Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment

NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 6; pp. 1205 - 1220.e5
Main Authors Poznanski, Sophie M., Singh, Kanwaldeep, Ritchie, Tyrah M., Aguiar, Jennifer A., Fan, Isabella Y., Portillo, Ana L., Rojas, Eduardo A., Vahedi, Fatemeh, El-Sayes, Abdullah, Xing, Sansi, Butcher, Martin, Lu, Yu, Doxey, Andrew C., Schertzer, Jonathan D., Hirte, Hal W., Ashkar, Ali A.
Format Journal Article
LanguageEnglish
Published United States 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy.
AbstractList NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy.NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy.
NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy.
Author Rojas, Eduardo A.
Aguiar, Jennifer A.
Fan, Isabella Y.
Singh, Kanwaldeep
Butcher, Martin
Ashkar, Ali A.
Lu, Yu
Ritchie, Tyrah M.
Hirte, Hal W.
Poznanski, Sophie M.
El-Sayes, Abdullah
Xing, Sansi
Doxey, Andrew C.
Portillo, Ana L.
Schertzer, Jonathan D.
Vahedi, Fatemeh
Author_xml – sequence: 1
  givenname: Sophie M.
  surname: Poznanski
  fullname: Poznanski, Sophie M.
– sequence: 2
  givenname: Kanwaldeep
  surname: Singh
  fullname: Singh, Kanwaldeep
– sequence: 3
  givenname: Tyrah M.
  surname: Ritchie
  fullname: Ritchie, Tyrah M.
– sequence: 4
  givenname: Jennifer A.
  surname: Aguiar
  fullname: Aguiar, Jennifer A.
– sequence: 5
  givenname: Isabella Y.
  surname: Fan
  fullname: Fan, Isabella Y.
– sequence: 6
  givenname: Ana L.
  surname: Portillo
  fullname: Portillo, Ana L.
– sequence: 7
  givenname: Eduardo A.
  surname: Rojas
  fullname: Rojas, Eduardo A.
– sequence: 8
  givenname: Fatemeh
  surname: Vahedi
  fullname: Vahedi, Fatemeh
– sequence: 9
  givenname: Abdullah
  surname: El-Sayes
  fullname: El-Sayes, Abdullah
– sequence: 10
  givenname: Sansi
  surname: Xing
  fullname: Xing, Sansi
– sequence: 11
  givenname: Martin
  surname: Butcher
  fullname: Butcher, Martin
– sequence: 12
  givenname: Yu
  surname: Lu
  fullname: Lu, Yu
– sequence: 13
  givenname: Andrew C.
  surname: Doxey
  fullname: Doxey, Andrew C.
– sequence: 14
  givenname: Jonathan D.
  surname: Schertzer
  fullname: Schertzer, Jonathan D.
– sequence: 15
  givenname: Hal W.
  surname: Hirte
  fullname: Hirte, Hal W.
– sequence: 16
  givenname: Ali A.
  surname: Ashkar
  fullname: Ashkar, Ali A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33852875$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PHDEQhq0IFOCSP5Aickmzy9jezzI68SUOaKCLZPm8Y-HT2ktsL-L-PV5BUqRAU8wUzzuaeU7IgZ88EvKDQcmANWe7UjtMJQfOShAlcPGFHLNe8KKtOBzkua6hqJhgR-Qkxh2AaEQvvpIjIbqad219TH7fYlLbabSamhFf7daONu3pgAmDsx4jfZqd8vTuhmocR2pmr5OdvMqjSkitp-kJaZrdFKizOkzoX2yYvEOfvpFDo8aI3z_6ijxenD-sr4rN_eX1-tem0Pm4VPSVgb4aGt11A2uh171QnOlOD9Bh3UAjajCGw5CrVbhtlak4okHBqwpVLVbk9H3vc5j-zBiTdDYu5yqP0xwlr1lGOWc8oz8_0HnrcJDPwToV9vKvkQzwdyC_EmNA8w9hIBftcicX7XLRLkHIrD2Huv9C2ia1eEpB2fGz6BuWYYoW
CitedBy_id crossref_primary_10_1007_s11684_024_1080_8
crossref_primary_10_4049_jimmunol_2300834
crossref_primary_10_1016_j_canlet_2024_216924
crossref_primary_10_31083_j_fbl2903099
crossref_primary_10_3390_ijms24087267
crossref_primary_10_1111_imr_13316
crossref_primary_10_1186_s40364_024_00646_1
crossref_primary_10_3389_fonc_2022_868639
crossref_primary_10_3390_ijms241511937
crossref_primary_10_3390_j7040027
crossref_primary_10_3390_cancers15030705
crossref_primary_10_3390_ijms222111304
crossref_primary_10_1038_s41556_024_01360_8
crossref_primary_10_1016_j_cellsig_2024_111445
crossref_primary_10_1021_acs_nanolett_4c05070
crossref_primary_10_1038_s41573_022_00413_7
crossref_primary_10_1007_s10555_025_10242_w
crossref_primary_10_1016_j_molmed_2021_06_014
crossref_primary_10_3389_fimmu_2023_1322746
crossref_primary_10_1007_s10495_024_01997_8
crossref_primary_10_3389_fonc_2022_984560
crossref_primary_10_1016_j_immuni_2024_05_021
crossref_primary_10_1016_j_isci_2021_102619
crossref_primary_10_1002_eji_202350954
crossref_primary_10_3390_cancers13143578
crossref_primary_10_1002_jcp_31349
crossref_primary_10_3390_ijms242417422
crossref_primary_10_1186_s13287_021_02377_8
crossref_primary_10_3389_fimmu_2022_877634
crossref_primary_10_3389_fimmu_2022_932055
crossref_primary_10_1002_ijc_34389
crossref_primary_10_1016_j_bbcan_2023_188962
crossref_primary_10_3390_cancers15030959
crossref_primary_10_1038_s41401_024_01304_w
crossref_primary_10_4110_in_2025_25_e6
crossref_primary_10_1007_s12672_024_01573_1
crossref_primary_10_1002_cac2_12487
crossref_primary_10_1002_wnan_2010
crossref_primary_10_1016_j_lfs_2024_123279
crossref_primary_10_1016_j_intimp_2024_112621
crossref_primary_10_37349_etat_2024_00202
crossref_primary_10_3389_fimmu_2023_1286750
crossref_primary_10_1084_jem_20221140
crossref_primary_10_1038_s41598_023_41194_2
crossref_primary_10_1186_s40164_023_00427_w
crossref_primary_10_1002_mco2_70116
crossref_primary_10_1016_j_immuni_2025_02_008
crossref_primary_10_1186_s40164_024_00481_y
crossref_primary_10_1186_s12943_021_01486_5
crossref_primary_10_1007_s00395_024_01092_8
crossref_primary_10_1016_j_canlet_2023_216152
crossref_primary_10_1002_hep_32658
crossref_primary_10_1080_2162402X_2023_2282252
crossref_primary_10_1186_s12943_024_02205_6
crossref_primary_10_3389_fcell_2022_940551
crossref_primary_10_1038_s41420_024_02006_2
crossref_primary_10_1186_s12943_024_01999_9
crossref_primary_10_12998_wjcc_v12_i20_4091
crossref_primary_10_3390_cancers14092071
crossref_primary_10_3389_fonc_2022_1024985
crossref_primary_10_4049_jimmunol_2300406
crossref_primary_10_1016_j_cmet_2022_09_023
crossref_primary_10_1038_s44319_023_00038_w
crossref_primary_10_3389_fonc_2021_832036
crossref_primary_10_1016_j_jconrel_2024_02_033
crossref_primary_10_1158_1078_0432_CCR_22_3468
crossref_primary_10_1186_s12943_024_02130_8
crossref_primary_10_1038_s41392_022_01046_3
crossref_primary_10_1111_cns_14315
crossref_primary_10_3389_fimmu_2025_1555287
crossref_primary_10_1186_s13046_023_02925_5
crossref_primary_10_3389_fimmu_2023_1120519
crossref_primary_10_3389_fonc_2024_1350011
crossref_primary_10_3389_fimmu_2022_854432
crossref_primary_10_1016_j_trecan_2024_01_002
crossref_primary_10_1021_acsnano_2c03055
crossref_primary_10_3390_cancers13205250
crossref_primary_10_1002_mco2_551
crossref_primary_10_1016_j_bbrc_2023_02_006
crossref_primary_10_1053_j_gastro_2024_01_051
crossref_primary_10_1186_s12943_023_01893_w
crossref_primary_10_1007_s00018_022_04639_x
crossref_primary_10_1136_jitc_2021_003031
crossref_primary_10_20517_cdr_2024_123
crossref_primary_10_1093_jleuko_qiae227
crossref_primary_10_1016_j_beha_2024_101568
crossref_primary_10_1016_j_cmet_2022_11_003
crossref_primary_10_1016_j_intimp_2024_112203
crossref_primary_10_1007_s11864_021_00929_x
crossref_primary_10_1080_08830185_2024_2401353
crossref_primary_10_1016_j_ijbiomac_2023_125878
crossref_primary_10_1016_j_critrevonc_2024_104359
crossref_primary_10_1038_s41388_022_02562_w
crossref_primary_10_3390_ijms24076849
crossref_primary_10_1097_MOH_0000000000000722
crossref_primary_10_1038_s43018_023_00589_w
crossref_primary_10_1097_CM9_0000000000002327
crossref_primary_10_1186_s12943_025_02269_y
crossref_primary_10_1038_s41392_025_02158_2
crossref_primary_10_1016_j_biopha_2022_113923
crossref_primary_10_1111_imr_13235
