Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets

Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a cr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 9; pp. 2149 - 2160
Main Authors Zhang, Rongzhao, Zhao, Lei, Lou, Wutao, Abrigo, Jill M., Mok, Vincent C. T., Chu, Winnie C. W., Wang, Defeng, Shi, Lin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.
AbstractList Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.
Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.
Author Wang, Defeng
Zhang, Rongzhao
Mok, Vincent C. T.
Zhao, Lei
Abrigo, Jill M.
Shi, Lin
Chu, Winnie C. W.
Lou, Wutao
Author_xml – sequence: 1
  givenname: Rongzhao
  orcidid: 0000-0001-8103-5210
  surname: Zhang
  fullname: Zhang, Rongzhao
  organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Lei
  orcidid: 0000-0001-5125-974X
  surname: Zhao
  fullname: Zhao, Lei
  organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Wutao
  orcidid: 0000-0002-6844-2847
  surname: Lou
  fullname: Lou, Wutao
  organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Jill M.
  surname: Abrigo
  fullname: Abrigo, Jill M.
  organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Vincent C. T.
  surname: Mok
  fullname: Mok, Vincent C. T.
  organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Winnie C. W.
  orcidid: 0000-0003-4962-4132
  surname: Chu
  fullname: Chu, Winnie C. W.
  organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Defeng
  surname: Wang
  fullname: Wang, Defeng
  organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
– sequence: 8
  givenname: Lin
  surname: Shi
  fullname: Shi, Lin
  email: shilin@cuhk.edu.hk
  organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994088$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9v0zAYhi20iXWDOxISssRll5TPP2Mfq3YdlTY4sAluIXW-jIwkHrYzaf89rlp22IGTLfl57M_ve0qORj8iIe8YzBkD--nmejPnwMycG864lK_IjCllCq7kjyMyA16aAkDzE3Ia4z0Akwrsa3LCrbUSjJmRn4sp-aFOnaPf8G7AMeW9H6lv6cJNCekmul847I5T8L-RroMf6Or7ht7GbryjoljR9dT3T3Tpx0ffTzu77ukKx4hfMMU35Lit-4hvD-sZuV1f3Cw_F1dfLzfLxVXhJBOpsMY0duukclsunOFagWvLpnXWNloIXYqmNrKxbatBaq6ZM3Yr819FiU7JRpyR8_29D8H_mTCmauiiw76vR_RTrDhoI4QFxTP68QV676eQp84UYyVTFixk6sOBmrYDNtVD6IY6PFX_sssA7AEXfIwB22eEQbWrp8r1VLt6qkM9WdEvFNftA0-h7vr_ie_3YoeIz-8YwY3J6fwF7z2aEA
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105524
crossref_primary_10_1109_ACCESS_2018_2889321
crossref_primary_10_1016_j_neucom_2023_01_012
crossref_primary_10_1109_TIM_2021_3077996
crossref_primary_10_1016_j_cmpb_2020_105521
crossref_primary_10_1002_mp_14800
crossref_primary_10_1016_j_bspc_2022_103978
crossref_primary_10_1016_j_imavis_2023_104865
crossref_primary_10_1049_ipr2_12606
crossref_primary_10_1002_ana_26435
crossref_primary_10_1161_STROKEAHA_119_028101
crossref_primary_10_1038_s41598_021_02466_x
crossref_primary_10_1007_s00521_021_06816_8
crossref_primary_10_1007_s11517_023_02927_7
crossref_primary_10_1007_s00138_021_01196_4
crossref_primary_10_1016_j_eswa_2023_120637
crossref_primary_10_36306_konjes_1346134
crossref_primary_10_1007_s00330_022_08633_6
crossref_primary_10_1002_acn3_751
crossref_primary_10_1038_s41598_023_45573_7
crossref_primary_10_1016_j_neurad_2021_05_001
crossref_primary_10_3233_XST_210861
crossref_primary_10_1016_j_neucom_2020_04_008
crossref_primary_10_1109_ACCESS_2019_2921434
crossref_primary_10_3389_fninf_2021_782262
crossref_primary_10_1016_j_media_2020_101791
crossref_primary_10_1109_ACCESS_2022_3204048
crossref_primary_10_1038_s43856_021_00062_8
crossref_primary_10_1016_j_bspc_2023_105065
crossref_primary_10_1088_1361_6560_ad45a5
crossref_primary_10_1109_ACCESS_2020_2987932
crossref_primary_10_1007_s10916_019_1358_6
crossref_primary_10_1136_neurintsurg_2019_015471
crossref_primary_10_1007_s00521_022_08094_4
crossref_primary_10_1002_mp_15483
crossref_primary_10_1007_s00234_021_02855_z
crossref_primary_10_1016_j_eswa_2024_124329
crossref_primary_10_1016_j_compbiomed_2019_103536
crossref_primary_10_1259_bjr_20210038
crossref_primary_10_1088_1361_6560_ab79c3
crossref_primary_10_1016_j_nicl_2022_103018
crossref_primary_10_1007_s12204_021_2273_9
crossref_primary_10_1109_RBME_2019_2934500
crossref_primary_10_1109_ACCESS_2025_3549269
crossref_primary_10_1016_j_nicl_2023_103381
crossref_primary_10_1155_2021_3628179
crossref_primary_10_1109_ACCESS_2018_2872939
crossref_primary_10_3390_diagnostics14242820
crossref_primary_10_1007_s42979_021_00835_x
crossref_primary_10_1148_ryai_2020190217
crossref_primary_10_1016_j_compbiomed_2019_103487
crossref_primary_10_1016_j_compbiomed_2021_104724
crossref_primary_10_1109_TBME_2020_3041571
crossref_primary_10_1161_STROKEAHA_118_024261
crossref_primary_10_1016_j_neuri_2023_100145
crossref_primary_10_13104_imri_2022_26_4_191
crossref_primary_10_3390_s21248507
crossref_primary_10_1016_j_media_2020_101818
crossref_primary_10_1016_j_brainresbull_2024_110920
crossref_primary_10_1109_JBHI_2023_3273771
crossref_primary_10_1007_s00521_019_04096_x
crossref_primary_10_1016_j_imu_2020_100440
crossref_primary_10_3389_fneur_2023_1178637
crossref_primary_10_1109_JBHI_2021_3131758
crossref_primary_10_1016_j_compbiomed_2022_106120
crossref_primary_10_1016_j_compbiomed_2023_107471
crossref_primary_10_1007_s10278_024_01099_6
crossref_primary_10_3390_electronics11162612
crossref_primary_10_3389_fneur_2022_791816
crossref_primary_10_1016_j_nicl_2021_102744
crossref_primary_10_3390_jpm12040521
crossref_primary_10_1007_s00330_022_08661_2
crossref_primary_10_1007_s42044_024_00201_z
crossref_primary_10_1145_3699513
crossref_primary_10_1007_s10462_024_10900_5
crossref_primary_10_1007_s42979_024_03389_w
crossref_primary_10_1109_ACCESS_2024_3498316
crossref_primary_10_1016_j_neucom_2019_03_049
crossref_primary_10_1109_ACCESS_2020_2977946
crossref_primary_10_1038_s41597_023_02457_9
crossref_primary_10_1016_j_ymeth_2020_10_004
crossref_primary_10_1109_TIP_2019_2905537
crossref_primary_10_1016_j_cmpb_2020_105831
crossref_primary_10_1016_j_neuroimage_2023_120041
crossref_primary_10_2196_59711
crossref_primary_10_3390_app12010489
crossref_primary_10_2139_ssrn_3975623
crossref_primary_10_1007_s11042_023_17324_3
crossref_primary_10_1016_j_knosys_2021_107692
crossref_primary_10_1016_j_comcom_2023_05_011
crossref_primary_10_1007_s11517_024_03243_4
crossref_primary_10_3390_app10144861
crossref_primary_10_3390_diagnostics10100803
crossref_primary_10_1016_j_patcog_2021_108006
crossref_primary_10_3390_app10144908
crossref_primary_10_1109_JBHI_2020_2996783
crossref_primary_10_3174_ajnr_A6077
crossref_primary_10_1016_j_neunet_2020_05_005
crossref_primary_10_1016_j_neucom_2022_11_041
crossref_primary_10_2139_ssrn_4015024
crossref_primary_10_1007_s00330_023_09622_z
crossref_primary_10_32604_cmc_2023_034400
crossref_primary_10_1002_ird3_105
crossref_primary_10_1016_j_cmpb_2021_106278
crossref_primary_10_1016_j_bspc_2021_103283
crossref_primary_10_1016_j_compbiomed_2019_103579
crossref_primary_10_1016_j_zemedi_2018_11_004
crossref_primary_10_1016_j_cmpb_2022_106630
crossref_primary_10_1111_jon_12850
crossref_primary_10_1016_j_jneumeth_2021_109260
crossref_primary_10_1007_s11042_018_6418_2
crossref_primary_10_1007_s42979_021_00704_7
crossref_primary_10_1016_j_compbiomed_2022_106332
crossref_primary_10_1007_s10462_025_11119_8
crossref_primary_10_1109_TCBB_2019_2939522
crossref_primary_10_1016_j_neucom_2023_02_047
crossref_primary_10_1109_ACCESS_2020_2995632
crossref_primary_10_1038_s41598_021_91467_x
crossref_primary_10_1155_2022_2384830
crossref_primary_10_3390_app11041675
crossref_primary_10_1016_j_bbe_2022_01_002
crossref_primary_10_1109_JBHI_2021_3135647
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1016_j_ynirp_2024_100196
crossref_primary_10_1016_j_nicl_2022_102998
crossref_primary_10_17694_bajece_1533966
crossref_primary_10_3390_jcm14020571
crossref_primary_10_1109_ACCESS_2020_2977415
crossref_primary_10_1097_CM9_0000000000001299
crossref_primary_10_1016_j_bspc_2022_103720
crossref_primary_10_3233_JIFS_230024
crossref_primary_10_3390_app14188183
crossref_primary_10_1016_j_cmpb_2020_105728
crossref_primary_10_1038_s41598_022_06021_0
Cites_doi 10.1016/j.jalz.2014.01.003
10.1016/j.neuroimage.2017.04.041
10.1161/01.STR.24.1.35
10.1109/ICCV.2015.123
10.1148/radiol.12112134
10.1016/j.media.2016.10.004
10.1109/TPAMI.2017.2699184
10.1109/IEMBS.2007.4352736
10.1109/3DV.2016.79
10.1016/j.nicl.2017.06.016
10.1093/ageing/afn281
10.1109/TMI.2016.2535865
10.1109/CVPR.2009.5206848
10.1109/ICCV.2015.169
10.1109/TPAMI.2016.2572683
10.1056/NEJMcp072057
10.1109/TMI.2016.2528129
10.1109/CVPR.2017.243
10.1109/TMI.2016.2528162
10.1016/j.media.2016.07.009
10.1016/j.acra.2006.09.045
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2018.2821244
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2160
ExternalDocumentID 29994088
10_1109_TMI_2018_2821244
8328863
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Grants Council, University Grants Committee
  grantid: CUHK 14113214; CUHK 14204117
  funderid: 10.13039/501100002920
– fundername: Innovation and Technology Commission
  grantid: GHP-025-17SZ; GHP-028-14SZ
  funderid: 10.13039/501100003452
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c413t-988d9bc45cb23c82650cf7dfc99d633673da84d9ff6046261c89b455837ec54d3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 22:16:00 EDT 2025
Mon Jun 30 06:43:11 EDT 2025
Wed Feb 19 02:34:35 EST 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 03:16:00 EDT 2025
Wed Aug 27 02:55:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-988d9bc45cb23c82650cf7dfc99d633673da84d9ff6046261c89b455837ec54d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5125-974X
0000-0001-8103-5210
0000-0003-4962-4132
0000-0002-6844-2847
PMID 29994088
PQID 2117159090
PQPubID 85460
PageCount 12
ParticipantIDs ieee_primary_8328863
crossref_primary_10_1109_TMI_2018_2821244
crossref_citationtrail_10_1109_TMI_2018_2821244
proquest_journals_2117159090
pubmed_primary_29994088
proquest_miscellaneous_2068339052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref36
ref14
nair (ref33) 2010
veit (ref31) 2016
ref11
ref10
ref2
ref39
ref17
ref38
ref16
delalleau (ref28) 2011
ref19
drozdzal (ref26) 2017
ref18
netzer (ref35) 2011
yu (ref23) 2017
ioffe (ref32) 2015
ref24
ref25
ref20
ref22
glorot (ref29) 2010
lee (ref37) 2015
(ref1) 2017
mozaffarian (ref4) 2016; 133
mujumdar (ref8) 2012
ref7
håstad (ref27) 1987
ref9
ref3
he (ref30) 2016
simonyan (ref13) 2014
ref6
goodfellow (ref12) 2016
ref5
krizhevsky (ref34) 2009
ref40
çiçek (ref21) 2016
References_xml – ident: ref5
  doi: 10.1016/j.jalz.2014.01.003
– ident: ref24
  doi: 10.1016/j.neuroimage.2017.04.041
– ident: ref38
  doi: 10.1161/01.STR.24.1.35
– start-page: 5
  year: 2011
  ident: ref35
  article-title: Reading digits in natural images with unsupervised feature learning
  publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning
– ident: ref39
  doi: 10.1109/ICCV.2015.123
– year: 2016
  ident: ref12
  publication-title: Deep Learning
– start-page: 448
  year: 2015
  ident: ref32
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref1
  publication-title: The Top 10 Causes of Death
– ident: ref40
  doi: 10.1148/radiol.12112134
– ident: ref11
  doi: 10.1016/j.media.2016.10.004
– ident: ref20
  doi: 10.1109/TPAMI.2017.2699184
– year: 2014
  ident: ref13
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– ident: ref7
  doi: 10.1109/IEMBS.2007.4352736
– start-page: 249
  year: 2010
  ident: ref29
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Stat
– start-page: 666
  year: 2011
  ident: ref28
  article-title: Shallow vs. deep sum-product networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 133
  start-page: 38e
  year: 2016
  ident: ref4
  article-title: Heart disease and stroke statistics-2016 update: A report from the American Heart Association
  publication-title: Circulation
– year: 1987
  ident: ref27
  publication-title: Computational Limitations of Small-depth Circuits
– start-page: 630
  year: 2016
  ident: ref30
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comput Vis
– ident: ref22
  doi: 10.1109/3DV.2016.79
– ident: ref9
  doi: 10.1016/j.nicl.2017.06.016
– ident: ref3
  doi: 10.1093/ageing/afn281
– ident: ref15
  doi: 10.1109/TMI.2016.2535865
– start-page: 562
  year: 2015
  ident: ref37
  article-title: Deeply-supervised nets
  publication-title: Proc Artif Intell Stat
– ident: ref36
  doi: 10.1109/CVPR.2009.5206848
– start-page: 3762
  year: 2012
  ident: ref8
  article-title: A novel framework for segmentation of stroke lesions in diffusion weighted MRI using multiple b-value data
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
– ident: ref16
  doi: 10.1109/ICCV.2015.169
– ident: ref19
  doi: 10.1109/TPAMI.2016.2572683
– year: 2009
  ident: ref34
  article-title: Learning multiple layers features from tiny images
– ident: ref2
  doi: 10.1056/NEJMcp072057
– start-page: 807
  year: 2010
  ident: ref33
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– year: 2016
  ident: ref31
  publication-title: Residual networks are exponential ensembles of relatively shallow networks
– ident: ref17
  doi: 10.1109/TMI.2016.2528129
– ident: ref25
  doi: 10.1109/CVPR.2017.243
– ident: ref18
  doi: 10.1109/TMI.2016.2528162
– ident: ref10
  doi: 10.1016/j.media.2016.07.009
– ident: ref6
  doi: 10.1016/j.acra.2006.09.045
– ident: ref14
  doi: 10.1109/CVPR.2016.90
– year: 2017
  ident: ref26
  publication-title: Learning normalized inputs for iterative estimation in medical image segmentation
– start-page: 424
  year: 2016
  ident: ref21
  article-title: 3D U-NET: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– start-page: 66
  year: 2017
  ident: ref23
  article-title: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images
  publication-title: Proc AAAI
SSID ssj0014509
Score 2.6119246
Snippet Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2149
SubjectTerms 3D convolutional neural networks
Acute ischemic stroke segmentation
Aged
Aged, 80 and over
Aging
Algorithms
Artificial neural networks
Biomedical imaging
Brain - diagnostic imaging
Brain Ischemia - diagnostic imaging
Deep learning
Diagnosis
Diffusion Magnetic Resonance Imaging - methods
DWI
Female
Humans
Image processing
Image segmentation
Imaging, Three-Dimensional - methods
Information processing
Ischemia
Lesions
Localization
Male
Medical imaging
Middle Aged
Neural networks
Neural Networks (Computer)
Objective function
Solid modeling
Stroke
Stroke - diagnostic imaging
Three-dimensional displays
Training
Two dimensional displays
Vascular diseases
Title Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets
URI https://ieeexplore.ieee.org/document/8328863
https://www.ncbi.nlm.nih.gov/pubmed/29994088
https://www.proquest.com/docview/2117159090
https://www.proquest.com/docview/2068339052
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4lNLySCnISFyQyK6JH2sfV11WXaTtpa3oLSS2w6E0QdukEvz6jh0nRQgQt0hxbEczzsyXmfkG4G3hWcQcc6nmQqdcaZkW6IinGX4XlNRZwYSvHV6fypML_ulSXG7B-7EWxjkXks_cxF-GWL5tTOd_lU1R-5SSbBu2Ebj1tVpjxICLPp0j84yxVGZDSJLq6fl65XO41AThhTdnngAY_SJOQ7uVe2sU2qv83dMMFmf5GNbDXvtEk6tJ15YT8_M3Gsf_fZk92I2uJ5n3uvIEtly9D49-ISTchwfrGGo_gC_zrm0Cnys5c1-vY4lSTZqKzE3XOrJCXOwz68lZu2muHFlummuy-LwiIQuBsHRBPL79QY6b-jYqOC6_QNzsTl178xQulh_Pj0_S2I4hNWjp2lQrZXVpuDBlxgzCEkFNNbOV0dpKxuSM2UJxq6tK-opX-cEoXXIhEAI7I7hlz2Cnbmr3AgjKy1qOviNOyJWhpe_CJC1Cda2ymSkSmA5iyU3kKvctM77lAbNQnaNMcy_TPMo0gXfjE997no5_jD3w4hjHRUkkcDRIPo8H-SZHfDxDj49qmsCb8TYeQR9XKWrXdDiGSsWYpiJL4HmvMePcg6Id_nnNl_DQ76xPWjuCnXbTuVfo5bTl66Ded_is8tk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GhpCRQwEhcksuvGj7WPqy6rXWj20q3oLSS2w6FtgrYJUvvrGecFQoC4RYpjO_rGmfkyL4C3qa8i5pgLNRc65ErLMEVDPIzwu6CkjlImfO5wvJKLM_7xXJxvwfshF8Y51wSfuZG_bHz5tjS1_1U2RulTSrI7cBf1vjhqs7UGnwEXbUBH5GvGUhn1Tkmqx-t46aO41AgJhldovgQwWkacNg1XfuqjpsHK323NRufMH0Hc77YNNbkY1VU2Mre_FXL839d5DA8745NMW2l5Aluu2IUHv5Qk3IV7ceds34Mv07oqm4qu5NR9veqSlApS5mRq6sqRJTJjH1tPTqtNeeHIfFNekdnnJWniEAgLZ8Qz3BtyXBbfOxHH5WfInN3KVddP4Wz-YX28CLuGDKFBXVeFWimrM8OFySJmkJgIavKJzY3WVjImJ8ymilud59LnvMojo3SGSCEJdkZwy_ZhuygL9wwI4mUtR-sRJ-TK0Mz3YZIWybpW0cSkAYx7WBLTVSv3TTMuk4a1UJ0gponHNOkwDeDd8MS3tlLHP8bueTiGcR0SARz2yCfdUb5OkCFP0OajmgbwZriNh9B7VtLClTWOoVIxpqmIAjhoJWaYuxe0539e8zXcX6zjk-Rkufr0Anb8LtsQtkPYrja1e4k2T5W9akT9B8wS9iI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+Acute+Ischemic+Stroke+From+DWI+Using+3-D+Fully+Convolutional+DenseNets&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Rongzhao&rft.au=Zhao%2C+Lei&rft.au=Lou%2C+Wutao&rft.au=Abrigo%2C+Jill+M.&rft.date=2018-09-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=37&rft.issue=9&rft.spage=2149&rft.epage=2160&rft_id=info:doi/10.1109%2FTMI.2018.2821244&rft_id=info%3Apmid%2F29994088&rft.externalDocID=8328863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon