Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets
Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a cr...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 37; no. 9; pp. 2149 - 2160 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines. |
---|---|
AbstractList | Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines. Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines. |
Author | Wang, Defeng Zhang, Rongzhao Mok, Vincent C. T. Zhao, Lei Abrigo, Jill M. Shi, Lin Chu, Winnie C. W. Lou, Wutao |
Author_xml | – sequence: 1 givenname: Rongzhao orcidid: 0000-0001-8103-5210 surname: Zhang fullname: Zhang, Rongzhao organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong – sequence: 2 givenname: Lei orcidid: 0000-0001-5125-974X surname: Zhao fullname: Zhao, Lei organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong – sequence: 3 givenname: Wutao orcidid: 0000-0002-6844-2847 surname: Lou fullname: Lou, Wutao organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong – sequence: 4 givenname: Jill M. surname: Abrigo fullname: Abrigo, Jill M. organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong – sequence: 5 givenname: Vincent C. T. surname: Mok fullname: Mok, Vincent C. T. organization: Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong – sequence: 6 givenname: Winnie C. W. orcidid: 0000-0003-4962-4132 surname: Chu fullname: Chu, Winnie C. W. organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong – sequence: 7 givenname: Defeng surname: Wang fullname: Wang, Defeng organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong – sequence: 8 givenname: Lin surname: Shi fullname: Shi, Lin email: shilin@cuhk.edu.hk organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994088$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9v0zAYhi20iXWDOxISssRll5TPP2Mfq3YdlTY4sAluIXW-jIwkHrYzaf89rlp22IGTLfl57M_ve0qORj8iIe8YzBkD--nmejPnwMycG864lK_IjCllCq7kjyMyA16aAkDzE3Ia4z0Akwrsa3LCrbUSjJmRn4sp-aFOnaPf8G7AMeW9H6lv6cJNCekmul847I5T8L-RroMf6Or7ht7GbryjoljR9dT3T3Tpx0ffTzu77ukKx4hfMMU35Lit-4hvD-sZuV1f3Cw_F1dfLzfLxVXhJBOpsMY0duukclsunOFagWvLpnXWNloIXYqmNrKxbatBaq6ZM3Yr819FiU7JRpyR8_29D8H_mTCmauiiw76vR_RTrDhoI4QFxTP68QV676eQp84UYyVTFixk6sOBmrYDNtVD6IY6PFX_sssA7AEXfIwB22eEQbWrp8r1VLt6qkM9WdEvFNftA0-h7vr_ie_3YoeIz-8YwY3J6fwF7z2aEA |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105524 crossref_primary_10_1109_ACCESS_2018_2889321 crossref_primary_10_1016_j_neucom_2023_01_012 crossref_primary_10_1109_TIM_2021_3077996 crossref_primary_10_1016_j_cmpb_2020_105521 crossref_primary_10_1002_mp_14800 crossref_primary_10_1016_j_bspc_2022_103978 crossref_primary_10_1016_j_imavis_2023_104865 crossref_primary_10_1049_ipr2_12606 crossref_primary_10_1002_ana_26435 crossref_primary_10_1161_STROKEAHA_119_028101 crossref_primary_10_1038_s41598_021_02466_x crossref_primary_10_1007_s00521_021_06816_8 crossref_primary_10_1007_s11517_023_02927_7 crossref_primary_10_1007_s00138_021_01196_4 crossref_primary_10_1016_j_eswa_2023_120637 crossref_primary_10_36306_konjes_1346134 crossref_primary_10_1007_s00330_022_08633_6 crossref_primary_10_1002_acn3_751 crossref_primary_10_1038_s41598_023_45573_7 crossref_primary_10_1016_j_neurad_2021_05_001 crossref_primary_10_3233_XST_210861 crossref_primary_10_1016_j_neucom_2020_04_008 crossref_primary_10_1109_ACCESS_2019_2921434 crossref_primary_10_3389_fninf_2021_782262 crossref_primary_10_1016_j_media_2020_101791 crossref_primary_10_1109_ACCESS_2022_3204048 crossref_primary_10_1038_s43856_021_00062_8 crossref_primary_10_1016_j_bspc_2023_105065 crossref_primary_10_1088_1361_6560_ad45a5 crossref_primary_10_1109_ACCESS_2020_2987932 crossref_primary_10_1007_s10916_019_1358_6 crossref_primary_10_1136_neurintsurg_2019_015471 crossref_primary_10_1007_s00521_022_08094_4 crossref_primary_10_1002_mp_15483 crossref_primary_10_1007_s00234_021_02855_z crossref_primary_10_1016_j_eswa_2024_124329 crossref_primary_10_1016_j_compbiomed_2019_103536 crossref_primary_10_1259_bjr_20210038 crossref_primary_10_1088_1361_6560_ab79c3 crossref_primary_10_1016_j_nicl_2022_103018 crossref_primary_10_1007_s12204_021_2273_9 crossref_primary_10_1109_RBME_2019_2934500 crossref_primary_10_1109_ACCESS_2025_3549269 crossref_primary_10_1016_j_nicl_2023_103381 crossref_primary_10_1155_2021_3628179 crossref_primary_10_1109_ACCESS_2018_2872939 crossref_primary_10_3390_diagnostics14242820 crossref_primary_10_1007_s42979_021_00835_x crossref_primary_10_1148_ryai_2020190217 crossref_primary_10_1016_j_compbiomed_2019_103487 crossref_primary_10_1016_j_compbiomed_2021_104724 crossref_primary_10_1109_TBME_2020_3041571 crossref_primary_10_1161_STROKEAHA_118_024261 crossref_primary_10_1016_j_neuri_2023_100145 crossref_primary_10_13104_imri_2022_26_4_191 crossref_primary_10_3390_s21248507 crossref_primary_10_1016_j_media_2020_101818 crossref_primary_10_1016_j_brainresbull_2024_110920 crossref_primary_10_1109_JBHI_2023_3273771 crossref_primary_10_1007_s00521_019_04096_x crossref_primary_10_1016_j_imu_2020_100440 crossref_primary_10_3389_fneur_2023_1178637 crossref_primary_10_1109_JBHI_2021_3131758 crossref_primary_10_1016_j_compbiomed_2022_106120 crossref_primary_10_1016_j_compbiomed_2023_107471 crossref_primary_10_1007_s10278_024_01099_6 crossref_primary_10_3390_electronics11162612 crossref_primary_10_3389_fneur_2022_791816 crossref_primary_10_1016_j_nicl_2021_102744 crossref_primary_10_3390_jpm12040521 crossref_primary_10_1007_s00330_022_08661_2 crossref_primary_10_1007_s42044_024_00201_z crossref_primary_10_1145_3699513 crossref_primary_10_1007_s10462_024_10900_5 crossref_primary_10_1007_s42979_024_03389_w crossref_primary_10_1109_ACCESS_2024_3498316 crossref_primary_10_1016_j_neucom_2019_03_049 crossref_primary_10_1109_ACCESS_2020_2977946 crossref_primary_10_1038_s41597_023_02457_9 crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_1109_TIP_2019_2905537 crossref_primary_10_1016_j_cmpb_2020_105831 crossref_primary_10_1016_j_neuroimage_2023_120041 crossref_primary_10_2196_59711 crossref_primary_10_3390_app12010489 crossref_primary_10_2139_ssrn_3975623 crossref_primary_10_1007_s11042_023_17324_3 crossref_primary_10_1016_j_knosys_2021_107692 crossref_primary_10_1016_j_comcom_2023_05_011 crossref_primary_10_1007_s11517_024_03243_4 crossref_primary_10_3390_app10144861 crossref_primary_10_3390_diagnostics10100803 crossref_primary_10_1016_j_patcog_2021_108006 crossref_primary_10_3390_app10144908 crossref_primary_10_1109_JBHI_2020_2996783 crossref_primary_10_3174_ajnr_A6077 crossref_primary_10_1016_j_neunet_2020_05_005 crossref_primary_10_1016_j_neucom_2022_11_041 crossref_primary_10_2139_ssrn_4015024 crossref_primary_10_1007_s00330_023_09622_z crossref_primary_10_32604_cmc_2023_034400 crossref_primary_10_1002_ird3_105 crossref_primary_10_1016_j_cmpb_2021_106278 crossref_primary_10_1016_j_bspc_2021_103283 crossref_primary_10_1016_j_compbiomed_2019_103579 crossref_primary_10_1016_j_zemedi_2018_11_004 crossref_primary_10_1016_j_cmpb_2022_106630 crossref_primary_10_1111_jon_12850 crossref_primary_10_1016_j_jneumeth_2021_109260 crossref_primary_10_1007_s11042_018_6418_2 crossref_primary_10_1007_s42979_021_00704_7 crossref_primary_10_1016_j_compbiomed_2022_106332 crossref_primary_10_1007_s10462_025_11119_8 crossref_primary_10_1109_TCBB_2019_2939522 crossref_primary_10_1016_j_neucom_2023_02_047 crossref_primary_10_1109_ACCESS_2020_2995632 crossref_primary_10_1038_s41598_021_91467_x crossref_primary_10_1155_2022_2384830 crossref_primary_10_3390_app11041675 crossref_primary_10_1016_j_bbe_2022_01_002 crossref_primary_10_1109_JBHI_2021_3135647 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1016_j_ynirp_2024_100196 crossref_primary_10_1016_j_nicl_2022_102998 crossref_primary_10_17694_bajece_1533966 crossref_primary_10_3390_jcm14020571 crossref_primary_10_1109_ACCESS_2020_2977415 crossref_primary_10_1097_CM9_0000000000001299 crossref_primary_10_1016_j_bspc_2022_103720 crossref_primary_10_3233_JIFS_230024 crossref_primary_10_3390_app14188183 crossref_primary_10_1016_j_cmpb_2020_105728 crossref_primary_10_1038_s41598_022_06021_0 |
Cites_doi | 10.1016/j.jalz.2014.01.003 10.1016/j.neuroimage.2017.04.041 10.1161/01.STR.24.1.35 10.1109/ICCV.2015.123 10.1148/radiol.12112134 10.1016/j.media.2016.10.004 10.1109/TPAMI.2017.2699184 10.1109/IEMBS.2007.4352736 10.1109/3DV.2016.79 10.1016/j.nicl.2017.06.016 10.1093/ageing/afn281 10.1109/TMI.2016.2535865 10.1109/CVPR.2009.5206848 10.1109/ICCV.2015.169 10.1109/TPAMI.2016.2572683 10.1056/NEJMcp072057 10.1109/TMI.2016.2528129 10.1109/CVPR.2017.243 10.1109/TMI.2016.2528162 10.1016/j.media.2016.07.009 10.1016/j.acra.2006.09.045 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2018.2821244 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2160 |
ExternalDocumentID | 29994088 10_1109_TMI_2018_2821244 8328863 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Research Grants Council, University Grants Committee grantid: CUHK 14113214; CUHK 14204117 funderid: 10.13039/501100002920 – fundername: Innovation and Technology Commission grantid: GHP-025-17SZ; GHP-028-14SZ funderid: 10.13039/501100003452 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c413t-988d9bc45cb23c82650cf7dfc99d633673da84d9ff6046261c89b455837ec54d3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Jul 10 22:16:00 EDT 2025 Mon Jun 30 06:43:11 EDT 2025 Wed Feb 19 02:34:35 EST 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 03:16:00 EDT 2025 Wed Aug 27 02:55:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-988d9bc45cb23c82650cf7dfc99d633673da84d9ff6046261c89b455837ec54d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5125-974X 0000-0001-8103-5210 0000-0003-4962-4132 0000-0002-6844-2847 |
PMID | 29994088 |
PQID | 2117159090 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8328863 crossref_primary_10_1109_TMI_2018_2821244 crossref_citationtrail_10_1109_TMI_2018_2821244 proquest_journals_2117159090 pubmed_primary_29994088 proquest_miscellaneous_2068339052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref36 ref14 nair (ref33) 2010 veit (ref31) 2016 ref11 ref10 ref2 ref39 ref17 ref38 ref16 delalleau (ref28) 2011 ref19 drozdzal (ref26) 2017 ref18 netzer (ref35) 2011 yu (ref23) 2017 ioffe (ref32) 2015 ref24 ref25 ref20 ref22 glorot (ref29) 2010 lee (ref37) 2015 (ref1) 2017 mozaffarian (ref4) 2016; 133 mujumdar (ref8) 2012 ref7 håstad (ref27) 1987 ref9 ref3 he (ref30) 2016 simonyan (ref13) 2014 ref6 goodfellow (ref12) 2016 ref5 krizhevsky (ref34) 2009 ref40 çiçek (ref21) 2016 |
References_xml | – ident: ref5 doi: 10.1016/j.jalz.2014.01.003 – ident: ref24 doi: 10.1016/j.neuroimage.2017.04.041 – ident: ref38 doi: 10.1161/01.STR.24.1.35 – start-page: 5 year: 2011 ident: ref35 article-title: Reading digits in natural images with unsupervised feature learning publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning – ident: ref39 doi: 10.1109/ICCV.2015.123 – year: 2016 ident: ref12 publication-title: Deep Learning – start-page: 448 year: 2015 ident: ref32 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – year: 2017 ident: ref1 publication-title: The Top 10 Causes of Death – ident: ref40 doi: 10.1148/radiol.12112134 – ident: ref11 doi: 10.1016/j.media.2016.10.004 – ident: ref20 doi: 10.1109/TPAMI.2017.2699184 – year: 2014 ident: ref13 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – ident: ref7 doi: 10.1109/IEMBS.2007.4352736 – start-page: 249 year: 2010 ident: ref29 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Stat – start-page: 666 year: 2011 ident: ref28 article-title: Shallow vs. deep sum-product networks publication-title: Proc Adv Neural Inf Process Syst – volume: 133 start-page: 38e year: 2016 ident: ref4 article-title: Heart disease and stroke statistics-2016 update: A report from the American Heart Association publication-title: Circulation – year: 1987 ident: ref27 publication-title: Computational Limitations of Small-depth Circuits – start-page: 630 year: 2016 ident: ref30 article-title: Identity mappings in deep residual networks publication-title: Proc Eur Conf Comput Vis – ident: ref22 doi: 10.1109/3DV.2016.79 – ident: ref9 doi: 10.1016/j.nicl.2017.06.016 – ident: ref3 doi: 10.1093/ageing/afn281 – ident: ref15 doi: 10.1109/TMI.2016.2535865 – start-page: 562 year: 2015 ident: ref37 article-title: Deeply-supervised nets publication-title: Proc Artif Intell Stat – ident: ref36 doi: 10.1109/CVPR.2009.5206848 – start-page: 3762 year: 2012 ident: ref8 article-title: A novel framework for segmentation of stroke lesions in diffusion weighted MRI using multiple b-value data publication-title: Proc Int Conf Pattern Recognit (ICPR) – ident: ref16 doi: 10.1109/ICCV.2015.169 – ident: ref19 doi: 10.1109/TPAMI.2016.2572683 – year: 2009 ident: ref34 article-title: Learning multiple layers features from tiny images – ident: ref2 doi: 10.1056/NEJMcp072057 – start-page: 807 year: 2010 ident: ref33 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learn (ICML) – year: 2016 ident: ref31 publication-title: Residual networks are exponential ensembles of relatively shallow networks – ident: ref17 doi: 10.1109/TMI.2016.2528129 – ident: ref25 doi: 10.1109/CVPR.2017.243 – ident: ref18 doi: 10.1109/TMI.2016.2528162 – ident: ref10 doi: 10.1016/j.media.2016.07.009 – ident: ref6 doi: 10.1016/j.acra.2006.09.045 – ident: ref14 doi: 10.1109/CVPR.2016.90 – year: 2017 ident: ref26 publication-title: Learning normalized inputs for iterative estimation in medical image segmentation – start-page: 424 year: 2016 ident: ref21 article-title: 3D U-NET: Learning dense volumetric segmentation from sparse annotation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – start-page: 66 year: 2017 ident: ref23 article-title: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images publication-title: Proc AAAI |
SSID | ssj0014509 |
Score | 2.6119246 |
Snippet | Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2149 |
SubjectTerms | 3D convolutional neural networks Acute ischemic stroke segmentation Aged Aged, 80 and over Aging Algorithms Artificial neural networks Biomedical imaging Brain - diagnostic imaging Brain Ischemia - diagnostic imaging Deep learning Diagnosis Diffusion Magnetic Resonance Imaging - methods DWI Female Humans Image processing Image segmentation Imaging, Three-Dimensional - methods Information processing Ischemia Lesions Localization Male Medical imaging Middle Aged Neural networks Neural Networks (Computer) Objective function Solid modeling Stroke Stroke - diagnostic imaging Three-dimensional displays Training Two dimensional displays Vascular diseases |
Title | Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets |
URI | https://ieeexplore.ieee.org/document/8328863 https://www.ncbi.nlm.nih.gov/pubmed/29994088 https://www.proquest.com/docview/2117159090 https://www.proquest.com/docview/2068339052 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4lNLySCnISFyQyK6JH2sfV11WXaTtpa3oLSS2w6E0QdukEvz6jh0nRQgQt0hxbEczzsyXmfkG4G3hWcQcc6nmQqdcaZkW6IinGX4XlNRZwYSvHV6fypML_ulSXG7B-7EWxjkXks_cxF-GWL5tTOd_lU1R-5SSbBu2Ebj1tVpjxICLPp0j84yxVGZDSJLq6fl65XO41AThhTdnngAY_SJOQ7uVe2sU2qv83dMMFmf5GNbDXvtEk6tJ15YT8_M3Gsf_fZk92I2uJ5n3uvIEtly9D49-ISTchwfrGGo_gC_zrm0Cnys5c1-vY4lSTZqKzE3XOrJCXOwz68lZu2muHFlummuy-LwiIQuBsHRBPL79QY6b-jYqOC6_QNzsTl178xQulh_Pj0_S2I4hNWjp2lQrZXVpuDBlxgzCEkFNNbOV0dpKxuSM2UJxq6tK-opX-cEoXXIhEAI7I7hlz2Cnbmr3AgjKy1qOviNOyJWhpe_CJC1Cda2ymSkSmA5iyU3kKvctM77lAbNQnaNMcy_TPMo0gXfjE997no5_jD3w4hjHRUkkcDRIPo8H-SZHfDxDj49qmsCb8TYeQR9XKWrXdDiGSsWYpiJL4HmvMePcg6Id_nnNl_DQ76xPWjuCnXbTuVfo5bTl66Ded_is8tk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GhpCRQwEhcksuvGj7WPqy6rXWj20q3oLSS2w6FtgrYJUvvrGecFQoC4RYpjO_rGmfkyL4C3qa8i5pgLNRc65ErLMEVDPIzwu6CkjlImfO5wvJKLM_7xXJxvwfshF8Y51wSfuZG_bHz5tjS1_1U2RulTSrI7cBf1vjhqs7UGnwEXbUBH5GvGUhn1Tkmqx-t46aO41AgJhldovgQwWkacNg1XfuqjpsHK323NRufMH0Hc77YNNbkY1VU2Mre_FXL839d5DA8745NMW2l5Aluu2IUHv5Qk3IV7ceds34Mv07oqm4qu5NR9veqSlApS5mRq6sqRJTJjH1tPTqtNeeHIfFNekdnnJWniEAgLZ8Qz3BtyXBbfOxHH5WfInN3KVddP4Wz-YX28CLuGDKFBXVeFWimrM8OFySJmkJgIavKJzY3WVjImJ8ymilud59LnvMojo3SGSCEJdkZwy_ZhuygL9wwI4mUtR-sRJ-TK0Mz3YZIWybpW0cSkAYx7WBLTVSv3TTMuk4a1UJ0gponHNOkwDeDd8MS3tlLHP8bueTiGcR0SARz2yCfdUb5OkCFP0OajmgbwZriNh9B7VtLClTWOoVIxpqmIAjhoJWaYuxe0539e8zXcX6zjk-Rkufr0Anb8LtsQtkPYrja1e4k2T5W9akT9B8wS9iI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+Acute+Ischemic+Stroke+From+DWI+Using+3-D+Fully+Convolutional+DenseNets&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Rongzhao&rft.au=Zhao%2C+Lei&rft.au=Lou%2C+Wutao&rft.au=Abrigo%2C+Jill+M.&rft.date=2018-09-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=37&rft.issue=9&rft.spage=2149&rft.epage=2160&rft_id=info:doi/10.1109%2FTMI.2018.2821244&rft_id=info%3Apmid%2F29994088&rft.externalDocID=8328863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |