Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution
Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain o...
Saved in:
Published in | IEEE transactions on image processing Vol. 27; no. 12; pp. 5969 - 5982 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets. |
---|---|
AbstractList | Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets. Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets.Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets. |
Author | Wei Wei Lei Zhang Yanning Zhang Yifan Gao Chengcheng Bai |
Author_xml | – sequence: 1 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 2 givenname: Wei orcidid: 0000-0002-0655-056X surname: Wei fullname: Wei, Wei – sequence: 3 givenname: Chengcheng surname: Bai fullname: Bai, Chengcheng – sequence: 4 givenname: Yifan surname: Gao fullname: Gao, Yifan – sequence: 5 givenname: Yanning surname: Zhang fullname: Zhang, Yanning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30072329$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r3DAQxUVJaT7ae6FQDL3k4u2Mvmwfy5ImCykt3fQsZHscFLyWK8nQ_e-rZbc55NDTDMPvzQzvXbKzyU_E2HuEFSI0nx82P1YcsF7xWnPNm1fsAhuJJYDkZ7kHVZUVyuacXcb4BIBSoX7DzgVAxQVvLtj25s88epfc9FisxyUmCof2m53c4Me-2KawdGkJVAw-FHf7mUKcqUvBjsVmZx8p7IvtkqflT4p-XJLz01v2erBjpHenesV-fb15WN-V999vN-sv92UnUaSyUarj7WBJKy572fYaexBKClXbWnJdt1qQ7RugGjlhVwMQArZy0INUYhBX7Pq4dw7-90IxmZ2LHY2jncgv0XCoRYVNVUFGP71An_wSpvyd4YgVahRaZerjiVraHfVmDm5nw978sysDcAS64GMMNDwjCOaQiMmJmEMi5pRIlugXks4le7Ape-jG_wk_HIWOiJ7vZGOkRCX-An45lwQ |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3172112 crossref_primary_10_1109_TGRS_2020_3039534 crossref_primary_10_1109_TGRS_2024_3457673 crossref_primary_10_1016_j_infrared_2024_105316 crossref_primary_10_1109_JSTARS_2023_3312523 crossref_primary_10_3390_rs14174390 crossref_primary_10_1109_JSTARS_2021_3133009 crossref_primary_10_1109_TGRS_2020_2977819 crossref_primary_10_1109_JSTARS_2019_2939670 crossref_primary_10_1007_s11042_023_16335_4 crossref_primary_10_1109_JSTARS_2022_3190935 crossref_primary_10_3390_rs11131557 crossref_primary_10_1109_TNNLS_2023_3238506 crossref_primary_10_1016_j_neucom_2021_01_130 crossref_primary_10_1364_OE_510718 crossref_primary_10_1109_ACCESS_2020_2992862 crossref_primary_10_1109_TGRS_2019_2946803 crossref_primary_10_1007_s13042_020_01187_3 crossref_primary_10_1109_TCI_2024_3408095 crossref_primary_10_1109_ACCESS_2021_3071425 crossref_primary_10_1145_3477396 crossref_primary_10_1109_TIP_2021_3066906 crossref_primary_10_1109_TIP_2023_3326687 crossref_primary_10_1016_j_infrared_2024_105347 crossref_primary_10_1109_TIP_2020_3044214 crossref_primary_10_1109_TGRS_2023_3273118 crossref_primary_10_1109_TGRS_2020_2992788 crossref_primary_10_1109_TGRS_2023_3324497 crossref_primary_10_11834_jig_220954 crossref_primary_10_1109_TGRS_2024_3414438 crossref_primary_10_1016_j_patrec_2019_05_016 crossref_primary_10_1016_j_eswa_2019_113089 crossref_primary_10_1016_j_ssci_2024_106644 crossref_primary_10_1080_01431161_2024_2399333 crossref_primary_10_1109_TIP_2020_3009830 crossref_primary_10_1109_JSTARS_2022_3207777 crossref_primary_10_1109_TGRS_2020_2987530 crossref_primary_10_3390_rs15051308 crossref_primary_10_1109_JSTARS_2020_2977655 crossref_primary_10_1109_TIP_2018_2878294 crossref_primary_10_3390_app10165583 crossref_primary_10_1109_TGRS_2021_3073932 crossref_primary_10_1016_j_ins_2019_03_033 crossref_primary_10_1109_TGRS_2023_3277486 crossref_primary_10_1109_TIP_2019_2916734 crossref_primary_10_1109_TGRS_2022_3203294 crossref_primary_10_3390_rs11040397 crossref_primary_10_1109_TGRS_2019_2919938 crossref_primary_10_11834_jig_230747 crossref_primary_10_1109_TCI_2020_3031070 crossref_primary_10_1109_TCSVT_2021_3078559 crossref_primary_10_1016_j_asoc_2019_105603 crossref_primary_10_1109_TNNLS_2023_3340561 crossref_primary_10_3390_rs11232809 crossref_primary_10_1109_TIP_2021_3078058 crossref_primary_10_3390_rs15112832 crossref_primary_10_1016_j_chemolab_2020_104097 crossref_primary_10_3390_rs11222691 crossref_primary_10_1109_TGRS_2024_3449073 crossref_primary_10_1109_TIP_2021_3058590 crossref_primary_10_3390_s18093137 crossref_primary_10_1109_TCI_2020_2996075 crossref_primary_10_1109_TGRS_2022_3193441 crossref_primary_10_3390_rs15143643 crossref_primary_10_1109_TNNLS_2023_3266038 crossref_primary_10_1109_LGRS_2019_2945848 crossref_primary_10_1007_s11263_019_01253_6 crossref_primary_10_1109_JSTARS_2019_2917584 crossref_primary_10_1109_TGRS_2022_3176266 crossref_primary_10_1109_TNNLS_2019_2952427 crossref_primary_10_1016_j_image_2020_115833 crossref_primary_10_1109_TGRS_2018_2890633 crossref_primary_10_1109_TGRS_2019_2904108 crossref_primary_10_1109_TGRS_2022_3168511 crossref_primary_10_1109_TGRS_2022_3203749 crossref_primary_10_1109_TGRS_2022_3143156 crossref_primary_10_3390_rs11101229 crossref_primary_10_1007_s11263_024_02238_w crossref_primary_10_1109_TCI_2020_3014451 crossref_primary_10_1109_LGRS_2018_2889800 crossref_primary_10_1109_TIP_2023_3299189 crossref_primary_10_3390_rs13173539 crossref_primary_10_1109_JSTARS_2019_2903940 crossref_primary_10_1109_TCI_2022_3152700 crossref_primary_10_1186_s13640_018_0398_z crossref_primary_10_1109_TGRS_2022_3207230 crossref_primary_10_1109_TNNLS_2020_3005234 crossref_primary_10_3390_rs12060993 crossref_primary_10_1109_TGRS_2022_3228313 crossref_primary_10_1109_TIP_2023_3321460 crossref_primary_10_1016_j_inffus_2023_101907 crossref_primary_10_1109_TPAMI_2024_3361894 crossref_primary_10_3390_rs15112853 crossref_primary_10_3934_era_2024205 crossref_primary_10_1080_15481603_2023_2233725 crossref_primary_10_1109_TNNLS_2019_2957527 |
Cites_doi | 10.1109/JPROC.2012.2197589 10.1109/MGRS.2016.2637824 10.1126/science.290.5500.2323 10.1016/j.patcog.2010.01.016 10.1007/978-3-319-46454-1_38 10.1109/CVPR.2014.377 10.1109/CVPR.2011.5995401 10.1137/07070111X 10.1109/TGRS.2016.2598577 10.1109/ICASSP.2013.6637883 10.1109/CVPR.2005.38 10.1109/CVPR.2011.5995660 10.1109/TIP.2016.2598652 10.1109/CVPR.2005.160 10.1109/ICME.2017.8019510 10.1109/TIP.2016.2542360 10.1109/ICCV.2015.405 10.1109/TGRS.2013.2253612 10.1007/s11263-018-1080-8 10.1109/TIP.2005.854479 10.1007/978-3-319-10584-0_5 10.1109/TGRS.2017.2735488 10.1109/CVPRW.2010.5543780 10.1007/978-3-642-33786-4_26 10.1561/2200000016 10.1109/TGRS.2016.2598784 10.1109/ICCV.2015.409 10.1109/TPAMI.2018.2789887 10.1109/TGRS.2011.2161320 10.1109/TPAMI.2002.1017616 10.1007/BFb0028368 10.1109/TGRS.2012.2213825 10.1109/TPAMI.2013.57 10.1109/CVPR.2015.7298986 10.1109/TIP.2010.2046811 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2018.2862629 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 5982 |
ExternalDocumentID | 30072329 10_1109_TIP_2018_2862629 8424415 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Natural Science Basis Research Plan in Shaanxi Province of China grantid: 2017JM6021; 2017JM6001 – fundername: National Natural Science Foundation of China grantid: 61671385; 61571354; 61571362 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 158201 funderid: 10.13039/501100002858 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c413t-955c2bfae6524d4bd61d0354358a84268b63ead90e812e1c800e101b4f6f453f3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 00:45:48 EDT 2025 Mon Jun 30 10:09:57 EDT 2025 Wed Feb 19 02:43:38 EST 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 02:03:18 EDT 2025 Wed Aug 27 02:53:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-955c2bfae6524d4bd61d0354358a84268b63ead90e812e1c800e101b4f6f453f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0655-056X |
PMID | 30072329 |
PQID | 2117161365 |
PQPubID | 85429 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2018_2862629 crossref_primary_10_1109_TIP_2018_2862629 pubmed_primary_30072329 proquest_journals_2117161365 ieee_primary_8424415 proquest_miscellaneous_2083719770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 belkin (ref21) 2002 zhang (ref30) 2017 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 zhang (ref9) 2018 |
References_xml | – year: 2018 ident: ref9 publication-title: Adaptive importance learning for improving lightweight image super-resolution network – ident: ref5 doi: 10.1109/JPROC.2012.2197589 – ident: ref1 doi: 10.1109/MGRS.2016.2637824 – ident: ref20 doi: 10.1126/science.290.5500.2323 – ident: ref4 doi: 10.1016/j.patcog.2010.01.016 – ident: ref18 doi: 10.1007/978-3-319-46454-1_38 – ident: ref28 doi: 10.1109/CVPR.2014.377 – ident: ref26 doi: 10.1109/CVPR.2011.5995401 – start-page: 585 year: 2002 ident: ref21 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Proc Adv Neural Inf Process Syst – ident: ref29 doi: 10.1137/07070111X – ident: ref38 doi: 10.1109/TGRS.2016.2598577 – ident: ref11 doi: 10.1109/ICASSP.2013.6637883 – ident: ref23 doi: 10.1109/CVPR.2005.38 – ident: ref37 doi: 10.1109/CVPR.2011.5995660 – ident: ref2 doi: 10.1109/TIP.2016.2598652 – ident: ref33 doi: 10.1109/CVPR.2005.160 – ident: ref8 doi: 10.1109/ICME.2017.8019510 – ident: ref13 doi: 10.1109/TIP.2016.2542360 – ident: ref24 doi: 10.1109/ICCV.2015.405 – year: 2017 ident: ref30 publication-title: Beyond low rank A data-adaptive tensor completion method – ident: ref16 doi: 10.1109/TGRS.2013.2253612 – ident: ref25 doi: 10.1007/s11263-018-1080-8 – ident: ref7 doi: 10.1109/TIP.2005.854479 – ident: ref12 doi: 10.1007/978-3-319-10584-0_5 – ident: ref27 doi: 10.1109/TGRS.2017.2735488 – ident: ref3 doi: 10.1109/CVPRW.2010.5543780 – ident: ref31 doi: 10.1007/978-3-642-33786-4_26 – ident: ref34 doi: 10.1561/2200000016 – ident: ref15 doi: 10.1109/TGRS.2016.2598784 – ident: ref10 doi: 10.1109/ICCV.2015.409 – ident: ref6 doi: 10.1109/TPAMI.2018.2789887 – ident: ref14 doi: 10.1109/TGRS.2011.2161320 – ident: ref35 doi: 10.1109/TPAMI.2002.1017616 – ident: ref32 doi: 10.1007/BFb0028368 – ident: ref19 doi: 10.1109/TGRS.2012.2213825 – ident: ref22 doi: 10.1109/TPAMI.2013.57 – ident: ref17 doi: 10.1109/CVPR.2015.7298986 – ident: ref36 doi: 10.1109/TIP.2010.2046811 |
SSID | ssj0014516 |
Score | 2.5835006 |
Snippet | Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5969 |
SubjectTerms | Clustering Clustering manifold structure Dictionaries HSI super-resolution Hyperspectral imaging Image reconstruction Image resolution Manifolds Regression models Sparse matrices Spatial resolution structure preserving |
Title | Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution |
URI | https://ieeexplore.ieee.org/document/8424415 https://www.ncbi.nlm.nih.gov/pubmed/30072329 https://www.proquest.com/docview/2117161365 https://www.proquest.com/docview/2083719770 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-mT_rgx_yqTqngi2C3rp_powzHJkwEFXwrSZqAOFvZ1gf9671Luyqi4ltokibhLtzvcl8AZyEVCPNj7qDwU_RaJRzGM-YoVIYQ3yvpagpwntxEo4fg-jF8bMFFEwujlDLOZ6pLTWPLzwpZ0lNZj1FUFkWUr6DiVsVqNRYDKjhrLJth7MQI-5cmSTfp3Y9vyYeLdT2C7wZMfoogU1Pld3hpxMxwEybLDVbeJc_dciG68v1b7sb_nmALNmq8aV9WDLINLZW3YbPGnnZ9s-dtWP-SmHAH7oxr3hO5RNuDaUnJFKg54fmTLqY4z2SdLWfKRsxrj1CXrUI2Z7jU-IXSYrzZdyV-dcg8UDH3LjwMr-4HI6cuv-BIlGwLJwlD6QnNVRR6QRaILOpnrh8ivmIczxExEfnIh4mrECSovkToqfCCi0BHOgh97e_Bal7k6gBskUgpGRPc4xy7mfBihClao2TUOD6xoLekSCrr3ORUImOaGh3FTVKkYUo0TGsaWnDezHit8nL8MXaHKNGMq4lgQWdJ9LS-uPMU9WHUIMn3z4LTphuvHNlReK6KEscgbI37CJxdC_YrZmn-7VMqdt9LDn9e8wjWaGeVP0wHVpFa6hhRzUKcGHb-ADZq8q4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAc6IuW0BaCBAcO2c06ceIcOKA-tEu7FVK3Um_Bdmyp6pJF3Y1Q-S38Ff5bZ5xHKwTcKnGLEsdJ7LHn-zIvgLecCoRFqQxQ-Rn6W6UCIQsRGCRDiO-NDi0FOI9Pk-F5_OmCXyzBzy4WxhjjnM9Mjw6dLb-Y6Yp-lfUFRWUNWhfKY3PzHQna_MPoAGfzHWNHh5P9YdDUEAg0bs-LIONcM2WlSTiLi1gVyaAII44gQUjsLhEqiXAws9CgpjMDjfjJoJSq2CY25pGNsN9HsII4g7M6OqyzUVCJW2dL5WmQItFojaBh1p-MPpPXmOgxIgwOvt4pPVfF5e-A1im2o1X41Q5J7c9y1asWqqd__JYt8n8dszV41iBq_2O9BNZhyZQbsNqga7_Zu-Yb8PRe6sVNOHPOh5fk9O3vTytKF0GHY1le2tkU73N5datr4yOq94fI1uug1Gt81OgrJf648c8qPBuQAaRevs_h_EE-dAuWy1lpXoCvMq21EEoyKfGyUCxFIGYt6n6L7TMP-q0E5LrJvk5FQKa5Y2FhlqPM5CQzeSMzHrzv7vhWZx75R9tNmvmuXTPpHuy2QpY3W9M8R8aPHJm8Gz14013GTYUsRbI0swrbIDBPB0gNQg-2a-Hs-o4o2XzEspd_fuZreDycjE_yk9Hp8Q48obesvX92YRlnzuwhhluoV24p-fDloeXwFjJVTpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Clustering+Manifold+Structure+for+Hyperspectral+Imagery+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Lei&rft.au=Wei%2C+Wei&rft.au=Bai%2C+Chengcheng&rft.au=Gao%2C+Yifan&rft.date=2018-12-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=12&rft.spage=5969&rft.epage=5982&rft_id=info:doi/10.1109%2FTIP.2018.2862629&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2018_2862629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |