Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution

Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 12; pp. 5969 - 5982
Main Authors Zhang, Lei, Wei, Wei, Bai, Chengcheng, Gao, Yifan, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets.
AbstractList Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets.
Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets.Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution scheme. However, in most previous works, little attention has been paid on exploiting the underlying manifold structure in the spatial domain of the latent HR HSI. In this paper, we advance a provable prior knowledge that the clustering manifold structure of the latent HSI can be well preserved in the spatial domain of the input conventional image. Inspired by this, we first conduct clustering in the spatial domain of the input conventional image and adopt the intra-cluster self-expressiveness model to implicitly depict the clustering manifold structure, which enables learning the complicated manifold structure via solving a constrained ridge regression model without knowing the exact form of the manifold. Then, we incorporate the learned structure into a variational super-resolution framework to regularize the latent HSI. The resulted framework can be effectively optimized by a standard alternating direction method of multipliers. Since the learned structure can well depict the underlying spatial manifold of the latent HSI, the proposed method shows the state-of-the-art super-resolution performance on two benchmark data sets.
Author Wei Wei
Lei Zhang
Yanning Zhang
Yifan Gao
Chengcheng Bai
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-0655-056X
  surname: Wei
  fullname: Wei, Wei
– sequence: 3
  givenname: Chengcheng
  surname: Bai
  fullname: Bai, Chengcheng
– sequence: 4
  givenname: Yifan
  surname: Gao
  fullname: Gao, Yifan
– sequence: 5
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30072329$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaT7ae6FQDL3k4u2Mvmwfy5ImCykt3fQsZHscFLyWK8nQ_e-rZbc55NDTDMPvzQzvXbKzyU_E2HuEFSI0nx82P1YcsF7xWnPNm1fsAhuJJYDkZ7kHVZUVyuacXcb4BIBSoX7DzgVAxQVvLtj25s88epfc9FisxyUmCof2m53c4Me-2KawdGkJVAw-FHf7mUKcqUvBjsVmZx8p7IvtkqflT4p-XJLz01v2erBjpHenesV-fb15WN-V999vN-sv92UnUaSyUarj7WBJKy572fYaexBKClXbWnJdt1qQ7RugGjlhVwMQArZy0INUYhBX7Pq4dw7-90IxmZ2LHY2jncgv0XCoRYVNVUFGP71An_wSpvyd4YgVahRaZerjiVraHfVmDm5nw978sysDcAS64GMMNDwjCOaQiMmJmEMi5pRIlugXks4le7Ape-jG_wk_HIWOiJ7vZGOkRCX-An45lwQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_JSTARS_2022_3172112
crossref_primary_10_1109_TGRS_2020_3039534
crossref_primary_10_1109_TGRS_2024_3457673
crossref_primary_10_1016_j_infrared_2024_105316
crossref_primary_10_1109_JSTARS_2023_3312523
crossref_primary_10_3390_rs14174390
crossref_primary_10_1109_JSTARS_2021_3133009
crossref_primary_10_1109_TGRS_2020_2977819
crossref_primary_10_1109_JSTARS_2019_2939670
crossref_primary_10_1007_s11042_023_16335_4
crossref_primary_10_1109_JSTARS_2022_3190935
crossref_primary_10_3390_rs11131557
crossref_primary_10_1109_TNNLS_2023_3238506
crossref_primary_10_1016_j_neucom_2021_01_130
crossref_primary_10_1364_OE_510718
crossref_primary_10_1109_ACCESS_2020_2992862
crossref_primary_10_1109_TGRS_2019_2946803
crossref_primary_10_1007_s13042_020_01187_3
crossref_primary_10_1109_TCI_2024_3408095
crossref_primary_10_1109_ACCESS_2021_3071425
crossref_primary_10_1145_3477396
crossref_primary_10_1109_TIP_2021_3066906
crossref_primary_10_1109_TIP_2023_3326687
crossref_primary_10_1016_j_infrared_2024_105347
crossref_primary_10_1109_TIP_2020_3044214
crossref_primary_10_1109_TGRS_2023_3273118
crossref_primary_10_1109_TGRS_2020_2992788
crossref_primary_10_1109_TGRS_2023_3324497
crossref_primary_10_11834_jig_220954
crossref_primary_10_1109_TGRS_2024_3414438
crossref_primary_10_1016_j_patrec_2019_05_016
crossref_primary_10_1016_j_eswa_2019_113089
crossref_primary_10_1016_j_ssci_2024_106644
crossref_primary_10_1080_01431161_2024_2399333
crossref_primary_10_1109_TIP_2020_3009830
crossref_primary_10_1109_JSTARS_2022_3207777
crossref_primary_10_1109_TGRS_2020_2987530
crossref_primary_10_3390_rs15051308
crossref_primary_10_1109_JSTARS_2020_2977655
crossref_primary_10_1109_TIP_2018_2878294
crossref_primary_10_3390_app10165583
crossref_primary_10_1109_TGRS_2021_3073932
crossref_primary_10_1016_j_ins_2019_03_033
crossref_primary_10_1109_TGRS_2023_3277486
crossref_primary_10_1109_TIP_2019_2916734
crossref_primary_10_1109_TGRS_2022_3203294
crossref_primary_10_3390_rs11040397
crossref_primary_10_1109_TGRS_2019_2919938
crossref_primary_10_11834_jig_230747
crossref_primary_10_1109_TCI_2020_3031070
crossref_primary_10_1109_TCSVT_2021_3078559
crossref_primary_10_1016_j_asoc_2019_105603
crossref_primary_10_1109_TNNLS_2023_3340561
crossref_primary_10_3390_rs11232809
crossref_primary_10_1109_TIP_2021_3078058
crossref_primary_10_3390_rs15112832
crossref_primary_10_1016_j_chemolab_2020_104097
crossref_primary_10_3390_rs11222691
crossref_primary_10_1109_TGRS_2024_3449073
crossref_primary_10_1109_TIP_2021_3058590
crossref_primary_10_3390_s18093137
crossref_primary_10_1109_TCI_2020_2996075
crossref_primary_10_1109_TGRS_2022_3193441
crossref_primary_10_3390_rs15143643
crossref_primary_10_1109_TNNLS_2023_3266038
crossref_primary_10_1109_LGRS_2019_2945848
crossref_primary_10_1007_s11263_019_01253_6
crossref_primary_10_1109_JSTARS_2019_2917584
crossref_primary_10_1109_TGRS_2022_3176266
crossref_primary_10_1109_TNNLS_2019_2952427
crossref_primary_10_1016_j_image_2020_115833
crossref_primary_10_1109_TGRS_2018_2890633
crossref_primary_10_1109_TGRS_2019_2904108
crossref_primary_10_1109_TGRS_2022_3168511
crossref_primary_10_1109_TGRS_2022_3203749
crossref_primary_10_1109_TGRS_2022_3143156
crossref_primary_10_3390_rs11101229
crossref_primary_10_1007_s11263_024_02238_w
crossref_primary_10_1109_TCI_2020_3014451
crossref_primary_10_1109_LGRS_2018_2889800
crossref_primary_10_1109_TIP_2023_3299189
crossref_primary_10_3390_rs13173539
crossref_primary_10_1109_JSTARS_2019_2903940
crossref_primary_10_1109_TCI_2022_3152700
crossref_primary_10_1186_s13640_018_0398_z
crossref_primary_10_1109_TGRS_2022_3207230
crossref_primary_10_1109_TNNLS_2020_3005234
crossref_primary_10_3390_rs12060993
crossref_primary_10_1109_TGRS_2022_3228313
crossref_primary_10_1109_TIP_2023_3321460
crossref_primary_10_1016_j_inffus_2023_101907
crossref_primary_10_1109_TPAMI_2024_3361894
crossref_primary_10_3390_rs15112853
crossref_primary_10_3934_era_2024205
crossref_primary_10_1080_15481603_2023_2233725
crossref_primary_10_1109_TNNLS_2019_2957527
Cites_doi 10.1109/JPROC.2012.2197589
10.1109/MGRS.2016.2637824
10.1126/science.290.5500.2323
10.1016/j.patcog.2010.01.016
10.1007/978-3-319-46454-1_38
10.1109/CVPR.2014.377
10.1109/CVPR.2011.5995401
10.1137/07070111X
10.1109/TGRS.2016.2598577
10.1109/ICASSP.2013.6637883
10.1109/CVPR.2005.38
10.1109/CVPR.2011.5995660
10.1109/TIP.2016.2598652
10.1109/CVPR.2005.160
10.1109/ICME.2017.8019510
10.1109/TIP.2016.2542360
10.1109/ICCV.2015.405
10.1109/TGRS.2013.2253612
10.1007/s11263-018-1080-8
10.1109/TIP.2005.854479
10.1007/978-3-319-10584-0_5
10.1109/TGRS.2017.2735488
10.1109/CVPRW.2010.5543780
10.1007/978-3-642-33786-4_26
10.1561/2200000016
10.1109/TGRS.2016.2598784
10.1109/ICCV.2015.409
10.1109/TPAMI.2018.2789887
10.1109/TGRS.2011.2161320
10.1109/TPAMI.2002.1017616
10.1007/BFb0028368
10.1109/TGRS.2012.2213825
10.1109/TPAMI.2013.57
10.1109/CVPR.2015.7298986
10.1109/TIP.2010.2046811
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2018.2862629
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5982
ExternalDocumentID 30072329
10_1109_TIP_2018_2862629
8424415
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Basis Research Plan in Shaanxi Province of China
  grantid: 2017JM6021; 2017JM6001
– fundername: National Natural Science Foundation of China
  grantid: 61671385; 61571354; 61571362
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 158201
  funderid: 10.13039/501100002858
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-955c2bfae6524d4bd61d0354358a84268b63ead90e812e1c800e101b4f6f453f3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 00:45:48 EDT 2025
Mon Jun 30 10:09:57 EDT 2025
Wed Feb 19 02:43:38 EST 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 02:03:18 EDT 2025
Wed Aug 27 02:53:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-955c2bfae6524d4bd61d0354358a84268b63ead90e812e1c800e101b4f6f453f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0655-056X
PMID 30072329
PQID 2117161365
PQPubID 85429
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TIP_2018_2862629
crossref_primary_10_1109_TIP_2018_2862629
pubmed_primary_30072329
proquest_journals_2117161365
ieee_primary_8424415
proquest_miscellaneous_2083719770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
belkin (ref21) 2002
zhang (ref30) 2017
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
zhang (ref9) 2018
References_xml – year: 2018
  ident: ref9
  publication-title: Adaptive importance learning for improving lightweight image super-resolution network
– ident: ref5
  doi: 10.1109/JPROC.2012.2197589
– ident: ref1
  doi: 10.1109/MGRS.2016.2637824
– ident: ref20
  doi: 10.1126/science.290.5500.2323
– ident: ref4
  doi: 10.1016/j.patcog.2010.01.016
– ident: ref18
  doi: 10.1007/978-3-319-46454-1_38
– ident: ref28
  doi: 10.1109/CVPR.2014.377
– ident: ref26
  doi: 10.1109/CVPR.2011.5995401
– start-page: 585
  year: 2002
  ident: ref21
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1137/07070111X
– ident: ref38
  doi: 10.1109/TGRS.2016.2598577
– ident: ref11
  doi: 10.1109/ICASSP.2013.6637883
– ident: ref23
  doi: 10.1109/CVPR.2005.38
– ident: ref37
  doi: 10.1109/CVPR.2011.5995660
– ident: ref2
  doi: 10.1109/TIP.2016.2598652
– ident: ref33
  doi: 10.1109/CVPR.2005.160
– ident: ref8
  doi: 10.1109/ICME.2017.8019510
– ident: ref13
  doi: 10.1109/TIP.2016.2542360
– ident: ref24
  doi: 10.1109/ICCV.2015.405
– year: 2017
  ident: ref30
  publication-title: Beyond low rank A data-adaptive tensor completion method
– ident: ref16
  doi: 10.1109/TGRS.2013.2253612
– ident: ref25
  doi: 10.1007/s11263-018-1080-8
– ident: ref7
  doi: 10.1109/TIP.2005.854479
– ident: ref12
  doi: 10.1007/978-3-319-10584-0_5
– ident: ref27
  doi: 10.1109/TGRS.2017.2735488
– ident: ref3
  doi: 10.1109/CVPRW.2010.5543780
– ident: ref31
  doi: 10.1007/978-3-642-33786-4_26
– ident: ref34
  doi: 10.1561/2200000016
– ident: ref15
  doi: 10.1109/TGRS.2016.2598784
– ident: ref10
  doi: 10.1109/ICCV.2015.409
– ident: ref6
  doi: 10.1109/TPAMI.2018.2789887
– ident: ref14
  doi: 10.1109/TGRS.2011.2161320
– ident: ref35
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref32
  doi: 10.1007/BFb0028368
– ident: ref19
  doi: 10.1109/TGRS.2012.2213825
– ident: ref22
  doi: 10.1109/TPAMI.2013.57
– ident: ref17
  doi: 10.1109/CVPR.2015.7298986
– ident: ref36
  doi: 10.1109/TIP.2010.2046811
SSID ssj0014516
Score 2.5835006
Snippet Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) conventional image into an HR HSI has become a prevalent HSIs super-resolution...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5969
SubjectTerms Clustering
Clustering manifold structure
Dictionaries
HSI super-resolution
Hyperspectral imaging
Image reconstruction
Image resolution
Manifolds
Regression models
Sparse matrices
Spatial resolution
structure preserving
Title Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution
URI https://ieeexplore.ieee.org/document/8424415
https://www.ncbi.nlm.nih.gov/pubmed/30072329
https://www.proquest.com/docview/2117161365
https://www.proquest.com/docview/2083719770
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-mT_rgx_yqTqngi2C3rp_powzHJkwEFXwrSZqAOFvZ1gf9671Luyqi4ltokibhLtzvcl8AZyEVCPNj7qDwU_RaJRzGM-YoVIYQ3yvpagpwntxEo4fg-jF8bMFFEwujlDLOZ6pLTWPLzwpZ0lNZj1FUFkWUr6DiVsVqNRYDKjhrLJth7MQI-5cmSTfp3Y9vyYeLdT2C7wZMfoogU1Pld3hpxMxwEybLDVbeJc_dciG68v1b7sb_nmALNmq8aV9WDLINLZW3YbPGnnZ9s-dtWP-SmHAH7oxr3hO5RNuDaUnJFKg54fmTLqY4z2SdLWfKRsxrj1CXrUI2Z7jU-IXSYrzZdyV-dcg8UDH3LjwMr-4HI6cuv-BIlGwLJwlD6QnNVRR6QRaILOpnrh8ivmIczxExEfnIh4mrECSovkToqfCCi0BHOgh97e_Bal7k6gBskUgpGRPc4xy7mfBihClao2TUOD6xoLekSCrr3ORUImOaGh3FTVKkYUo0TGsaWnDezHit8nL8MXaHKNGMq4lgQWdJ9LS-uPMU9WHUIMn3z4LTphuvHNlReK6KEscgbI37CJxdC_YrZmn-7VMqdt9LDn9e8wjWaGeVP0wHVpFa6hhRzUKcGHb-ADZq8q4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAc6IuW0BaCBAcO2c06ceIcOKA-tEu7FVK3Um_Bdmyp6pJF3Y1Q-S38Ff5bZ5xHKwTcKnGLEsdJ7LHn-zIvgLecCoRFqQxQ-Rn6W6UCIQsRGCRDiO-NDi0FOI9Pk-F5_OmCXyzBzy4WxhjjnM9Mjw6dLb-Y6Yp-lfUFRWUNWhfKY3PzHQna_MPoAGfzHWNHh5P9YdDUEAg0bs-LIONcM2WlSTiLi1gVyaAII44gQUjsLhEqiXAws9CgpjMDjfjJoJSq2CY25pGNsN9HsII4g7M6OqyzUVCJW2dL5WmQItFojaBh1p-MPpPXmOgxIgwOvt4pPVfF5e-A1im2o1X41Q5J7c9y1asWqqd__JYt8n8dszV41iBq_2O9BNZhyZQbsNqga7_Zu-Yb8PRe6sVNOHPOh5fk9O3vTytKF0GHY1le2tkU73N5datr4yOq94fI1uug1Gt81OgrJf648c8qPBuQAaRevs_h_EE-dAuWy1lpXoCvMq21EEoyKfGyUCxFIGYt6n6L7TMP-q0E5LrJvk5FQKa5Y2FhlqPM5CQzeSMzHrzv7vhWZx75R9tNmvmuXTPpHuy2QpY3W9M8R8aPHJm8Gz14013GTYUsRbI0swrbIDBPB0gNQg-2a-Hs-o4o2XzEspd_fuZreDycjE_yk9Hp8Q48obesvX92YRlnzuwhhluoV24p-fDloeXwFjJVTpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Clustering+Manifold+Structure+for+Hyperspectral+Imagery+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Lei&rft.au=Wei%2C+Wei&rft.au=Bai%2C+Chengcheng&rft.au=Gao%2C+Yifan&rft.date=2018-12-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=12&rft.spage=5969&rft.epage=5982&rft_id=info:doi/10.1109%2FTIP.2018.2862629&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2018_2862629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon