Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment
NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we...
Saved in:
Published in | Cell metabolism Vol. 33; no. 6; pp. 1205 - 1220.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy. |
---|---|
AbstractList | NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy.NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy. NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy. |
Author | Rojas, Eduardo A. Aguiar, Jennifer A. Fan, Isabella Y. Singh, Kanwaldeep Butcher, Martin Ashkar, Ali A. Lu, Yu Ritchie, Tyrah M. Hirte, Hal W. Poznanski, Sophie M. El-Sayes, Abdullah Xing, Sansi Doxey, Andrew C. Portillo, Ana L. Schertzer, Jonathan D. Vahedi, Fatemeh |
Author_xml | – sequence: 1 givenname: Sophie M. surname: Poznanski fullname: Poznanski, Sophie M. – sequence: 2 givenname: Kanwaldeep surname: Singh fullname: Singh, Kanwaldeep – sequence: 3 givenname: Tyrah M. surname: Ritchie fullname: Ritchie, Tyrah M. – sequence: 4 givenname: Jennifer A. surname: Aguiar fullname: Aguiar, Jennifer A. – sequence: 5 givenname: Isabella Y. surname: Fan fullname: Fan, Isabella Y. – sequence: 6 givenname: Ana L. surname: Portillo fullname: Portillo, Ana L. – sequence: 7 givenname: Eduardo A. surname: Rojas fullname: Rojas, Eduardo A. – sequence: 8 givenname: Fatemeh surname: Vahedi fullname: Vahedi, Fatemeh – sequence: 9 givenname: Abdullah surname: El-Sayes fullname: El-Sayes, Abdullah – sequence: 10 givenname: Sansi surname: Xing fullname: Xing, Sansi – sequence: 11 givenname: Martin surname: Butcher fullname: Butcher, Martin – sequence: 12 givenname: Yu surname: Lu fullname: Lu, Yu – sequence: 13 givenname: Andrew C. surname: Doxey fullname: Doxey, Andrew C. – sequence: 14 givenname: Jonathan D. surname: Schertzer fullname: Schertzer, Jonathan D. – sequence: 15 givenname: Hal W. surname: Hirte fullname: Hirte, Hal W. – sequence: 16 givenname: Ali A. surname: Ashkar fullname: Ashkar, Ali A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33852875$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PHDEQhq0IFOCSP5Aickmzy9jezzI68SUOaKCLZPm8Y-HT2ktsL-L-PV5BUqRAU8wUzzuaeU7IgZ88EvKDQcmANWe7UjtMJQfOShAlcPGFHLNe8KKtOBzkua6hqJhgR-Qkxh2AaEQvvpIjIbqad219TH7fYlLbabSamhFf7daONu3pgAmDsx4jfZqd8vTuhmocR2pmr5OdvMqjSkitp-kJaZrdFKizOkzoX2yYvEOfvpFDo8aI3z_6ijxenD-sr4rN_eX1-tem0Pm4VPSVgb4aGt11A2uh171QnOlOD9Bh3UAjajCGw5CrVbhtlak4okHBqwpVLVbk9H3vc5j-zBiTdDYu5yqP0xwlr1lGOWc8oz8_0HnrcJDPwToV9vKvkQzwdyC_EmNA8w9hIBftcicX7XLRLkHIrD2Huv9C2ia1eEpB2fGz6BuWYYoW |
CitedBy_id | crossref_primary_10_1007_s11684_024_1080_8 crossref_primary_10_4049_jimmunol_2300834 crossref_primary_10_1016_j_canlet_2024_216924 crossref_primary_10_31083_j_fbl2903099 crossref_primary_10_3390_ijms24087267 crossref_primary_10_1111_imr_13316 crossref_primary_10_1186_s40364_024_00646_1 crossref_primary_10_3389_fonc_2022_868639 crossref_primary_10_3390_ijms241511937 crossref_primary_10_3390_j7040027 crossref_primary_10_3390_cancers15030705 crossref_primary_10_3390_ijms222111304 crossref_primary_10_1038_s41556_024_01360_8 crossref_primary_10_1016_j_cellsig_2024_111445 crossref_primary_10_1021_acs_nanolett_4c05070 crossref_primary_10_1038_s41573_022_00413_7 crossref_primary_10_1007_s10555_025_10242_w crossref_primary_10_1016_j_molmed_2021_06_014 crossref_primary_10_3389_fimmu_2023_1322746 crossref_primary_10_1007_s10495_024_01997_8 crossref_primary_10_3389_fonc_2022_984560 crossref_primary_10_1016_j_immuni_2024_05_021 crossref_primary_10_1016_j_isci_2021_102619 crossref_primary_10_1002_eji_202350954 crossref_primary_10_3390_cancers13143578 crossref_primary_10_1002_jcp_31349 crossref_primary_10_3390_ijms242417422 crossref_primary_10_1186_s13287_021_02377_8 crossref_primary_10_3389_fimmu_2022_877634 crossref_primary_10_3389_fimmu_2022_932055 crossref_primary_10_1002_ijc_34389 crossref_primary_10_1016_j_bbcan_2023_188962 crossref_primary_10_3390_cancers15030959 crossref_primary_10_1038_s41401_024_01304_w crossref_primary_10_4110_in_2025_25_e6 crossref_primary_10_1007_s12672_024_01573_1 crossref_primary_10_1002_cac2_12487 crossref_primary_10_1002_wnan_2010 crossref_primary_10_1016_j_lfs_2024_123279 crossref_primary_10_1016_j_intimp_2024_112621 crossref_primary_10_37349_etat_2024_00202 crossref_primary_10_3389_fimmu_2023_1286750 crossref_primary_10_1084_jem_20221140 crossref_primary_10_1038_s41598_023_41194_2 crossref_primary_10_1186_s40164_023_00427_w crossref_primary_10_1002_mco2_70116 crossref_primary_10_1016_j_immuni_2025_02_008 crossref_primary_10_1186_s40164_024_00481_y crossref_primary_10_1186_s12943_021_01486_5 crossref_primary_10_1007_s00395_024_01092_8 crossref_primary_10_1016_j_canlet_2023_216152 crossref_primary_10_1002_hep_32658 crossref_primary_10_1080_2162402X_2023_2282252 crossref_primary_10_1186_s12943_024_02205_6 crossref_primary_10_3389_fcell_2022_940551 crossref_primary_10_1038_s41420_024_02006_2 crossref_primary_10_1186_s12943_024_01999_9 crossref_primary_10_12998_wjcc_v12_i20_4091 crossref_primary_10_3390_cancers14092071 crossref_primary_10_3389_fonc_2022_1024985 crossref_primary_10_4049_jimmunol_2300406 crossref_primary_10_1016_j_cmet_2022_09_023 crossref_primary_10_1038_s44319_023_00038_w crossref_primary_10_3389_fonc_2021_832036 crossref_primary_10_1016_j_jconrel_2024_02_033 crossref_primary_10_1158_1078_0432_CCR_22_3468 crossref_primary_10_1186_s12943_024_02130_8 crossref_primary_10_1038_s41392_022_01046_3 crossref_primary_10_1111_cns_14315 crossref_primary_10_3389_fimmu_2025_1555287 crossref_primary_10_1186_s13046_023_02925_5 crossref_primary_10_3389_fimmu_2023_1120519 crossref_primary_10_3389_fonc_2024_1350011 crossref_primary_10_3389_fimmu_2022_854432 crossref_primary_10_1016_j_trecan_2024_01_002 crossref_primary_10_1021_acsnano_2c03055 crossref_primary_10_3390_cancers13205250 crossref_primary_10_1002_mco2_551 crossref_primary_10_1016_j_bbrc_2023_02_006 crossref_primary_10_1053_j_gastro_2024_01_051 crossref_primary_10_1186_s12943_023_01893_w crossref_primary_10_1007_s00018_022_04639_x crossref_primary_10_1136_jitc_2021_003031 crossref_primary_10_20517_cdr_2024_123 crossref_primary_10_1093_jleuko_qiae227 crossref_primary_10_1016_j_beha_2024_101568 crossref_primary_10_1016_j_cmet_2022_11_003 crossref_primary_10_1016_j_intimp_2024_112203 crossref_primary_10_1007_s11864_021_00929_x crossref_primary_10_1080_08830185_2024_2401353 crossref_primary_10_1016_j_ijbiomac_2023_125878 crossref_primary_10_1016_j_critrevonc_2024_104359 crossref_primary_10_1038_s41388_022_02562_w crossref_primary_10_3390_ijms24076849 crossref_primary_10_1097_MOH_0000000000000722 crossref_primary_10_1038_s43018_023_00589_w crossref_primary_10_1097_CM9_0000000000002327 crossref_primary_10_1186_s12943_025_02269_y crossref_primary_10_1038_s41392_025_02158_2 crossref_primary_10_1016_j_biopha_2022_113923 crossref_primary_10_1111_imr_13235 crossref_primary_10_1016_j_tips_2023_08_009 crossref_primary_10_1038_s41419_022_05384_6 crossref_primary_10_1038_s41420_024_01815_9 crossref_primary_10_1016_j_chembiol_2024_02_001 crossref_primary_10_3390_antib11020032 crossref_primary_10_1016_j_phrs_2025_107674 crossref_primary_10_3389_fonc_2022_1019654 crossref_primary_10_1002_ctm2_492 crossref_primary_10_1016_j_tips_2023_06_005 crossref_primary_10_1016_j_phymed_2024_155684 crossref_primary_10_1016_j_smim_2023_101736 crossref_primary_10_1038_s41419_022_05041_y crossref_primary_10_3389_fimmu_2021_765705 crossref_primary_10_3390_antiox13010070 crossref_primary_10_1016_j_apsb_2023_04_010 crossref_primary_10_1038_s41568_022_00537_3 crossref_primary_10_1016_j_ccell_2024_03_011 crossref_primary_10_1016_j_cytogfr_2023_08_004 crossref_primary_10_3389_fonc_2024_1441338 crossref_primary_10_3390_ijms22126560 crossref_primary_10_1002_advs_202202519 crossref_primary_10_1002_adma_202415550 crossref_primary_10_1021_acscentsci_3c00702 crossref_primary_10_1155_2022_3530520 crossref_primary_10_1016_j_bbagrm_2024_195028 crossref_primary_10_3389_fmolb_2022_974156 crossref_primary_10_1038_s41392_024_01765_9 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_1158_2326_6066_CIR_23_0151 crossref_primary_10_1016_j_canlet_2024_217115 crossref_primary_10_1038_s41577_022_00732_1 crossref_primary_10_3389_fimmu_2023_1247268 crossref_primary_10_1016_j_ymthe_2024_01_027 crossref_primary_10_1111_imr_13333 crossref_primary_10_1038_s41401_024_01260_5 crossref_primary_10_3389_fimmu_2023_1211839 crossref_primary_10_1080_17425247_2024_2379937 crossref_primary_10_3389_fimmu_2023_1269614 crossref_primary_10_1016_j_lfs_2024_122897 crossref_primary_10_3389_fonc_2022_980620 crossref_primary_10_1080_02656736_2023_2270654 crossref_primary_10_14348_molcells_2023_2183 crossref_primary_10_1038_s41418_024_01396_1 crossref_primary_10_1016_j_ejphar_2023_176124 crossref_primary_10_1186_s12943_024_02132_6 crossref_primary_10_1021_acsnano_3c11260 crossref_primary_10_1186_s40164_024_00498_3 crossref_primary_10_3390_biomedicines12030559 crossref_primary_10_1186_s40164_024_00558_8 crossref_primary_10_1038_s41573_024_01098_w crossref_primary_10_12677_ACM_2024_142647 |
Cites_doi | 10.1159/000197334 10.1002/hep.1840060214 10.1038/cmi.2015.42 10.1126/science.aav2588 10.1186/1471-2105-14-128 10.1002/ijc.2910160205 10.1172/jci.insight.93411 10.1038/ni.3838 10.1158/jcr.1925.148 10.1016/0016-5085(90)91301-L 10.1200/JCO.2005.03.9594 10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P 10.1182/blood.2018885863 10.1016/j.cell.2015.08.016 10.1002/eji.1830050209 10.1002/(SICI)1097-0142(20000201)88:3<577::AID-CNCR13>3.0.CO;2-V 10.1038/nature13236 10.1038/nature11743 10.1085/jgp.8.6.519 10.1097/CJI.0b013e3182829903 10.1186/s12885-018-4443-1 10.1038/onc.2017.209 10.3109/14653249.2010.515582 10.4049/jimmunol.1501783 10.1038/nrc.2015.5 10.1158/2159-8290.CD-17-1319 10.1038/s41467-018-04719-2 10.1056/NEJMoa1910607 10.1126/scitranslmed.aaf2341 10.18632/oncotarget.15040 10.3389/fonc.2014.00107 10.1126/science.aat2184 10.1158/2326-6066.CIR-18-0144 10.1074/mcp.M114.041194 10.1126/science.1203486 10.1038/s41590-018-0251-7 10.1111/j.1365-2567.2007.02660.x 10.1177/172460080101600106 10.1182/blood-2017-05-785659 10.1126/science.aau0135 10.1038/ncb3410 10.1016/j.cell.2012.03.042 10.4049/jimmunol.1402099 10.1093/nar/gkw377 10.1371/journal.pone.0030264 10.1158/1535-7163.MCT-14-0354 10.1038/sj.onc.1202237 10.4049/jimmunol.1401558 10.1038/cddis.2013.393 10.1101/gad.1987211 10.4049/jimmunol.1701461 10.1016/j.cmet.2016.07.003 10.1038/ni.2936 10.21873/anticanres.13800 10.1371/journal.pone.0122942 10.3389/fonc.2015.00121 10.1007/s00262-017-2034-7 10.1111/cei.12034 10.3389/fimmu.2019.01414 10.1016/j.ceb.2017.05.006 10.1038/mt.2010.24 10.1016/j.cell.2016.05.035 10.1136/jitc-2020-001933 10.1158/2159-8290.CD-14-0250 10.1158/1078-0432.CCR-11-1347 10.1002/nbm.1232 10.1016/j.immuni.2016.07.009 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmet.2021.03.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1220.e5 |
ExternalDocumentID | 33852875 10_1016_j_cmet_2021_03_023 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: 20009360 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO AAYXX ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF HZ~ IHE IXB J1W JIG M3Z M41 O-L O9- OK1 OZT P2P RIG ROL RPZ SES SSZ TR2 UNMZH 0SF AACTN AAFTH ABVKL CGR CUY CVF ECM EIF NPM RCE 7X8 |
ID | FETCH-LOGICAL-c413t-94f094d6c88d1709c93a21c8cd08e5606350ff20d0d07aeb7af42eefe3244ea53 |
ISSN | 1550-4131 1932-7420 |
IngestDate | Fri Jul 11 10:38:32 EDT 2025 Wed Feb 19 02:26:43 EST 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | NK cells metabolic flexibility immunometabolism cancer immunotherapy NK cell metabolism tumor microenvironment adoptive cell therapy glucose metabolism oxidative stress Warburg effect |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-94f094d6c88d1709c93a21c8cd08e5606350ff20d0d07aeb7af42eefe3244ea53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1550413121001303/pdf |
PMID | 33852875 |
PQID | 2513242212 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2513242212 pubmed_primary_33852875 crossref_primary_10_1016_j_cmet_2021_03_023 crossref_citationtrail_10_1016_j_cmet_2021_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-00 2021-06-01 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
References | Fan (10.1016/j.cmet.2021.03.023_bib20) 2014; 510 Geller (10.1016/j.cmet.2021.03.023_bib21) 2011; 13 Poznanski (10.1016/j.cmet.2021.03.023_bib47) 2018; 6 Santomasso (10.1016/j.cmet.2021.03.023_bib52) 2018; 8 Wickham (10.1016/j.cmet.2021.03.023_bib66) 2016 Kolde (10.1016/j.cmet.2021.03.023_bib28) 2018 Zaiatz-Bittencourt (10.1016/j.cmet.2021.03.023_bib68) 2018; 200 Morgan (10.1016/j.cmet.2021.03.023_bib39) 2010; 18 Kuleshov (10.1016/j.cmet.2021.03.023_bib30) 2016; 44 Michelet (10.1016/j.cmet.2021.03.023_bib37) 2018; 19 Probst (10.1016/j.cmet.2021.03.023_bib49) 2015; 10 Jüngst (10.1016/j.cmet.2021.03.023_bib24) 1986; 6 Keppel (10.1016/j.cmet.2021.03.023_bib26) 2015; 194 Pan (10.1016/j.cmet.2021.03.023_bib42) 2016; 18 Shender (10.1016/j.cmet.2021.03.023_bib55) 2014; 13 Polak (10.1016/j.cmet.2021.03.023_bib44) 1973; 8 Wei (10.1016/j.cmet.2021.03.023_bib65) 2017; 8 Kiessling (10.1016/j.cmet.2021.03.023_bib27) 1975; 5 Tedeschi (10.1016/j.cmet.2021.03.023_bib57) 2013; 4 Donskov (10.1016/j.cmet.2021.03.023_bib19) 2006; 24 Morvan (10.1016/j.cmet.2021.03.023_bib41) 2016; 16 Denman (10.1016/j.cmet.2021.03.023_bib16) 2012; 7 Poli (10.1016/j.cmet.2021.03.023_bib45) 2015; 5 Buck (10.1016/j.cmet.2021.03.023_bib8) 2016; 166 Zaugg (10.1016/j.cmet.2021.03.023_bib69) 2011; 25 Cerwenka (10.1016/j.cmet.2021.03.023_bib9) 2018; 359 Keating (10.1016/j.cmet.2021.03.023_bib25) 2016; 196 Krneta (10.1016/j.cmet.2021.03.023_bib29) 2016; 13 Thistlethwaite (10.1016/j.cmet.2021.03.023_bib58) 2017; 66 Venugopal (10.1016/j.cmet.2021.03.023_bib60) 1998; 17 Vodnala (10.1016/j.cmet.2021.03.023_bib61) 2019; 363 Warburg (10.1016/j.cmet.2021.03.023_bib63) 1925; 9 Donnelly (10.1016/j.cmet.2021.03.023_bib18) 2014; 193 Loftus (10.1016/j.cmet.2021.03.023_bib34) 2018; 9 Siska (10.1016/j.cmet.2021.03.023_bib56) 2017; 2 Morgan (10.1016/j.cmet.2021.03.023_bib40) 2013; 36 Reina-Campos (10.1016/j.cmet.2021.03.023_bib50) 2017; 48 Mockler (10.1016/j.cmet.2021.03.023_bib38) 2014; 4 Maddocks (10.1016/j.cmet.2021.03.023_bib35) 2013; 493 Scharping (10.1016/j.cmet.2021.03.023_bib53) 2016; 45 Ciurea (10.1016/j.cmet.2021.03.023_bib12) 2017; 130 Coosemans (10.1016/j.cmet.2021.03.023_bib14) 2019; 39 Warburg (10.1016/j.cmet.2021.03.023_bib64) 1927; 8 Bala (10.1016/j.cmet.2021.03.023_bib5) 2008; 21 Marçais (10.1016/j.cmet.2021.03.023_bib36) 2014; 15 Coca (10.1016/j.cmet.2021.03.023_bib13) 1997; 79 Albillos (10.1016/j.cmet.2021.03.023_bib1) 1990; 98 Chen (10.1016/j.cmet.2021.03.023_bib11) 2013; 14 Dixon (10.1016/j.cmet.2021.03.023_bib17) 2012; 149 Parkhurst (10.1016/j.cmet.2021.03.023_bib43) 2011; 17 Poznanski (10.1016/j.cmet.2021.03.023_bib46) 2019; 10 Ishigami (10.1016/j.cmet.2021.03.023_bib23) 2000; 88 Liu (10.1016/j.cmet.2021.03.023_bib33) 2020; 382 Ye (10.1016/j.cmet.2021.03.023_bib67) 2014; 4 Poznanski (10.1016/j.cmet.2021.03.023_bib48) 2021; 9 Alexandrakis (10.1016/j.cmet.2021.03.023_bib2) 2001; 16 Liu (10.1016/j.cmet.2021.03.023_bib32) 2017; 36 Romee (10.1016/j.cmet.2021.03.023_bib51) 2016; 8 Wang (10.1016/j.cmet.2021.03.023_bib62) 2013; 172 Berek (10.1016/j.cmet.2021.03.023_bib7) 1984; 64 Alexeev (10.1016/j.cmet.2021.03.023_bib3) 2014; 13 Assmann (10.1016/j.cmet.2021.03.023_bib4) 2017; 18 Herberman (10.1016/j.cmet.2021.03.023_bib22) 1975; 16 Corbet (10.1016/j.cmet.2021.03.023_bib15) 2016; 24 Schreiber (10.1016/j.cmet.2021.03.023_bib54) 2011; 331 Zhou (10.1016/j.cmet.2021.03.023_bib70) 2018; 18 Belisle (10.1016/j.cmet.2021.03.023_bib6) 2007; 122 Leone (10.1016/j.cmet.2021.03.023_bib31) 2019; 366 van Bruggen (10.1016/j.cmet.2021.03.023_bib59) 2019; 134 Chang (10.1016/j.cmet.2021.03.023_bib10) 2015; 162 |
References_xml | – volume: 8 start-page: 347 year: 1973 ident: 10.1016/j.cmet.2021.03.023_bib44 article-title: Diagnostic value of the estimation of glucose in ascitic fluid publication-title: Digestion doi: 10.1159/000197334 – volume: 6 start-page: 239 year: 1986 ident: 10.1016/j.cmet.2021.03.023_bib24 article-title: Value of ascitic lipids in the differentiation between cirrhotic and malignant ascites publication-title: Hepatology doi: 10.1002/hep.1840060214 – volume: 13 start-page: 628 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib29 article-title: The breast tumor microenvironment alters the phenotype and function of natural killer cells publication-title: Cell. Mol. Immunol. doi: 10.1038/cmi.2015.42 – volume: 366 start-page: 1013 year: 2019 ident: 10.1016/j.cmet.2021.03.023_bib31 article-title: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion publication-title: Science doi: 10.1126/science.aav2588 – volume: 14 start-page: 128 year: 2013 ident: 10.1016/j.cmet.2021.03.023_bib11 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-128 – volume: 16 start-page: 230 year: 1975 ident: 10.1016/j.cmet.2021.03.023_bib22 article-title: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells publication-title: Int. J. Cancer doi: 10.1002/ijc.2910160205 – volume: 2 start-page: e93411 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib56 article-title: Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma publication-title: JCI Insight doi: 10.1172/jci.insight.93411 – volume: 18 start-page: 1197 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib4 article-title: Srebp-controlled glucose metabolism is essential for NK cell functional responses publication-title: Nat. Immunol. doi: 10.1038/ni.3838 – volume: 9 start-page: 148 year: 1925 ident: 10.1016/j.cmet.2021.03.023_bib63 article-title: The metabolism of carcinoma cells publication-title: J. Cancer Res. doi: 10.1158/jcr.1925.148 – volume: 98 start-page: 134 year: 1990 ident: 10.1016/j.cmet.2021.03.023_bib1 article-title: Ascitic fluid polymorphonuclear cell count and serum to ascites albumin gradient in the diagnosis of bacterial peritonitis publication-title: Gastroenterology doi: 10.1016/0016-5085(90)91301-L – volume: 24 start-page: 1997 year: 2006 ident: 10.1016/j.cmet.2021.03.023_bib19 article-title: Impact of immune parameters on long-term survival in metastatic renal cell carcinoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.03.9594 – volume: 79 start-page: 2320 year: 1997 ident: 10.1016/j.cmet.2021.03.023_bib13 article-title: The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P – volume: 134 start-page: 44 year: 2019 ident: 10.1016/j.cmet.2021.03.023_bib59 article-title: Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy publication-title: Blood doi: 10.1182/blood.2018885863 – volume: 162 start-page: 1229 year: 2015 ident: 10.1016/j.cmet.2021.03.023_bib10 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib66 – volume: 5 start-page: 117 year: 1975 ident: 10.1016/j.cmet.2021.03.023_bib27 article-title: Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830050209 – volume: 88 start-page: 577 year: 2000 ident: 10.1016/j.cmet.2021.03.023_bib23 article-title: Prognostic value of intratumoral natural killer cells in gastric carcinoma publication-title: Cancer doi: 10.1002/(SICI)1097-0142(20000201)88:3<577::AID-CNCR13>3.0.CO;2-V – volume: 510 start-page: 298 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib20 article-title: Quantitative flux analysis reveals folate-dependent NADPH production publication-title: Nature doi: 10.1038/nature13236 – volume: 493 start-page: 542 year: 2013 ident: 10.1016/j.cmet.2021.03.023_bib35 article-title: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells publication-title: Nature doi: 10.1038/nature11743 – volume: 8 start-page: 519 year: 1927 ident: 10.1016/j.cmet.2021.03.023_bib64 article-title: The metabolism of tumors in the body publication-title: J. Gen. Physiol. doi: 10.1085/jgp.8.6.519 – volume: 36 start-page: 133 year: 2013 ident: 10.1016/j.cmet.2021.03.023_bib40 article-title: Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy publication-title: J. Immunother. doi: 10.1097/CJI.0b013e3182829903 – volume: 18 start-page: 559 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib70 article-title: Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose publication-title: BMC Cancer doi: 10.1186/s12885-018-4443-1 – volume: 36 start-page: 6143 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib32 article-title: Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers publication-title: Oncogene doi: 10.1038/onc.2017.209 – volume: 13 start-page: 98 year: 2011 ident: 10.1016/j.cmet.2021.03.023_bib21 article-title: A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer publication-title: Cytotherapy doi: 10.3109/14653249.2010.515582 – volume: 196 start-page: 2552 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib25 article-title: Metabolic reprogramming supports IFN-γ production by CD56bright NK cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1501783 – volume: 16 start-page: 7 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib41 article-title: NK cells and cancer: you can teach innate cells new tricks publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2015.5 – volume: 8 start-page: 958 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib52 article-title: Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1319 – volume: 9 start-page: 2341 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib34 article-title: Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice publication-title: Nat. Commun. doi: 10.1038/s41467-018-04719-2 – volume: 64 start-page: 708 year: 1984 ident: 10.1016/j.cmet.2021.03.023_bib7 article-title: Lymphocyte cytotoxicity in the peritoneal cavity and blood of patients with ovarian cancer publication-title: Obstet. Gynecol. – volume: 382 start-page: 545 year: 2020 ident: 10.1016/j.cmet.2021.03.023_bib33 article-title: Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1910607 – volume: 8 start-page: 357ra123 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib51 article-title: Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf2341 – volume: 8 start-page: 42262 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib65 article-title: Malignant ascites-derived exosomes promote proliferation and induce carcinoma-associated fibroblasts transition in peritoneal mesothelial cells publication-title: Oncotarget doi: 10.18632/oncotarget.15040 – volume: 4 start-page: 107 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib38 article-title: Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment publication-title: Front. Oncol. doi: 10.3389/fonc.2014.00107 – volume: 359 start-page: 1460 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib9 article-title: Natural killers join the fight against cancer publication-title: Science doi: 10.1126/science.aat2184 – volume: 6 start-page: 1174 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib47 article-title: Expanded CD56superbright CD16+ NK cells from ovarian cancer patients are cytotoxic against autologous tumor in a patient-derived xenograft murine model publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0144 – volume: 13 start-page: 3558 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib55 article-title: Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.041194 – volume: 331 start-page: 1565 year: 2011 ident: 10.1016/j.cmet.2021.03.023_bib54 article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion publication-title: Science doi: 10.1126/science.1203486 – volume: 19 start-page: 1330 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib37 article-title: Metabolic reprogramming of natural killer cells in obesity limits antitumor responses publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0251-7 – volume: 122 start-page: 418 year: 2007 ident: 10.1016/j.cmet.2021.03.023_bib6 article-title: Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125) publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02660.x – volume: 16 start-page: 45 year: 2001 ident: 10.1016/j.cmet.2021.03.023_bib2 article-title: Use of a variety of biological parameters in distinguishing cirrhotic from malignant ascites publication-title: Int. J. Biol. Markers doi: 10.1177/172460080101600106 – year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib28 article-title: pheatmap: pretty heatmaps – volume: 130 start-page: 1857 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib12 article-title: Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation publication-title: Blood doi: 10.1182/blood-2017-05-785659 – volume: 363 year: 2019 ident: 10.1016/j.cmet.2021.03.023_bib61 article-title: T cell stemness and dysfunction in tumors are triggered by a common mechanism publication-title: Science doi: 10.1126/science.aau0135 – volume: 18 start-page: 1090 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib42 article-title: Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3410 – volume: 149 start-page: 1060 year: 2012 ident: 10.1016/j.cmet.2021.03.023_bib17 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 194 start-page: 1954 year: 2015 ident: 10.1016/j.cmet.2021.03.023_bib26 article-title: Activation-specific metabolic requirements for NK cell IFN-γ production publication-title: J. Immunol. doi: 10.4049/jimmunol.1402099 – volume: 44 start-page: W90 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib30 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw377 – volume: 7 start-page: e30264 year: 2012 ident: 10.1016/j.cmet.2021.03.023_bib16 article-title: Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells publication-title: PLoS One doi: 10.1371/journal.pone.0030264 – volume: 13 start-page: 2968 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib3 article-title: Radiation protection of the gastrointestinal tract and growth inhibition of prostate cancer xenografts by a single compound publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-14-0354 – volume: 17 start-page: 3145 year: 1998 ident: 10.1016/j.cmet.2021.03.023_bib60 article-title: Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes publication-title: Oncogene doi: 10.1038/sj.onc.1202237 – volume: 193 start-page: 4477 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib18 article-title: mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function publication-title: J. Immunol. doi: 10.4049/jimmunol.1401558 – volume: 4 start-page: e877 year: 2013 ident: 10.1016/j.cmet.2021.03.023_bib57 article-title: Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.393 – volume: 25 start-page: 1041 year: 2011 ident: 10.1016/j.cmet.2021.03.023_bib69 article-title: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress publication-title: Genes Dev. doi: 10.1101/gad.1987211 – volume: 200 start-page: 3934 year: 2018 ident: 10.1016/j.cmet.2021.03.023_bib68 article-title: Canonical TGF-beta signaling pathway represses human NK cell metabolism publication-title: J. Immunol. doi: 10.4049/jimmunol.1701461 – volume: 24 start-page: 311 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib15 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.07.003 – volume: 15 start-page: 749 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib36 article-title: The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells publication-title: Nat. Immunol. doi: 10.1038/ni.2936 – volume: 39 start-page: 5953 year: 2019 ident: 10.1016/j.cmet.2021.03.023_bib14 article-title: Increased immunosuppression is related to increased amounts of ascites and inferior prognosis in ovarian cancer publication-title: Anticancer Res. doi: 10.21873/anticanres.13800 – volume: 10 start-page: e0122942 year: 2015 ident: 10.1016/j.cmet.2021.03.023_bib49 article-title: RTA 408, a novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity publication-title: PLoS One doi: 10.1371/journal.pone.0122942 – volume: 5 start-page: 121 year: 2015 ident: 10.1016/j.cmet.2021.03.023_bib45 article-title: STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00121 – volume: 66 start-page: 1425 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib58 article-title: The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-017-2034-7 – volume: 172 start-page: 104 year: 2013 ident: 10.1016/j.cmet.2021.03.023_bib62 article-title: Membrane-bound interleukin-21 and CD137 ligand induce functional human natural killer cells from peripheral blood mononuclear cells through STAT-3 activation publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.12034 – volume: 10 start-page: 1414 year: 2019 ident: 10.1016/j.cmet.2021.03.023_bib46 article-title: What defines NK cell functional fate: phenotype or metabolism? publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01414 – volume: 48 start-page: 47 year: 2017 ident: 10.1016/j.cmet.2021.03.023_bib50 article-title: Metabolism shapes the tumor microenvironment publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.05.006 – volume: 18 start-page: 843 year: 2010 ident: 10.1016/j.cmet.2021.03.023_bib39 article-title: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2 publication-title: Mol. Ther. doi: 10.1038/mt.2010.24 – volume: 166 start-page: 63 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib8 article-title: Mitochondrial dynamics controls T cell fate through metabolic programming publication-title: Cell doi: 10.1016/j.cell.2016.05.035 – volume: 9 start-page: e001933 year: 2021 ident: 10.1016/j.cmet.2021.03.023_bib48 article-title: Expanded human NK cells from lung cancer patients sensitize patients’ PDL1-negative tumors to PD1-blockade therapy publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-001933 – volume: 4 start-page: 1406 year: 2014 ident: 10.1016/j.cmet.2021.03.023_bib67 article-title: Serine catabolism regulates mitochondrial redox control during hypoxia publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-14-0250 – volume: 17 start-page: 6287 year: 2011 ident: 10.1016/j.cmet.2021.03.023_bib43 article-title: Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-1347 – volume: 21 start-page: 606 year: 2008 ident: 10.1016/j.cmet.2021.03.023_bib5 article-title: (1)H NMR spectroscopy of ascitic fluid: discrimination between malignant and benign ascites and comparison of the results with conventional methods publication-title: NMR Biomed. doi: 10.1002/nbm.1232 – volume: 45 start-page: 374 year: 2016 ident: 10.1016/j.cmet.2021.03.023_bib53 article-title: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction publication-title: Immunity doi: 10.1016/j.immuni.2016.07.009 |
SSID | ssj0036393 |
Score | 2.6665313 |
Snippet | NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1205 |
SubjectTerms | Adult Aged Animals Antineoplastic Agents - immunology Cell Line, Tumor Female Humans Immunotherapy - methods Killer Cells, Natural - cytology Killer Cells, Natural - immunology Male Mice Middle Aged Neoplasms - therapy Tumor Microenvironment Young Adult |
Title | Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33852875 https://www.proquest.com/docview/2513242212 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2AvY91X025Dg70ZG1m2Y_sxKxulpXlZCnkYGEWW15TGDq3NSP-E_tW9s2RHDe1YR8AEE58s3y_3If_uRMjXWMXYBCR2IbYeuWFQBK4IcoZtK4VQYs5k24npdDI6OguPZ9FsMLi1WEtNPffkzYN1Jf-jVTgHesUq2SdothcKJ-A76BeOoGE4_pOOT1UNOsQ21QX2tWx5rmsnNwwXdW124JucOLg-76APM0t_BYSYHcWxbpbVlbNEZp5V9mZHrYd49dIMZloOojmtbkrRbXz9s1qdL8BGeP2aDTjFc03YKP-Iy1ypVf92ZwFY0S9GpmuwdtZV49_NQnO-O96NM_bspQluUag6axoxF7ykb5tb3ffCwMq2nT5nkeWHfc6Zp6IHzbxecbjwJEzdw5HbRrW6cPl-T-0tX9czEDty20WGMjKUkbEgAxnPyHMOKUdbDDr71nn1ACK5tlijm5IpwNJcwe37uB_kPJK5tBHM9DV5ZVIPOtY42iUDVb4hL_RmpOu35FePJmqhiW7QRFs00ckJRTTRDZooookuSgpooi2a6Daa3pGzH9-nh0eu2XvDlTC72k3DAhL_fCSTJPdjlso0ENyXicxZoiBKhjiVFQVnOXxioeaxKEKuVKEgQA-ViIL3ZKesSrVHaCohz-fSZ6kQYRHGIpYjlOHLUOUyZUPidw8rk6YxPe6Pcpk9rqQhcfprVroty19__aXTQQbWEx-SKFXVXGcQ3WNGAfHbkHzQyunlBUEScUjn95801gF5ufkrfCQ79VWjPkHcWs8_t4C6A2mhmTE |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+flexibility+determines+human+NK+cell+functional+fate+in+the+tumor+microenvironment&rft.jtitle=Cell+metabolism&rft.au=Poznanski%2C+Sophie+M.&rft.au=Singh%2C+Kanwaldeep&rft.au=Ritchie%2C+Tyrah+M.&rft.au=Aguiar%2C+Jennifer+A.&rft.date=2021-06-01&rft.issn=1550-4131&rft.volume=33&rft.issue=6&rft.spage=1205&rft.epage=1220.e5&rft_id=info:doi/10.1016%2Fj.cmet.2021.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmet_2021_03_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |