Flexible algebraic technique for multiview reconstruction: incremental learning in reflective tomography
Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on analytical formulas, such as the filtered backprojection. However, these formulas require constraints on the acquisition geometry, such as a ci...
Saved in:
Published in | Optical engineering Vol. 58; no. 10; p. 103102 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.10.2019
SPIE |
Subjects | |
Online Access | Get full text |
ISSN | 0091-3286 1560-2303 |
DOI | 10.1117/1.OE.58.10.103102 |
Cover
Loading…
Abstract | Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on analytical formulas, such as the filtered backprojection. However, these formulas require constraints on the acquisition geometry, such as a circular rotation. We want to avoid such constraints; they may be seriously violated in some practical cases. To tackle this problem, we tune the algebraic reconstruction technique from x-ray tomography. More precisely, we look for a model of the scene such that the x-ray projections of the model approximate recorded calibrated reflective images. The model is computed by an iterative algebraic method: a Kaczmarz algorithm. In this way, we perform incremental supervised learning in optics, where the hypothesis space emulates reflective tomography. We get a flexible method for multiple-view reconstruction based on linear algebra. It accepts a general calibrated acquisition, such as several cameras arbitrarily located/oriented, with visible near-infrared wavelengths. It could reconstruct a scene using several devices simultaneously, such as air–ground cameras combined with ground–ground cameras. The relevance of the approach is numerically shown from calibrated CCD images of the Middlebury datasets. In particular, we get reconstructions from 16 views. |
---|---|
AbstractList | Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on analytical formulas, such as the filtered backprojection. However, these formulas require constraints on the acquisition geometry, such as a circular rotation. We want to avoid such constraints; they may be seriously violated in some practical cases. To tackle this problem, we tune the algebraic reconstruction technique from x-ray tomography. More precisely, we look for a model of the scene such that the x-ray projections of the model approximate recorded calibrated reflective images. The model is computed by an iterative algebraic method: a Kaczmarz algorithm. In this way, we perform incremental supervised learning in optics, where the hypothesis space emulates reflective tomography. We get a flexible method for multiple-view reconstruction based on linear algebra. It accepts a general calibrated acquisition, such as several cameras arbitrarily located/oriented, with visible near-infrared wavelengths. It could reconstruct a scene using several devices simultaneously, such as air–ground cameras combined with ground–ground cameras. The relevance of the approach is numerically shown from calibrated CCD images of the Middlebury datasets. In particular, we get reconstructions from 16 views. |
Author | Bellet, Jean-Baptiste |
Author_xml | – sequence: 1 givenname: Jean-Baptiste orcidid: 0000-0001-7531-6163 surname: Bellet fullname: Bellet, Jean-Baptiste email: jean-baptiste.bellet@univ-lorraine.fr organization: Université de Lorraine, Centre National de la Recherche Scientifique, Institut Elie Cartan de Lorraine, Metz, France |
BackLink | https://hal.science/hal-02316413$$DView record in HAL |
BookMark | eNqNkMFOwzAMhiM0JLbBA3DrlUNL0rRdym0aK0MqGgeQuEVZ6m0ZWVLSbjCennabOCCQuNiy9f3-bfdQx1gDCF0SHBBCBtckmI6DmAVtjSnB4QnqkjjBfkgx7aAuxinxaciSM9SrqhXGOEwZ66JlpuFDzTR4Qi9g5oSSXg1yadTbBry5dd56o2u1VfDuOZDWVLXbyFpZc-MpIx2swdRCexqEM8osmmbDzTU0zBa82q7twolyuTtHp3OhK7g45j56zsZPo4mfT-_uR8PclxGhtZ_GMEiAYRBxLCmTUCS0IFEcShYxiBkLC8ZwmrAoEdEM0ogVOE2LfSRQzGkfXR3mLoXmpVNr4XbcCsUnw5y3PRxSkjReW9Kw5MBKZ6uqWftbQDBv38oJn455zPb1_q2N5vWgqUoFfGU3zjTntNjW6iOaOWvql4dcmOLxNuOfqvw55j9Iub8m-M3t7_W-AC5eoAg |
Cites_doi | 10.1137/S1052623495287022 10.1117/12.960241 10.1118/1.595715 10.1117/12.2237325 10.1117/12.364127 10.1109/IGARSS.2009.5418109 10.1117/1.OE.56.3.031207 10.1117/12.974493 10.1109/CVPR.2006.19 10.1109/MVIEW.1999.781078 10.1117/12.960240 10.1117/12.188060 10.1117/12.298050 |
ContentType | Journal Article |
Copyright | 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1117/1.OE.58.10.103102 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering Physics |
EISSN | 1560-2303 |
EndPage | 103102 |
ExternalDocumentID | oai_HAL_hal_02316413v1 10_1117_1_OE_58_10_103102 |
GroupedDBID | 02 0R 123 29N AAPBV ABFLS ABPTK ABTRL ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS F5P FQ0 HZ M4X O9- P2P RNS SPBNH TAE TWZ UCJ UT2 WH7 X -~X .DC 0R~ 4.4 AAYXX ABJNI ACGFO ADMLS AKROS CITATION HZ~ P-S XJE ~02 1XC VOOES |
ID | FETCH-LOGICAL-c413t-95e76e80ea55c38ced63d1452c848e5882d88096846a4be948d099d8d0991edf3 |
ISSN | 0091-3286 |
IngestDate | Fri May 09 12:20:29 EDT 2025 Tue Jul 01 02:47:15 EDT 2025 Fri Jan 15 19:57:15 EST 2021 Fri Jan 15 20:12:57 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | reflective tomography algebraic reconstruction technique three-dimensional imaging optical computational imaging machine learning in optics cameras reconstruction algorithms X-rays reflectivity optical engeneering X-ray imaging |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-95e76e80ea55c38ced63d1452c848e5882d88096846a4be948d099d8d0991edf3 |
ORCID | 0000-0001-7531-6163 |
OpenAccessLink | https://hal.science/hal-02316413 |
PageCount | 1 |
ParticipantIDs | spie_journals_10_1117_1_OE_58_10_103102 crossref_primary_10_1117_1_OE_58_10_103102 hal_primary_oai_HAL_hal_02316413v1 |
ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Optical engineering |
PublicationTitleAlternate | Opt. Eng |
PublicationYear | 2019 |
Publisher | Society of Photo-Optical Instrumentation Engineers SPIE |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers – name: SPIE |
References | r2 r4 r5 r6 r8 r9 Hansen (r27) 2014 Berginc (r7) 2009 Hansen (r24) 2005 r10 Jacobs (r22) 1998 Ramm (r3) 1996 r11 r14 Herman (r13) 2010 Lin (r16) 2015 r17 Natterer (r12) 2001 Saad (r25) 2003 Seitz (r18) 2006 Azencott (r15) 2018 Horn (r20) 1986 r21 r26 Berechet (r23) 2018 Ma (r19) 2012 r1 |
References_xml | – year: 2005 ident: r24 – year: 2009 ident: r7 article-title: Optronic system and method dedicated to identification for formulating three-dimensional images – year: 2018 ident: r23 article-title: Method for discrimination and identification of objects of a scene by 3-D imaging – ident: r26 doi: 10.1137/S1052623495287022 – ident: r2 doi: 10.1117/12.960241 – year: 2014 ident: r27 article-title: Regularization in tomography—dealing with ambiguity and noisy data – year: 2010 ident: r13 – ident: r21 doi: 10.1118/1.595715 – ident: r10 doi: 10.1117/12.2237325 – ident: r6 doi: 10.1117/12.364127 – start-page: 89 year: 1998 ident: r22 article-title: A fast algorithm to calculate the exact radiological path through a pixel or voxel space – year: 2003 ident: r25 – year: 2006 ident: r18 article-title: Multi-view stereo evaluation web page – ident: r8 doi: 10.1109/IGARSS.2009.5418109 – ident: r9 doi: 10.1117/1.OE.56.3.031207 – year: 1996 ident: r3 – ident: r11 doi: 10.1117/12.974493 – ident: r17 doi: 10.1109/CVPR.2006.19 – year: 2001 ident: r12 – start-page: 3341 year: 2015 ident: r16 article-title: Learning theory of randomized Kaczmarz algorithm – ident: r4 doi: 10.1109/MVIEW.1999.781078 – ident: r1 doi: 10.1117/12.960240 – year: 1986 ident: r20 – ident: r14 doi: 10.1117/12.188060 – year: 2012 ident: r19 – year: 2018 ident: r15 – ident: r5 doi: 10.1117/12.298050 |
SSID | ssj0002988 |
Score | 2.2483528 |
Snippet | Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on... |
SourceID | hal crossref spie |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 103102 |
SubjectTerms | Engineering Sciences Optics Photonic |
Title | Flexible algebraic technique for multiview reconstruction: incremental learning in reflective tomography |
URI | http://www.dx.doi.org/10.1117/1.OE.58.10.103102 https://hal.science/hal-02316413 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA7aRdAH0VXZeiOIIChT55LMJL5Vt6Wr7VbYXenbME0ydGAdB6b6sL_ek8tcqqtUX0KbnA5pvm-Sc5JzThB6mYOanESB9AIVZR4RYLDyUCYezUI_l4LAoq8NxcVpPLsgH1d01V1vZaJLtuuRuLo2ruR_UIU6wFVHyf4Dsu1DoQI-A75QAsJQ7oXxVGez1KFP-rIOMHsL8abLyar9B427oIlNMYZvmyxW7wMUpbB7gwDSZbNBYqJb8ks7C4Je-rWf0drpsMvK7n-rLpVha9TrYwB7uqGy0nufgWjtXInc1kLAWye1xiHjZNKfO3ngRWGTuNpNl7HvgRET9edTyvq88f8wT5tI_9FyMqJsZGP_Az_sFqXmIH42Pks_H0_T-cnpp93WNjn2bDxPN4CdzmQXw5r8A4zhgzBJ9Kn9wfh4MT9rl-aQM7s0u7_ijrmhN29_68uOonJzo91kB3VVqJ76cX4P3XV2Ax5bEtxHN1R5iO70skkeolvGm1fUUP-lqL9b6foB2jQ0wS1NcEsTDDTBLU3wLk3e4R5JcEMSqMQdSXBHkofoYjo5_zDz3AUbnoBx2nqcqiRWzFcZpSJiQsk4kgGhoWCEKQrGl4Tpncego2ZkrThhEgwKacpAyTx6hAblt1IdIRxTThLmRwk0kCijoFgyHnNfKuELougQvW5GM61sHpXU2p9JGqTLSUqZ-W6GfoheaEAbuetBHqJXGo7UvY_13x4ndyWhHbjqZKY6UchqMc9KqYl2VVS__n4fkUrmj_fp9RN0u3vTnqIBAKqegVq7XT93ZP0JWs-gWA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+algebraic+technique+for+multiview+reconstruction%3A+incremental+learning+in+reflective+tomography&rft.jtitle=Optical+engineering&rft.au=Bellet%2C+Jean-Baptiste&rft.date=2019-10-01&rft.pub=SPIE&rft.issn=0091-3286&rft.eissn=1560-2303&rft.volume=58&rft.issue=10&rft_id=info:doi/10.1117%2F1.OE.58.10.103102&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02316413v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-3286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-3286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-3286&client=summon |