crossref_primary_10_1016_j_tips_2023_08_009
crossref_primary_10_1038_s41419_022_05384_6
crossref_primary_10_1038_s41420_024_01815_9
crossref_primary_10_1016_j_chembiol_2024_02_001
crossref_primary_10_3390_antib11020032
crossref_primary_10_1016_j_phrs_2025_107674
crossref_primary_10_3389_fonc_2022_1019654
crossref_primary_10_1002_ctm2_492
crossref_primary_10_1016_j_tips_2023_06_005
crossref_primary_10_1016_j_phymed_2024_155684
crossref_primary_10_1016_j_smim_2023_101736
crossref_primary_10_1038_s41419_022_05041_y
crossref_primary_10_3389_fimmu_2021_765705
crossref_primary_10_3390_antiox13010070
crossref_primary_10_1016_j_apsb_2023_04_010
crossref_primary_10_1038_s41568_022_00537_3
crossref_primary_10_1016_j_ccell_2024_03_011
crossref_primary_10_1016_j_cytogfr_2023_08_004
crossref_primary_10_3389_fonc_2024_1441338
crossref_primary_10_3390_ijms22126560
crossref_primary_10_1002_advs_202202519
crossref_primary_10_1002_adma_202415550
crossref_primary_10_1021_acscentsci_3c00702
crossref_primary_10_1155_2022_3530520
crossref_primary_10_1016_j_bbagrm_2024_195028
crossref_primary_10_3389_fmolb_2022_974156
crossref_primary_10_1038_s41392_024_01765_9
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_1158_2326_6066_CIR_23_0151
crossref_primary_10_1016_j_canlet_2024_217115
crossref_primary_10_1038_s41577_022_00732_1
crossref_primary_10_3389_fimmu_2023_1247268
crossref_primary_10_1016_j_ymthe_2024_01_027
crossref_primary_10_1111_imr_13333
crossref_primary_10_1038_s41401_024_01260_5
crossref_primary_10_3389_fimmu_2023_1211839
crossref_primary_10_1080_17425247_2024_2379937
crossref_primary_10_3389_fimmu_2023_1269614
crossref_primary_10_1016_j_lfs_2024_122897
crossref_primary_10_3389_fonc_2022_980620
crossref_primary_10_1080_02656736_2023_2270654
crossref_primary_10_14348_molcells_2023_2183
crossref_primary_10_1038_s41418_024_01396_1
crossref_primary_10_1016_j_ejphar_2023_176124
crossref_primary_10_1186_s12943_024_02132_6
crossref_primary_10_1021_acsnano_3c11260
crossref_primary_10_1186_s40164_024_00498_3
crossref_primary_10_3390_biomedicines12030559
crossref_primary_10_1186_s40164_024_00558_8
crossref_primary_10_1038_s41573_024_01098_w
crossref_primary_10_12677_ACM_2024_142647
Cites_doi 10.1159/000197334
10.1002/hep.1840060214
10.1038/cmi.2015.42
10.1126/science.aav2588
10.1186/1471-2105-14-128
10.1002/ijc.2910160205
10.1172/jci.insight.93411
10.1038/ni.3838
10.1158/jcr.1925.148
10.1016/0016-5085(90)91301-L
10.1200/JCO.2005.03.9594
10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P
10.1182/blood.2018885863
10.1016/j.cell.2015.08.016
10.1002/eji.1830050209
10.1002/(SICI)1097-0142(20000201)88:3<577::AID-CNCR13>3.0.CO;2-V
10.1038/nature13236
10.1038/nature11743
10.1085/jgp.8.6.519
10.1097/CJI.0b013e3182829903
10.1186/s12885-018-4443-1
10.1038/onc.2017.209
10.3109/14653249.2010.515582
10.4049/jimmunol.1501783
10.1038/nrc.2015.5
10.1158/2159-8290.CD-17-1319
10.1038/s41467-018-04719-2
10.1056/NEJMoa1910607
10.1126/scitranslmed.aaf2341
10.18632/oncotarget.15040
10.3389/fonc.2014.00107
10.1126/science.aat2184
10.1158/2326-6066.CIR-18-0144
10.1074/mcp.M114.041194
10.1126/science.1203486
10.1038/s41590-018-0251-7
10.1111/j.1365-2567.2007.02660.x
10.1177/172460080101600106
10.1182/blood-2017-05-785659
10.1126/science.aau0135
10.1038/ncb3410
10.1016/j.cell.2012.03.042
10.4049/jimmunol.1402099
10.1093/nar/gkw377
10.1371/journal.pone.0030264
10.1158/1535-7163.MCT-14-0354
10.1038/sj.onc.1202237
10.4049/jimmunol.1401558
10.1038/cddis.2013.393
10.1101/gad.1987211
10.4049/jimmunol.1701461
10.1016/j.cmet.2016.07.003
10.1038/ni.2936
10.21873/anticanres.13800
10.1371/journal.pone.0122942
10.3389/fonc.2015.00121
10.1007/s00262-017-2034-7
10.1111/cei.12034
10.3389/fimmu.2019.01414
10.1016/j.ceb.2017.05.006
10.1038/mt.2010.24
10.1016/j.cell.2016.05.035
10.1136/jitc-2020-001933
10.1158/2159-8290.CD-14-0250
10.1158/1078-0432.CCR-11-1347
10.1002/nbm.1232
10.1016/j.immuni.2016.07.009
ContentType Journal Article
Copyright Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2021.03.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1220.e5
ExternalDocumentID 33852875
10_1016_j_cmet_2021_03_023
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: 20009360
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
AAYXX
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
0SF
AACTN
AAFTH
ABVKL
CGR
CUY
CVF
ECM
EIF
NPM
RCE
7X8
ID FETCH-LOGICAL-c413t-94f094d6c88d1709c93a21c8cd08e5606350ff20d0d07aeb7af42eefe3244ea53
ISSN 1550-4131
1932-7420
IngestDate Fri Jul 11 10:38:32 EDT 2025
Wed Feb 19 02:26:43 EST 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords NK cells
metabolic flexibility
immunometabolism
cancer immunotherapy
NK cell metabolism
tumor microenvironment
adoptive cell therapy
glucose metabolism
oxidative stress
Warburg effect
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-94f094d6c88d1709c93a21c8cd08e5606350ff20d0d07aeb7af42eefe3244ea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1550413121001303/pdf
PMID 33852875
PQID 2513242212
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2513242212
pubmed_primary_33852875
crossref_primary_10_1016_j_cmet_2021_03_023
crossref_citationtrail_10_1016_j_cmet_2021_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-00
2021-06-01
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
References Fan (10.1016/j.cmet.2021.03.023_bib20) 2014; 510
Geller (10.1016/j.cmet.2021.03.023_bib21) 2011; 13
Poznanski (10.1016/j.cmet.2021.03.023_bib47) 2018; 6
Santomasso (10.1016/j.cmet.2021.03.023_bib52) 2018; 8
Wickham (10.1016/j.cmet.2021.03.023_bib66) 2016
Kolde (10.1016/j.cmet.2021.03.023_bib28) 2018
Zaiatz-Bittencourt (10.1016/j.cmet.2021.03.023_bib68) 2018; 200
Morgan (10.1016/j.cmet.2021.03.023_bib39) 2010; 18
Kuleshov (10.1016/j.cmet.2021.03.023_bib30) 2016; 44
Michelet (10.1016/j.cmet.2021.03.023_bib37) 2018; 19
Probst (10.1016/j.cmet.2021.03.023_bib49) 2015; 10
Jüngst (10.1016/j.cmet.2021.03.023_bib24) 1986; 6
Keppel (10.1016/j.cmet.2021.03.023_bib26) 2015; 194
Pan (10.1016/j.cmet.2021.03.023_bib42) 2016; 18
Shender (10.1016/j.cmet.2021.03.023_bib55) 2014; 13
Polak (10.1016/j.cmet.2021.03.023_bib44) 1973; 8
Wei (10.1016/j.cmet.2021.03.023_bib65) 2017; 8
Kiessling (10.1016/j.cmet.2021.03.023_bib27) 1975; 5
Tedeschi (10.1016/j.cmet.2021.03.023_bib57) 2013; 4
Donskov (10.1016/j.cmet.2021.03.023_bib19) 2006; 24
Morvan (10.1016/j.cmet.2021.03.023_bib41) 2016; 16
Denman (10.1016/j.cmet.2021.03.023_bib16) 2012; 7
Poli (10.1016/j.cmet.2021.03.023_bib45) 2015; 5
Buck (10.1016/j.cmet.2021.03.023_bib8) 2016; 166
Zaugg (10.1016/j.cmet.2021.03.023_bib69) 2011; 25
Cerwenka (10.1016/j.cmet.2021.03.023_bib9) 2018; 359
Keating (10.1016/j.cmet.2021.03.023_bib25) 2016; 196
Krneta (10.1016/j.cmet.2021.03.023_bib29) 2016; 13
Thistlethwaite (10.1016/j.cmet.2021.03.023_bib58) 2017; 66
Venugopal (10.1016/j.cmet.2021.03.023_bib60) 1998; 17
Vodnala (10.1016/j.cmet.2021.03.023_bib61) 2019; 363
Warburg (10.1016/j.cmet.2021.03.023_bib63) 1925; 9
Donnelly (10.1016/j.cmet.2021.03.023_bib18) 2014; 193
Loftus (10.1016/j.cmet.2021.03.023_bib34) 2018; 9
Siska (10.1016/j.cmet.2021.03.023_bib56) 2017; 2
Morgan (10.1016/j.cmet.2021.03.023_bib40) 2013; 36
Reina-Campos (10.1016/j.cmet.2021.03.023_bib50) 2017; 48
Mockler (10.1016/j.cmet.2021.03.023_bib38) 2014; 4
Maddocks (10.1016/j.cmet.2021.03.023_bib35) 2013; 493
Scharping (10.1016/j.cmet.2021.03.023_bib53) 2016; 45
Ciurea (10.1016/j.cmet.2021.03.023_bib12) 2017; 130
Coosemans (10.1016/j.cmet.2021.03.023_bib14) 2019; 39
Warburg (10.1016/j.cmet.2021.03.023_bib64) 1927; 8
Bala (10.1016/j.cmet.2021.03.023_bib5) 2008; 21
Marçais (10.1016/j.cmet.2021.03.023_bib36) 2014; 15
Coca (10.1016/j.cmet.2021.03.023_bib13) 1997; 79
Albillos (10.1016/j.cmet.2021.03.023_bib1) 1990; 98
Chen (10.1016/j.cmet.2021.03.023_bib11) 2013; 14
Dixon (10.1016/j.cmet.2021.03.023_bib17) 2012; 149
Parkhurst (10.1016/j.cmet.2021.03.023_bib43) 2011; 17
Poznanski (10.1016/j.cmet.2021.03.023_bib46) 2019; 10
Ishigami (10.1016/j.cmet.2021.03.023_bib23) 2000; 88
Liu (10.1016/j.cmet.2021.03.023_bib33) 2020; 382
Ye (10.1016/j.cmet.2021.03.023_bib67) 2014; 4
Poznanski (10.1016/j.cmet.2021.03.023_bib48) 2021; 9
Alexandrakis (10.1016/j.cmet.2021.03.023_bib2) 2001; 16
Liu (10.1016/j.cmet.2021.03.023_bib32) 2017; 36
Romee (10.1016/j.cmet.2021.03.023_bib51) 2016; 8
Wang (10.1016/j.cmet.2021.03.023_bib62) 2013; 172
Berek (10.1016/j.cmet.2021.03.023_bib7) 1984; 64
Alexeev (10.1016/j.cmet.2021.03.023_bib3) 2014; 13
Assmann (10.1016/j.cmet.2021.03.023_bib4) 2017; 18
Herberman (10.1016/j.cmet.2021.03.023_bib22) 1975; 16
Corbet (10.1016/j.cmet.2021.03.023_bib15) 2016; 24
Schreiber (10.1016/j.cmet.2021.03.023_bib54) 2011; 331
Zhou (10.1016/j.cmet.2021.03.023_bib70) 2018; 18
Belisle (10.1016/j.cmet.2021.03.023_bib6) 2007; 122
Leone (10.1016/j.cmet.2021.03.023_bib31) 2019; 366
van Bruggen (10.1016/j.cmet.2021.03.023_bib59) 2019; 134
Chang (10.1016/j.cmet.2021.03.023_bib10) 2015; 162
References_xml – volume: 8
  start-page: 347
  year: 1973
  ident: 10.1016/j.cmet.2021.03.023_bib44
  article-title: Diagnostic value of the estimation of glucose in ascitic fluid
  publication-title: Digestion
  doi: 10.1159/000197334
– volume: 6
  start-page: 239
  year: 1986
  ident: 10.1016/j.cmet.2021.03.023_bib24
  article-title: Value of ascitic lipids in the differentiation between cirrhotic and malignant ascites
  publication-title: Hepatology
  doi: 10.1002/hep.1840060214
– volume: 13
  start-page: 628
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib29
  article-title: The breast tumor microenvironment alters the phenotype and function of natural killer cells
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/cmi.2015.42
– volume: 366
  start-page: 1013
  year: 2019
  ident: 10.1016/j.cmet.2021.03.023_bib31
  article-title: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion
  publication-title: Science
  doi: 10.1126/science.aav2588
– volume: 14
  start-page: 128
  year: 2013
  ident: 10.1016/j.cmet.2021.03.023_bib11
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-128
– volume: 16
  start-page: 230
  year: 1975
  ident: 10.1016/j.cmet.2021.03.023_bib22
  article-title: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910160205
– volume: 2
  start-page: e93411
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib56
  article-title: Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93411
– volume: 18
  start-page: 1197
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib4
  article-title: Srebp-controlled glucose metabolism is essential for NK cell functional responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3838
– volume: 9
  start-page: 148
  year: 1925
  ident: 10.1016/j.cmet.2021.03.023_bib63
  article-title: The metabolism of carcinoma cells
  publication-title: J. Cancer Res.
  doi: 10.1158/jcr.1925.148
– volume: 98
  start-page: 134
  year: 1990
  ident: 10.1016/j.cmet.2021.03.023_bib1
  article-title: Ascitic fluid polymorphonuclear cell count and serum to ascites albumin gradient in the diagnosis of bacterial peritonitis
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(90)91301-L
– volume: 24
  start-page: 1997
  year: 2006
  ident: 10.1016/j.cmet.2021.03.023_bib19
  article-title: Impact of immune parameters on long-term survival in metastatic renal cell carcinoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.03.9594
– volume: 79
  start-page: 2320
  year: 1997
  ident: 10.1016/j.cmet.2021.03.023_bib13
  article-title: The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P
– volume: 134
  start-page: 44
  year: 2019
  ident: 10.1016/j.cmet.2021.03.023_bib59
  article-title: Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy
  publication-title: Blood
  doi: 10.1182/blood.2018885863
– volume: 162
  start-page: 1229
  year: 2015
  ident: 10.1016/j.cmet.2021.03.023_bib10
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib66
– volume: 5
  start-page: 117
  year: 1975
  ident: 10.1016/j.cmet.2021.03.023_bib27
  article-title: Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.1830050209
– volume: 88
  start-page: 577
  year: 2000
  ident: 10.1016/j.cmet.2021.03.023_bib23
  article-title: Prognostic value of intratumoral natural killer cells in gastric carcinoma
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(20000201)88:3<577::AID-CNCR13>3.0.CO;2-V
– volume: 510
  start-page: 298
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib20
  article-title: Quantitative flux analysis reveals folate-dependent NADPH production
  publication-title: Nature
  doi: 10.1038/nature13236
– volume: 493
  start-page: 542
  year: 2013
  ident: 10.1016/j.cmet.2021.03.023_bib35
  article-title: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells
  publication-title: Nature
  doi: 10.1038/nature11743
– volume: 8
  start-page: 519
  year: 1927
  ident: 10.1016/j.cmet.2021.03.023_bib64
  article-title: The metabolism of tumors in the body
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.8.6.519
– volume: 36
  start-page: 133
  year: 2013
  ident: 10.1016/j.cmet.2021.03.023_bib40
  article-title: Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0b013e3182829903
– volume: 18
  start-page: 559
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib70
  article-title: Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose
  publication-title: BMC Cancer
  doi: 10.1186/s12885-018-4443-1
– volume: 36
  start-page: 6143
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib32
  article-title: Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers
  publication-title: Oncogene
  doi: 10.1038/onc.2017.209
– volume: 13
  start-page: 98
  year: 2011
  ident: 10.1016/j.cmet.2021.03.023_bib21
  article-title: A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer
  publication-title: Cytotherapy
  doi: 10.3109/14653249.2010.515582
– volume: 196
  start-page: 2552
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib25
  article-title: Metabolic reprogramming supports IFN-γ production by CD56bright NK cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501783
– volume: 16
  start-page: 7
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib41
  article-title: NK cells and cancer: you can teach innate cells new tricks
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2015.5
– volume: 8
  start-page: 958
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib52
  article-title: Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1319
– volume: 9
  start-page: 2341
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib34
  article-title: Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04719-2
– volume: 64
  start-page: 708
  year: 1984
  ident: 10.1016/j.cmet.2021.03.023_bib7
  article-title: Lymphocyte cytotoxicity in the peritoneal cavity and blood of patients with ovarian cancer
  publication-title: Obstet. Gynecol.
– volume: 382
  start-page: 545
  year: 2020
  ident: 10.1016/j.cmet.2021.03.023_bib33
  article-title: Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1910607
– volume: 8
  start-page: 357ra123
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib51
  article-title: Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf2341
– volume: 8
  start-page: 42262
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib65
  article-title: Malignant ascites-derived exosomes promote proliferation and induce carcinoma-associated fibroblasts transition in peritoneal mesothelial cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15040
– volume: 4
  start-page: 107
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib38
  article-title: Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00107
– volume: 359
  start-page: 1460
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib9
  article-title: Natural killers join the fight against cancer
  publication-title: Science
  doi: 10.1126/science.aat2184
– volume: 6
  start-page: 1174
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib47
  article-title: Expanded CD56superbright CD16+ NK cells from ovarian cancer patients are cytotoxic against autologous tumor in a patient-derived xenograft murine model
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0144
– volume: 13
  start-page: 3558
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib55
  article-title: Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.041194
– volume: 331
  start-page: 1565
  year: 2011
  ident: 10.1016/j.cmet.2021.03.023_bib54
  article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion
  publication-title: Science
  doi: 10.1126/science.1203486
– volume: 19
  start-page: 1330
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib37
  article-title: Metabolic reprogramming of natural killer cells in obesity limits antitumor responses
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0251-7
– volume: 122
  start-page: 418
  year: 2007
  ident: 10.1016/j.cmet.2021.03.023_bib6
  article-title: Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125)
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2007.02660.x
– volume: 16
  start-page: 45
  year: 2001
  ident: 10.1016/j.cmet.2021.03.023_bib2
  article-title: Use of a variety of biological parameters in distinguishing cirrhotic from malignant ascites
  publication-title: Int. J. Biol. Markers
  doi: 10.1177/172460080101600106
– year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib28
  article-title: pheatmap: pretty heatmaps
– volume: 130
  start-page: 1857
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib12
  article-title: Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation
  publication-title: Blood
  doi: 10.1182/blood-2017-05-785659
– volume: 363
  year: 2019
  ident: 10.1016/j.cmet.2021.03.023_bib61
  article-title: T cell stemness and dysfunction in tumors are triggered by a common mechanism
  publication-title: Science
  doi: 10.1126/science.aau0135
– volume: 18
  start-page: 1090
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib42
  article-title: Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3410
– volume: 149
  start-page: 1060
  year: 2012
  ident: 10.1016/j.cmet.2021.03.023_bib17
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 194
  start-page: 1954
  year: 2015
  ident: 10.1016/j.cmet.2021.03.023_bib26
  article-title: Activation-specific metabolic requirements for NK cell IFN-γ production
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402099
– volume: 44
  start-page: W90
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib30
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 7
  start-page: e30264
  year: 2012
  ident: 10.1016/j.cmet.2021.03.023_bib16
  article-title: Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030264
– volume: 13
  start-page: 2968
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib3
  article-title: Radiation protection of the gastrointestinal tract and growth inhibition of prostate cancer xenografts by a single compound
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-14-0354
– volume: 17
  start-page: 3145
  year: 1998
  ident: 10.1016/j.cmet.2021.03.023_bib60
  article-title: Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202237
– volume: 193
  start-page: 4477
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib18
  article-title: mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401558
– volume: 4
  start-page: e877
  year: 2013
  ident: 10.1016/j.cmet.2021.03.023_bib57
  article-title: Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.393
– volume: 25
  start-page: 1041
  year: 2011
  ident: 10.1016/j.cmet.2021.03.023_bib69
  article-title: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
  publication-title: Genes Dev.
  doi: 10.1101/gad.1987211
– volume: 200
  start-page: 3934
  year: 2018
  ident: 10.1016/j.cmet.2021.03.023_bib68
  article-title: Canonical TGF-beta signaling pathway represses human NK cell metabolism
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1701461
– volume: 24
  start-page: 311
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib15
  article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.07.003
– volume: 15
  start-page: 749
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib36
  article-title: The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2936
– volume: 39
  start-page: 5953
  year: 2019
  ident: 10.1016/j.cmet.2021.03.023_bib14
  article-title: Increased immunosuppression is related to increased amounts of ascites and inferior prognosis in ovarian cancer
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.13800
– volume: 10
  start-page: e0122942
  year: 2015
  ident: 10.1016/j.cmet.2021.03.023_bib49
  article-title: RTA 408, a novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122942
– volume: 5
  start-page: 121
  year: 2015
  ident: 10.1016/j.cmet.2021.03.023_bib45
  article-title: STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2015.00121
– volume: 66
  start-page: 1425
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib58
  article-title: The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-017-2034-7
– volume: 172
  start-page: 104
  year: 2013
  ident: 10.1016/j.cmet.2021.03.023_bib62
  article-title: Membrane-bound interleukin-21 and CD137 ligand induce functional human natural killer cells from peripheral blood mononuclear cells through STAT-3 activation
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.12034
– volume: 10
  start-page: 1414
  year: 2019
  ident: 10.1016/j.cmet.2021.03.023_bib46
  article-title: What defines NK cell functional fate: phenotype or metabolism?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01414
– volume: 48
  start-page: 47
  year: 2017
  ident: 10.1016/j.cmet.2021.03.023_bib50
  article-title: Metabolism shapes the tumor microenvironment
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2017.05.006
– volume: 18
  start-page: 843
  year: 2010
  ident: 10.1016/j.cmet.2021.03.023_bib39
  article-title: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.24
– volume: 166
  start-page: 63
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib8
  article-title: Mitochondrial dynamics controls T cell fate through metabolic programming
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.035
– volume: 9
  start-page: e001933
  year: 2021
  ident: 10.1016/j.cmet.2021.03.023_bib48
  article-title: Expanded human NK cells from lung cancer patients sensitize patients’ PDL1-negative tumors to PD1-blockade therapy
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2020-001933
– volume: 4
  start-page: 1406
  year: 2014
  ident: 10.1016/j.cmet.2021.03.023_bib67
  article-title: Serine catabolism regulates mitochondrial redox control during hypoxia
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-14-0250
– volume: 17
  start-page: 6287
  year: 2011
  ident: 10.1016/j.cmet.2021.03.023_bib43
  article-title: Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-1347
– volume: 21
  start-page: 606
  year: 2008
  ident: 10.1016/j.cmet.2021.03.023_bib5
  article-title: (1)H NMR spectroscopy of ascitic fluid: discrimination between malignant and benign ascites and comparison of the results with conventional methods
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1232
– volume: 45
  start-page: 374
  year: 2016
  ident: 10.1016/j.cmet.2021.03.023_bib53
  article-title: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.009
SSID ssj0036393
Score 2.6665313
Snippet NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1205
SubjectTerms Adult
Aged
Animals
Antineoplastic Agents - immunology
Cell Line, Tumor
Female
Humans
Immunotherapy - methods
Killer Cells, Natural - cytology
Killer Cells, Natural - immunology
Male
Mice
Middle Aged
Neoplasms - therapy
Tumor Microenvironment
Young Adult
Title Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment
URI https://www.ncbi.nlm.nih.gov/pubmed/33852875
https://www.proquest.com/docview/2513242212
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2AvY91X025Dg70ZG1m2Y_sxKxulpXlZCnkYGEWW15TGDq3NSP-E_tW9s2RHDe1YR8AEE58s3y_3If_uRMjXWMXYBCR2IbYeuWFQBK4IcoZtK4VQYs5k24npdDI6OguPZ9FsMLi1WEtNPffkzYN1Jf-jVTgHesUq2SdothcKJ-A76BeOoGE4_pOOT1UNOsQ21QX2tWx5rmsnNwwXdW124JucOLg-76APM0t_BYSYHcWxbpbVlbNEZp5V9mZHrYd49dIMZloOojmtbkrRbXz9s1qdL8BGeP2aDTjFc03YKP-Iy1ypVf92ZwFY0S9GpmuwdtZV49_NQnO-O96NM_bspQluUag6axoxF7ykb5tb3ffCwMq2nT5nkeWHfc6Zp6IHzbxecbjwJEzdw5HbRrW6cPl-T-0tX9czEDty20WGMjKUkbEgAxnPyHMOKUdbDDr71nn1ACK5tlijm5IpwNJcwe37uB_kPJK5tBHM9DV5ZVIPOtY42iUDVb4hL_RmpOu35FePJmqhiW7QRFs00ckJRTTRDZooookuSgpooi2a6Daa3pGzH9-nh0eu2XvDlTC72k3DAhL_fCSTJPdjlso0ENyXicxZoiBKhjiVFQVnOXxioeaxKEKuVKEgQA-ViIL3ZKesSrVHaCohz-fSZ6kQYRHGIpYjlOHLUOUyZUPidw8rk6YxPe6Pcpk9rqQhcfprVroty19__aXTQQbWEx-SKFXVXGcQ3WNGAfHbkHzQyunlBUEScUjn95801gF5ufkrfCQ79VWjPkHcWs8_t4C6A2mhmTE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+flexibility+determines+human+NK+cell+functional+fate+in+the+tumor+microenvironment&rft.jtitle=Cell+metabolism&rft.au=Poznanski%2C+Sophie+M.&rft.au=Singh%2C+Kanwaldeep&rft.au=Ritchie%2C+Tyrah+M.&rft.au=Aguiar%2C+Jennifer+A.&rft.date=2021-06-01&rft.issn=1550-4131&rft.volume=33&rft.issue=6&rft.spage=1205&rft.epage=1220.e5&rft_id=info:doi/10.1016%2Fj.cmet.2021.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmet_2021_03_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon