglhlHuq4ArRHiepIFX4UwhclP40H1dhMqLI6mj2KP2bQjpVJF7nlCFOIRRWZX5C2BaY-woNMpFqHyMylXITXgsfeVijBhPwOuffprZ_uQ0JuM83XVWJo6lyLHUcCwNJ_B2OOei685x7-o3xNSUVBcpZ9JWIOD9UROsNEHHTcNXXFx5aPg-EPWjIEZgGUzguBeE1Cp7k-5EcwKvhsOoprT3Isu8usI1gQgijnAM_-e7XoB2JP5_00f3X_ElPOIkwia98BhGbX2VnyBMatUUxsn843xJn59-fllMrW5MYW_Nk1uCIw_N |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFAl6QFCoCC2wSCAOYGHvOv45VFUKrVLaRgi1Um7bXa-NIlV2sV2VPAVvwjN2Zv0TikRvvUXJeuxkZme-yc58A_AW8y3FMy4cxTkmKJFrcM8p5SAWcCnemdh2yB1Pg8mp_3U2mq3An64XhsoqO59oHbUpEvqP_BMfRdT2LLzRzsVPh6ZG0elqN0KjMYvDdHGFKVu1ffAF9fuO8_29k88Tp50q4CTosGsnTkKRCkx8wij1dcA1ghZP0QyncKQRjGgeRb7JQo3puDJR7BEjGaIUnaWeJ3QmUO49WPVF4PIBrO7uTb99732_4HbYKr1w3DCetW06TbMeRlrfoZII4lwRTngjFLYBoSmKvAF3_zmhtYFv_zE8ahErGzcm9gRW0nwd1sY_ypa1I12H-7sFYszFU_g9Ka6YKVg3dqVm6DHKAo2U_XVSzs6pUqliKjdsXpaW5APf7Rq2Kta0brKGIIqsaCkmm_9qVtuL6wpvVfVDu9gcpaArXbCGoHrnGZzeiXI2YJAXefocmDGYqwqDdhhq3_UDHXKbjitfu5iTxkPwul9fJi0fOo3lOJdLJmfSmESNSasxGQ7hQ3_NRcMGcuvq96RUSa4CJSeq7XjA5yPSLTlGoEDDXlxcuWH13gv1oyBGIBsMYaszBNk6l0out8IQ3vQfo1ugsx6Vp8UlrglEEHGEf_g9P3YGtBTx_4d-cfsdX8ODycnxkTw6mB5uwkNO5mxLG7dgUJeX6UuEaLV-1e4LBmd3vRWvAdwkRkM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFCE4IChUBAosEogDWLV3Hf8cUJXSRimFqEJUym2767WrSJXd2q5KnoL34emYsdcORaK33qJkPXYyszPfZGe-AXiL-ZbiGReO4hwTlMg1uOeUchALuBTvTNx0yH2bBdNj_8t8NF-D310vDJVVdj6xcdSmSOg_8m0-iqjtWXij7cyWRRztTXbOLxyaIEUnrd04jdZEDtPlFaZv1aeDPdT1O84n-z8-Tx07YcBJ0HnXTpyEIhWYBIVR6uuAawQwnqJ5TuFIIzDRPIp8k4UaU3NlotgjdjJELDpLPU_oTKDcO7AeUlY0gPXd_dnR9z4OCN4MXqUXjhvGc9uy0zbuYdT1HSqPIP4V4YTXwqINDm2B5DXo-89pbRMEJ4_goUWvbNya22NYS_MNeDA-LS2DR7oBd3cLxJvLJ_BrWlwxU7BuBEvN0HuUBRos--vUnJ1R1VLFVG7Yoiwbwg98t2veqljbxslasiiyqJWYbPGzXd1cXFd4q6of4MUWKAXd6pK1ZNU7T-H4VpSzCYO8yNNnwIxBDQmDNhlq3_UDHfImNVe-djE_jYfgdb--TCw3Oo3oOJMrVmfSmESNyUZjMhzCh_6a85YZ5MbV70mpktwGSk6U7X7A5yMCLjlG0ECDX1xcudnovRfqR0GMoDYYwlZnCNI6mkqutsUQ3vQfo4ugcx-Vp8UlrglEEHGEgvg9P3YGtBLx_4d-fvMdX8M93ILy68Hs8AXc52TNTZXjFgzq8jJ9iWit1q_stmBwcts78Q9mfUp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+different+nitrogen+application+levels+and+irrigation+practices+impact+biological+nitrogen+fixation+and+its+distribution+in+paddy+system%3F&rft.jtitle=Plant+and+soil&rft.au=Zhang%2C+Yanhui&rft.au=Hu%2C+Tianlong&rft.au=Wang%2C+Hui&rft.au=Jin%2C+Haiyang&rft.date=2021-10-01&rft.pub=Springer&rft.issn=0032-079X&rft.volume=467&rft.issue=1-2&rft.spage=329&rft_id=info:doi/10.1007%2Fs11104-021-05093-7&rft.externalDocID=A678467407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |