Flexible algebraic technique for multiview reconstruction: incremental learning in reflective tomography

Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on analytical formulas, such as the filtered backprojection. However, these formulas require constraints on the acquisition geometry, such as a ci...

Full description

Saved in:
Bibliographic Details
Published inOptical engineering Vol. 58; no. 10; p. 103102
Main Author Bellet, Jean-Baptiste
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.10.2019
SPIE
Subjects
Online AccessGet full text
ISSN0091-3286
1560-2303
DOI10.1117/1.OE.58.10.103102

Cover

Loading…
Abstract Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on analytical formulas, such as the filtered backprojection. However, these formulas require constraints on the acquisition geometry, such as a circular rotation. We want to avoid such constraints; they may be seriously violated in some practical cases. To tackle this problem, we tune the algebraic reconstruction technique from x-ray tomography. More precisely, we look for a model of the scene such that the x-ray projections of the model approximate recorded calibrated reflective images. The model is computed by an iterative algebraic method: a Kaczmarz algorithm. In this way, we perform incremental supervised learning in optics, where the hypothesis space emulates reflective tomography. We get a flexible method for multiple-view reconstruction based on linear algebra. It accepts a general calibrated acquisition, such as several cameras arbitrarily located/oriented, with visible near-infrared wavelengths. It could reconstruct a scene using several devices simultaneously, such as air–ground cameras combined with ground–ground cameras. The relevance of the approach is numerically shown from calibrated CCD images of the Middlebury datasets. In particular, we get reconstructions from 16 views.
AbstractList Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on analytical formulas, such as the filtered backprojection. However, these formulas require constraints on the acquisition geometry, such as a circular rotation. We want to avoid such constraints; they may be seriously violated in some practical cases. To tackle this problem, we tune the algebraic reconstruction technique from x-ray tomography. More precisely, we look for a model of the scene such that the x-ray projections of the model approximate recorded calibrated reflective images. The model is computed by an iterative algebraic method: a Kaczmarz algorithm. In this way, we perform incremental supervised learning in optics, where the hypothesis space emulates reflective tomography. We get a flexible method for multiple-view reconstruction based on linear algebra. It accepts a general calibrated acquisition, such as several cameras arbitrarily located/oriented, with visible near-infrared wavelengths. It could reconstruct a scene using several devices simultaneously, such as air–ground cameras combined with ground–ground cameras. The relevance of the approach is numerically shown from calibrated CCD images of the Middlebury datasets. In particular, we get reconstructions from 16 views.
Author Bellet, Jean-Baptiste
Author_xml – sequence: 1
  givenname: Jean-Baptiste
  orcidid: 0000-0001-7531-6163
  surname: Bellet
  fullname: Bellet, Jean-Baptiste
  email: jean-baptiste.bellet@univ-lorraine.fr
  organization: Université de Lorraine, Centre National de la Recherche Scientifique, Institut Elie Cartan de Lorraine, Metz, France
BackLink https://hal.science/hal-02316413$$DView record in HAL
BookMark eNqNkMFOwzAMhiM0JLbBA3DrlUNL0rRdym0aK0MqGgeQuEVZ6m0ZWVLSbjCennabOCCQuNiy9f3-bfdQx1gDCF0SHBBCBtckmI6DmAVtjSnB4QnqkjjBfkgx7aAuxinxaciSM9SrqhXGOEwZ66JlpuFDzTR4Qi9g5oSSXg1yadTbBry5dd56o2u1VfDuOZDWVLXbyFpZc-MpIx2swdRCexqEM8osmmbDzTU0zBa82q7twolyuTtHp3OhK7g45j56zsZPo4mfT-_uR8PclxGhtZ_GMEiAYRBxLCmTUCS0IFEcShYxiBkLC8ZwmrAoEdEM0ogVOE2LfSRQzGkfXR3mLoXmpVNr4XbcCsUnw5y3PRxSkjReW9Kw5MBKZ6uqWftbQDBv38oJn455zPb1_q2N5vWgqUoFfGU3zjTntNjW6iOaOWvql4dcmOLxNuOfqvw55j9Iub8m-M3t7_W-AC5eoAg
Cites_doi 10.1137/S1052623495287022
10.1117/12.960241
10.1118/1.595715
10.1117/12.2237325
10.1117/12.364127
10.1109/IGARSS.2009.5418109
10.1117/1.OE.56.3.031207
10.1117/12.974493
10.1109/CVPR.2006.19
10.1109/MVIEW.1999.781078
10.1117/12.960240
10.1117/12.188060
10.1117/12.298050
ContentType Journal Article
Copyright 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1117/1.OE.58.10.103102
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1560-2303
EndPage 103102
ExternalDocumentID oai_HAL_hal_02316413v1
10_1117_1_OE_58_10_103102
GroupedDBID 02
0R
123
29N
AAPBV
ABFLS
ABPTK
ABTRL
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
F5P
FQ0
HZ
M4X
O9-
P2P
RNS
SPBNH
TAE
TWZ
UCJ
UT2
WH7
X
-~X
.DC
0R~
4.4
AAYXX
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
P-S
XJE
~02
1XC
VOOES
ID FETCH-LOGICAL-c413t-95e76e80ea55c38ced63d1452c848e5882d88096846a4be948d099d8d0991edf3
ISSN 0091-3286
IngestDate Fri May 09 12:20:29 EDT 2025
Tue Jul 01 02:47:15 EDT 2025
Fri Jan 15 19:57:15 EST 2021
Fri Jan 15 20:12:57 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords reflective tomography
algebraic reconstruction technique
three-dimensional imaging
optical computational imaging
machine learning in optics
cameras
reconstruction algorithms
X-rays
reflectivity
optical engeneering
X-ray imaging
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-95e76e80ea55c38ced63d1452c848e5882d88096846a4be948d099d8d0991edf3
ORCID 0000-0001-7531-6163
OpenAccessLink https://hal.science/hal-02316413
PageCount 1
ParticipantIDs spie_journals_10_1117_1_OE_58_10_103102
crossref_primary_10_1117_1_OE_58_10_103102
hal_primary_oai_HAL_hal_02316413v1
ProviderPackageCode FQ0
SPBNH
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Optical engineering
PublicationTitleAlternate Opt. Eng
PublicationYear 2019
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
References r2
r4
r5
r6
r8
r9
Hansen (r27) 2014
Berginc (r7) 2009
Hansen (r24) 2005
r10
Jacobs (r22) 1998
Ramm (r3) 1996
r11
r14
Herman (r13) 2010
Lin (r16) 2015
r17
Natterer (r12) 2001
Saad (r25) 2003
Seitz (r18) 2006
Azencott (r15) 2018
Horn (r20) 1986
r21
r26
Berechet (r23) 2018
Ma (r19) 2012
r1
References_xml – year: 2005
  ident: r24
– year: 2009
  ident: r7
  article-title: Optronic system and method dedicated to identification for formulating three-dimensional images
– year: 2018
  ident: r23
  article-title: Method for discrimination and identification of objects of a scene by 3-D imaging
– ident: r26
  doi: 10.1137/S1052623495287022
– ident: r2
  doi: 10.1117/12.960241
– year: 2014
  ident: r27
  article-title: Regularization in tomography—dealing with ambiguity and noisy data
– year: 2010
  ident: r13
– ident: r21
  doi: 10.1118/1.595715
– ident: r10
  doi: 10.1117/12.2237325
– ident: r6
  doi: 10.1117/12.364127
– start-page: 89
  year: 1998
  ident: r22
  article-title: A fast algorithm to calculate the exact radiological path through a pixel or voxel space
– year: 2003
  ident: r25
– year: 2006
  ident: r18
  article-title: Multi-view stereo evaluation web page
– ident: r8
  doi: 10.1109/IGARSS.2009.5418109
– ident: r9
  doi: 10.1117/1.OE.56.3.031207
– year: 1996
  ident: r3
– ident: r11
  doi: 10.1117/12.974493
– ident: r17
  doi: 10.1109/CVPR.2006.19
– year: 2001
  ident: r12
– start-page: 3341
  year: 2015
  ident: r16
  article-title: Learning theory of randomized Kaczmarz algorithm
– ident: r4
  doi: 10.1109/MVIEW.1999.781078
– ident: r1
  doi: 10.1117/12.960240
– year: 1986
  ident: r20
– ident: r14
  doi: 10.1117/12.188060
– year: 2012
  ident: r19
– year: 2018
  ident: r15
– ident: r5
  doi: 10.1117/12.298050
SSID ssj0002988
Score 2.2483528
Snippet Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from x-ray tomography. Many works on the subject are based on...
SourceID hal
crossref
spie
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 103102
SubjectTerms Engineering Sciences
Optics
Photonic
Title Flexible algebraic technique for multiview reconstruction: incremental learning in reflective tomography
URI http://www.dx.doi.org/10.1117/1.OE.58.10.103102
https://hal.science/hal-02316413
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA7aRdAH0VXZeiOIIChT55LMJL5Vt6Wr7VbYXenbME0ydGAdB6b6sL_ek8tcqqtUX0KbnA5pvm-Sc5JzThB6mYOanESB9AIVZR4RYLDyUCYezUI_l4LAoq8NxcVpPLsgH1d01V1vZaJLtuuRuLo2ruR_UIU6wFVHyf4Dsu1DoQI-A75QAsJQ7oXxVGez1KFP-rIOMHsL8abLyar9B427oIlNMYZvmyxW7wMUpbB7gwDSZbNBYqJb8ks7C4Je-rWf0drpsMvK7n-rLpVha9TrYwB7uqGy0nufgWjtXInc1kLAWye1xiHjZNKfO3ngRWGTuNpNl7HvgRET9edTyvq88f8wT5tI_9FyMqJsZGP_Az_sFqXmIH42Pks_H0_T-cnpp93WNjn2bDxPN4CdzmQXw5r8A4zhgzBJ9Kn9wfh4MT9rl-aQM7s0u7_ijrmhN29_68uOonJzo91kB3VVqJ76cX4P3XV2Ax5bEtxHN1R5iO70skkeolvGm1fUUP-lqL9b6foB2jQ0wS1NcEsTDDTBLU3wLk3e4R5JcEMSqMQdSXBHkofoYjo5_zDz3AUbnoBx2nqcqiRWzFcZpSJiQsk4kgGhoWCEKQrGl4Tpncego2ZkrThhEgwKacpAyTx6hAblt1IdIRxTThLmRwk0kCijoFgyHnNfKuELougQvW5GM61sHpXU2p9JGqTLSUqZ-W6GfoheaEAbuetBHqJXGo7UvY_13x4ndyWhHbjqZKY6UchqMc9KqYl2VVS__n4fkUrmj_fp9RN0u3vTnqIBAKqegVq7XT93ZP0JWs-gWA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+algebraic+technique+for+multiview+reconstruction%3A+incremental+learning+in+reflective+tomography&rft.jtitle=Optical+engineering&rft.au=Bellet%2C+Jean-Baptiste&rft.date=2019-10-01&rft.pub=SPIE&rft.issn=0091-3286&rft.eissn=1560-2303&rft.volume=58&rft.issue=10&rft_id=info:doi/10.1117%2F1.OE.58.10.103102&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02316413v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-3286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-3286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-3286&client=summon