Testing of Reynolds-stress-transport closures by comparison with DNS of an idealized adverse-pressure-gradient boundary layer
Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a two-dimensional adverse pressure gradient (APG) to investigate the accuracy of three second-moment closures specially designed to account for wall-bounded...
Saved in:
Published in | European journal of mechanics, B, Fluids Vol. 26; no. 4; pp. 551 - 582 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Paris
Elsevier Masson SAS
01.07.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a two-dimensional adverse pressure gradient (APG) to investigate the accuracy of three second-moment closures specially designed to account for wall-bounded turbulence. Since the DNS statistics satisfy a one-dimensional unsteady problem with rigorously defined boundary and initial conditions, and since the flow contains many of the essential features found in suddenly decelerated boundary layers, this allows an efficient and straightforward but non-trivial assessment of the closures. The Reynolds-stress budgets from the DNS are used to examine the individual production/dissipation/transport terms used by each closure. This reveals shortcomings in all three schemes, especially in the near-wall behavior of their pressure–strain models. One of the major findings of this study is the degree to which the individual modeling shortcomings are offset by the tendency for them to cancel each other. The Wilcox Stress-
ω model best captures the cumulative effect of the APG straining, compared to the models of Launder and Shima and So et al., in terms of giving mean velocities and the time at which the surface shear stress reverses sign that most closely agree with the DNS. However, its prediction of the streamwise
u
′
u
′
¯
and wall-normal
v
′
v
′
¯
Reynolds stresses is much less accurate than that given by the other two schemes. |
---|---|
AbstractList | Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a two- dimensional adverse pressure gradient (APG) to investigate the accuracy of three second-moment closures specially designed to account for wall-bounded turbulence. Since the DNS statistics satisfy a one-dimensional unsteady problem with rigorously defined boundary and initial conditions, and since the flow contains many of the essential features found in suddenly decelerated boundary layers, this allows an efficient and straightforward but non-trivial assessment of the closures. The Reynolds-stress budgets from the DNS are used to examine the individual production/dissipation/transport terms used by each closure. This reveals shortcomings in all three schemes, especially in the near-wall behavior of their pressure-strain models. One of the major findings of this study is the degree to which the individual modeling shortcomings are offset by the tendency for them to cancel each other. The Wilcox Stress-[Omega] model best captures the cumulative effect of the APG straining, compared to the models of Launder and Shima and So et al., in terms of giving mean velocities and the time at which the surface shear stress reverses sign that most closely agree with the DNS. Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a two-dimensional adverse pressure gradient (APG) to investigate the accuracy of three second-moment closures specially designed to account for wall-bounded turbulence. Since the DNS statistics satisfy a one-dimensional unsteady problem with rigorously defined boundary and initial conditions, and since the flow contains many of the essential features found in suddenly decelerated boundary layers, this allows an efficient and straightforward but non-trivial assessment of the closures. The Reynolds-stress budgets from the DNS are used to examine the individual production/dissipation/transport terms used by each closure. This reveals shortcomings in all three schemes, especially in the near-wall behavior of their pressure–strain models. One of the major findings of this study is the degree to which the individual modeling shortcomings are offset by the tendency for them to cancel each other. The Wilcox Stress- ω model best captures the cumulative effect of the APG straining, compared to the models of Launder and Shima and So et al., in terms of giving mean velocities and the time at which the surface shear stress reverses sign that most closely agree with the DNS. However, its prediction of the streamwise u ′ u ′ ¯ and wall-normal v ′ v ′ ¯ Reynolds stresses is much less accurate than that given by the other two schemes. Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a two-dimensional adverse pressure gradient (APG) to investigate the accuracy of three second-moment closures specially designed to account for wall-bounded turbulence. Since the DNS statistics satisfy a one-dimensional unsteady problem with rigorously defined boundary and initial conditions, and since the flow contains many of the essential features found in suddenly decelerated boundary layers, this allows an efficient and straightforward but non-trivial assessment of the closures. The Reynolds-stress budgets from the DNS are used to examine the individual production/dissipation/transport terms used by each closure. This reveals shortcomings in all three schemes, especially in the near-wall behavior of their pressure-strain models. One of the major findings of this study is the degree to which the individual modeling shortcomings are offset by the tendency for them to cancel each other. The Wilcox Stress-omega model best captures the cumulative effect of the APG straining, compared to the models of Launder and Shima and So et al., in terms of giving mean velocities and the time at which the surface shear stress reverses sign that most closely agree with the DNS. However, its prediction of the streamwise and wall-normal Reynolds stresses is much less accurate than that given by the other two schemes. |
Author | Coleman, G.N. Sciberras, M.A. |
Author_xml | – sequence: 1 givenname: M.A. surname: Sciberras fullname: Sciberras, M.A. – sequence: 2 givenname: G.N. surname: Coleman fullname: Coleman, G.N. email: g.n.coleman@soton.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18739801$$DView record in Pascal Francis |
BookMark | eNqNkV9rFDEUxYNUcFv9DvFB3zJNJrPJ5FHWf4WioPU5ZJM7bZbZZMydaVnB727WLeibPgXCOedyzu-cnKWcgJCXgjeCC3W5a2ApeQ_-bhiXpuVcNUI0nIsnZCV6LZmWhp-RFTdGM73u1DNyjrjjnHetVCvy8wZwjumW5oF-gUPKY0CGcwFENheXcMplpn7MuNQ_uj1Qn_eTKxFzog9xvqNvP309ml2iMYAb4w8I1IV7KAhsOuZUI7stLkRIM93mJQVXDnR0ByjPydPBjQgvHt8L8u39u5vNR3b9-cPV5s01852QMzNd6KVqO_AKtPDcOamldKbtQ6_FWrcdVzIY1fY-CN4Ppt-6dVfLtlAHMVt5QV6fcqeSvy-1sd1H9DCOLkFe0LbGrDUX_J9CYZTqeiWq0JyEvmTEAoOdStzXYlZweyRjd_YvMvZIxgphK5nqffV4xKF341Bn9hH_BFRspv-t25x0UKe5j1As-jqihxAL-NmGHP_j2i-PFK34 |
CitedBy_id | crossref_primary_10_1002_cjce_20446 crossref_primary_10_1017_S0022112009991042 crossref_primary_10_1016_j_ijheatfluidflow_2021_108796 crossref_primary_10_1115_1_4030536 crossref_primary_10_1016_j_ces_2015_01_054 crossref_primary_10_1115_1_4050899 crossref_primary_10_1017_jfm_2018_257 crossref_primary_10_1016_j_ijheatfluidflow_2015_04_002 crossref_primary_10_1039_D3RE00013C |
Cites_doi | 10.1017/S0022112091000101 10.2514/3.10807 10.1017/S0022112075001814 10.1063/1.864274 10.1115/1.2817372 10.1017/S0022112000008806 10.1115/1.2910114 10.1017/S0022112088002885 10.1063/1.1692845 10.1063/1.869966 10.1017/S002211209300120X 10.1063/1.861205 10.1007/978-1-4612-1092-4_10 10.1017/S0022112003005883 10.1016/j.euromechflu.2003.07.002 10.1063/1.868772 10.1017/S002211207200268X 10.1017/S0022112078001251 10.2514/3.10267 10.1016/S0065-2156(08)70266-7 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Masson SAS 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Masson SAS – notice: 2007 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7TB 7U5 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.euromechflu.2006.11.001 |
DatabaseName | Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1873-7390 |
EndPage | 582 |
ExternalDocumentID | 10_1016_j_euromechflu_2006_11_001 18739801 S0997754606001130 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSG SST SSZ T5K VH1 XPP ZMT ~02 ~G- ABPIF IQODW AAXKI AAYXX AFJKZ CITATION 7TB 7U5 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c413t-94d83624ec6e71c0aa3733a928d8715724063d9628cd108f98ba545462e0069b3 |
IEDL.DBID | AIKHN |
ISSN | 0997-7546 |
IngestDate | Fri Oct 25 03:18:32 EDT 2024 Fri Oct 25 08:47:07 EDT 2024 Fri Sep 27 02:38:46 EDT 2024 Sun Oct 22 16:07:14 EDT 2023 Fri Feb 23 02:28:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Adverse-pressure-gradient boundary layers Wall-bounded turbulence Second-moment closures Turbulence models Strained-channel DNS Wall turbulence Pipe flow Digital simulation Pressure gradients Plane geometry Reynolds stress Modelling Incompressible fluid Boundary layers Turbulence structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-94d83624ec6e71c0aa3733a928d8715724063d9628cd108f98ba545462e0069b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 19664861 |
PQPubID | 23500 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_29957010 proquest_miscellaneous_19664861 crossref_primary_10_1016_j_euromechflu_2006_11_001 pascalfrancis_primary_18739801 elsevier_sciencedirect_doi_10_1016_j_euromechflu_2006_11_001 |
PublicationCentury | 2000 |
PublicationDate | 2007-07-01 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | European journal of mechanics, B, Fluids |
PublicationYear | 2007 |
Publisher | Elsevier Masson SAS Elsevier |
Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier |
References | Lumley (bib010) 1975; 18 S.P. Yuan, R.M.C. So, A near-wall Reynolds-stress closure with out wall normals. NASA Contractor Report 4785, July 1997 Alving, Fernholz (bib006) 1995; 7 Hanjalic, Launder (bib021) 1972; 52 Gibson, Launder (bib016) 1978; 86 So, Lai, Zhang, Hwang (bib027) 1991; 29 M.A. Sciberras, G.N. Coleman, Testing of Reynolds-stress-transport closures by comparison with DNS of an idealized adverse-pressure-gradient boundary layer, Univ. of Southampton, Sch. Engrg. Sci., Aerodyn. & Flight Mech. Res. Group Tech. Rep. AFM-06/01, May 2006 Yorke, Coleman (bib001) 2004; 23 Mansour, Kim, Moin (bib031) 1988; 194 Lumley (bib020) 1980 M.A. Sciberras, Assessment of Reynolds-stress closures applied to two- and three-dimensional wall-bounded turbulence, Univ. of Southampton, Sch. Engrg. Sci., Aerodyn. & Flight Mech. Res. Group Tech. Rep. AFM-05/03, December 2005 Lai, So (bib022) 1991; 211 M.J. Lee, W.C. Reynolds, Numerical experiments on the structure of homogeneous turbulence, Mech. Engrg. Dept., Stanford University, Thermosci. Div. Rep. TF-24, November 1985 Demuren, Sarkar (bib030) 1993; 115 So, Aksoy, Yuan, Sommer (bib013) 1996; 118 Y. Nagano, T. Tsuji, T. Houra, Structure of turbulent boundary layer subjected to adverse pressure gradient, in: Proceedings of the Eleventh Symposium on Turbulent Shear Flows, September 1997, pp. 33.7–33.12 Kays, Crawford (bib007) 1993 Coleman, Kim, Spalart (bib003) 2003; 495 Pope (bib011) 2000 Wilcox (bib014) 1998 Moser, Kim, Mansour (bib029) 1999; 11 Spalart, Watmuff (bib004) 1993; 249 Daly, Harlow (bib017) 1970; 13 R.S. Rogallo, Numerical experiments in homogeneous turbulence, NASA TM 81315 (1981). Available from NASA Scientific & Technical Information Kolmogorov (bib018) 1941; 30 Launder, Reynolds (bib023) 1983; 26 Speziale, Sarkar, Gatski (bib015) 1991; 227 Lumley (bib019) 1978; 18 Coleman, Kim, Spalart (bib002) 2000; 416 Launder, Reece, Rodi (bib025) 1975; 68 Launder, Shima (bib012) 1989; 27 Moser (10.1016/j.euromechflu.2006.11.001_bib029) 1999; 11 Launder (10.1016/j.euromechflu.2006.11.001_bib012) 1989; 27 Daly (10.1016/j.euromechflu.2006.11.001_bib017) 1970; 13 So (10.1016/j.euromechflu.2006.11.001_bib013) 1996; 118 Speziale (10.1016/j.euromechflu.2006.11.001_bib015) 1991; 227 Coleman (10.1016/j.euromechflu.2006.11.001_bib002) 2000; 416 So (10.1016/j.euromechflu.2006.11.001_bib027) 1991; 29 Gibson (10.1016/j.euromechflu.2006.11.001_bib016) 1978; 86 Launder (10.1016/j.euromechflu.2006.11.001_bib023) 1983; 26 Alving (10.1016/j.euromechflu.2006.11.001_bib006) 1995; 7 Lumley (10.1016/j.euromechflu.2006.11.001_bib020) 1980 Pope (10.1016/j.euromechflu.2006.11.001_bib011) 2000 Lai (10.1016/j.euromechflu.2006.11.001_bib022) 1991; 211 Kays (10.1016/j.euromechflu.2006.11.001_bib007) 1993 Demuren (10.1016/j.euromechflu.2006.11.001_bib030) 1993; 115 Yorke (10.1016/j.euromechflu.2006.11.001_bib001) 2004; 23 Coleman (10.1016/j.euromechflu.2006.11.001_bib003) 2003; 495 10.1016/j.euromechflu.2006.11.001_bib026 10.1016/j.euromechflu.2006.11.001_bib005 10.1016/j.euromechflu.2006.11.001_bib028 Lumley (10.1016/j.euromechflu.2006.11.001_bib019) 1978; 18 Hanjalic (10.1016/j.euromechflu.2006.11.001_bib021) 1972; 52 10.1016/j.euromechflu.2006.11.001_bib024 Launder (10.1016/j.euromechflu.2006.11.001_bib025) 1975; 68 Spalart (10.1016/j.euromechflu.2006.11.001_bib004) 1993; 249 Mansour (10.1016/j.euromechflu.2006.11.001_bib031) 1988; 194 Lumley (10.1016/j.euromechflu.2006.11.001_bib010) 1975; 18 Kolmogorov (10.1016/j.euromechflu.2006.11.001_bib018) 1941; 30 10.1016/j.euromechflu.2006.11.001_bib008 10.1016/j.euromechflu.2006.11.001_bib009 Wilcox (10.1016/j.euromechflu.2006.11.001_bib014) 1998 |
References_xml | – volume: 23 start-page: 319 year: 2004 ident: bib001 article-title: Assessment of common turbulence models for an idealised adverse pressure gradient flow publication-title: Eur. J. Mech. B Fluids contributor: fullname: Coleman – volume: 26 start-page: 1157 year: 1983 ident: bib023 article-title: Asymptotic near-wall stress dissipation rates in a turbulent flow publication-title: Phys. Fluids contributor: fullname: Reynolds – volume: 18 start-page: 123 year: 1978 ident: bib019 article-title: Computational modeling of turbulent flows publication-title: Adv. Appl. Mech. contributor: fullname: Lumley – start-page: 1 year: 1980 ident: bib020 article-title: Second-order modeling of turbulent flows publication-title: Prediction Methods for Turbulent Flows contributor: fullname: Lumley – volume: 7 start-page: 1956 year: 1995 ident: bib006 article-title: Mean-velocity scaling in and around a mild, turbulent separation bubble publication-title: Phys. Fluids contributor: fullname: Fernholz – volume: 249 start-page: 337 year: 1993 ident: bib004 article-title: Experimental and numerical study of a turbulent boundary layer with pressure gradients publication-title: J. Fluid Mech. contributor: fullname: Watmuff – volume: 211 start-page: 641 year: 1991 ident: bib022 article-title: On near-wall turbulent flow modelling publication-title: J. Fluid. Mech. contributor: fullname: So – year: 1993 ident: bib007 article-title: Convective Heat and Mass Transfer contributor: fullname: Crawford – volume: 194 start-page: 15 year: 1988 ident: bib031 article-title: Reynolds-stress and dissipation-rate budgets in a turbulent channel flow publication-title: J. Fluid Mech. contributor: fullname: Moin – volume: 52 start-page: 609 year: 1972 ident: bib021 article-title: A Reynolds-stress model of turbulence and its application to thin shear flows publication-title: J. Fluid Mech. contributor: fullname: Launder – year: 1998 ident: bib014 article-title: Turbulence Modeling for CFD contributor: fullname: Wilcox – volume: 118 start-page: 260 year: 1996 ident: bib013 article-title: Modeling Reynolds-number effects in wall-bounded turbulent flows publication-title: J. Fluids Engrg. contributor: fullname: Sommer – volume: 18 start-page: 750 year: 1975 ident: bib010 article-title: The pressure–strain correlation publication-title: Phys. Fluids contributor: fullname: Lumley – year: 2000 ident: bib011 article-title: Turbulent Flows contributor: fullname: Pope – volume: 86 start-page: 491 year: 1978 ident: bib016 article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer publication-title: J. Fluid Mech. contributor: fullname: Launder – volume: 495 start-page: 1 year: 2003 ident: bib003 article-title: Direct numerical simulation of a decelerated wall-bounded turbulent shear flow publication-title: J. Fluid Mech. contributor: fullname: Spalart – volume: 13 start-page: 2634 year: 1970 ident: bib017 article-title: Transport equations in turbulence publication-title: Phys. Fluids contributor: fullname: Harlow – volume: 115 start-page: 5 year: 1993 ident: bib030 article-title: Perspective: systematic study of Reynolds stress closure models in the computation of plane channel flows publication-title: Trans. ASME: J. Fluids Engrg. contributor: fullname: Sarkar – volume: 416 start-page: 75 year: 2000 ident: bib002 article-title: A numerical study of strained three-dimensional wall-bounded turbulence publication-title: J. Fluid Mech. contributor: fullname: Spalart – volume: 30 start-page: 299 year: 1941 ident: bib018 article-title: Local structure of turbulence in incompressible viscous fluids for very large Reynolds number publication-title: Dokl. Akad. Nauk SSSR contributor: fullname: Kolmogorov – volume: 27 start-page: 1319 year: 1989 ident: bib012 article-title: Second-moment closure for the near-wall sublayer: development and application publication-title: AIAA J. contributor: fullname: Shima – volume: 29 start-page: 1819 year: 1991 ident: bib027 article-title: Second-order near-wall turbulence closures: a review publication-title: AIAA J. contributor: fullname: Hwang – volume: 68 start-page: 537 year: 1975 ident: bib025 article-title: Progress in the development of a Reynolds-stress turbulence closure publication-title: J. Fluid Mech. contributor: fullname: Rodi – volume: 227 start-page: 245 year: 1991 ident: bib015 article-title: Modeling the pressure–strain correlation of turbulence: an invariant dynamical systems approach publication-title: J. Fluid. Mech. contributor: fullname: Gatski – volume: 11 start-page: 943 year: 1999 ident: bib029 article-title: Direct numerical simulation of turbulent channel flow up to publication-title: Phys. Fluids contributor: fullname: Mansour – volume: 227 start-page: 245 year: 1991 ident: 10.1016/j.euromechflu.2006.11.001_bib015 article-title: Modeling the pressure–strain correlation of turbulence: an invariant dynamical systems approach publication-title: J. Fluid. Mech. doi: 10.1017/S0022112091000101 contributor: fullname: Speziale – volume: 211 start-page: 641 year: 1991 ident: 10.1016/j.euromechflu.2006.11.001_bib022 article-title: On near-wall turbulent flow modelling publication-title: J. Fluid. Mech. contributor: fullname: Lai – volume: 29 start-page: 1819 year: 1991 ident: 10.1016/j.euromechflu.2006.11.001_bib027 article-title: Second-order near-wall turbulence closures: a review publication-title: AIAA J. doi: 10.2514/3.10807 contributor: fullname: So – volume: 30 start-page: 299 year: 1941 ident: 10.1016/j.euromechflu.2006.11.001_bib018 article-title: Local structure of turbulence in incompressible viscous fluids for very large Reynolds number publication-title: Dokl. Akad. Nauk SSSR contributor: fullname: Kolmogorov – volume: 68 start-page: 537 year: 1975 ident: 10.1016/j.euromechflu.2006.11.001_bib025 article-title: Progress in the development of a Reynolds-stress turbulence closure publication-title: J. Fluid Mech. doi: 10.1017/S0022112075001814 contributor: fullname: Launder – volume: 26 start-page: 1157 year: 1983 ident: 10.1016/j.euromechflu.2006.11.001_bib023 article-title: Asymptotic near-wall stress dissipation rates in a turbulent flow publication-title: Phys. Fluids doi: 10.1063/1.864274 contributor: fullname: Launder – volume: 118 start-page: 260 year: 1996 ident: 10.1016/j.euromechflu.2006.11.001_bib013 article-title: Modeling Reynolds-number effects in wall-bounded turbulent flows publication-title: J. Fluids Engrg. doi: 10.1115/1.2817372 contributor: fullname: So – volume: 416 start-page: 75 year: 2000 ident: 10.1016/j.euromechflu.2006.11.001_bib002 article-title: A numerical study of strained three-dimensional wall-bounded turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112000008806 contributor: fullname: Coleman – volume: 115 start-page: 5 year: 1993 ident: 10.1016/j.euromechflu.2006.11.001_bib030 article-title: Perspective: systematic study of Reynolds stress closure models in the computation of plane channel flows publication-title: Trans. ASME: J. Fluids Engrg. doi: 10.1115/1.2910114 contributor: fullname: Demuren – year: 1993 ident: 10.1016/j.euromechflu.2006.11.001_bib007 contributor: fullname: Kays – volume: 194 start-page: 15 year: 1988 ident: 10.1016/j.euromechflu.2006.11.001_bib031 article-title: Reynolds-stress and dissipation-rate budgets in a turbulent channel flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112088002885 contributor: fullname: Mansour – volume: 13 start-page: 2634 year: 1970 ident: 10.1016/j.euromechflu.2006.11.001_bib017 article-title: Transport equations in turbulence publication-title: Phys. Fluids doi: 10.1063/1.1692845 contributor: fullname: Daly – start-page: 1 year: 1980 ident: 10.1016/j.euromechflu.2006.11.001_bib020 article-title: Second-order modeling of turbulent flows contributor: fullname: Lumley – ident: 10.1016/j.euromechflu.2006.11.001_bib008 – volume: 11 start-page: 943 year: 1999 ident: 10.1016/j.euromechflu.2006.11.001_bib029 article-title: Direct numerical simulation of turbulent channel flow up to Reτ=590 publication-title: Phys. Fluids doi: 10.1063/1.869966 contributor: fullname: Moser – year: 1998 ident: 10.1016/j.euromechflu.2006.11.001_bib014 contributor: fullname: Wilcox – volume: 249 start-page: 337 year: 1993 ident: 10.1016/j.euromechflu.2006.11.001_bib004 article-title: Experimental and numerical study of a turbulent boundary layer with pressure gradients publication-title: J. Fluid Mech. doi: 10.1017/S002211209300120X contributor: fullname: Spalart – volume: 18 start-page: 750 year: 1975 ident: 10.1016/j.euromechflu.2006.11.001_bib010 article-title: The pressure–strain correlation publication-title: Phys. Fluids doi: 10.1063/1.861205 contributor: fullname: Lumley – ident: 10.1016/j.euromechflu.2006.11.001_bib009 doi: 10.1007/978-1-4612-1092-4_10 – volume: 495 start-page: 1 year: 2003 ident: 10.1016/j.euromechflu.2006.11.001_bib003 article-title: Direct numerical simulation of a decelerated wall-bounded turbulent shear flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112003005883 contributor: fullname: Coleman – volume: 23 start-page: 319 year: 2004 ident: 10.1016/j.euromechflu.2006.11.001_bib001 article-title: Assessment of common turbulence models for an idealised adverse pressure gradient flow publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2003.07.002 contributor: fullname: Yorke – ident: 10.1016/j.euromechflu.2006.11.001_bib026 – volume: 7 start-page: 1956 year: 1995 ident: 10.1016/j.euromechflu.2006.11.001_bib006 article-title: Mean-velocity scaling in and around a mild, turbulent separation bubble publication-title: Phys. Fluids doi: 10.1063/1.868772 contributor: fullname: Alving – volume: 52 start-page: 609 year: 1972 ident: 10.1016/j.euromechflu.2006.11.001_bib021 article-title: A Reynolds-stress model of turbulence and its application to thin shear flows publication-title: J. Fluid Mech. doi: 10.1017/S002211207200268X contributor: fullname: Hanjalic – ident: 10.1016/j.euromechflu.2006.11.001_bib024 – ident: 10.1016/j.euromechflu.2006.11.001_bib005 – volume: 86 start-page: 491 year: 1978 ident: 10.1016/j.euromechflu.2006.11.001_bib016 article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112078001251 contributor: fullname: Gibson – year: 2000 ident: 10.1016/j.euromechflu.2006.11.001_bib011 contributor: fullname: Pope – volume: 27 start-page: 1319 year: 1989 ident: 10.1016/j.euromechflu.2006.11.001_bib012 article-title: Second-moment closure for the near-wall sublayer: development and application publication-title: AIAA J. doi: 10.2514/3.10267 contributor: fullname: Launder – volume: 18 start-page: 123 year: 1978 ident: 10.1016/j.euromechflu.2006.11.001_bib019 article-title: Computational modeling of turbulent flows publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70266-7 contributor: fullname: Lumley – ident: 10.1016/j.euromechflu.2006.11.001_bib028 |
SSID | ssj0004236 |
Score | 1.8645421 |
Snippet | Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a... Results are used from direct numerical simulation (DNS) of incompressible plane-channel flow subjected to a uniform straining field typical of a two-... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 551 |
SubjectTerms | Adverse-pressure-gradient boundary layers Assessments Boundary layer Boundary layer and shear turbulence Computational fluid dynamics Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Initial conditions Mathematical models Physics Second-moment closures Strained-channel DNS Turbulence Turbulence models Turbulence simulation and modeling Turbulent flow Turbulent flows, convection, and heat transfer Wall-bounded turbulence |
Title | Testing of Reynolds-stress-transport closures by comparison with DNS of an idealized adverse-pressure-gradient boundary layer |
URI | https://dx.doi.org/10.1016/j.euromechflu.2006.11.001 https://search.proquest.com/docview/19664861 https://search.proquest.com/docview/29957010 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9qCyIUv8X6ca7g63qXzWazAV9KtZyK92Bb6FvYz_bkTI5L7uEK-rc7k2w8iyKCr2Fns-zHzG92Z-ZHyCuec5OpkLAg88AEn3hmrBSM2zTTztvCd-lin2ZyeiY-nGfnO-RoyIXBsMqo-3ud3mnr-GUcZ3O8nM_HJ5jzmWcCEDjimhT89j0wRxy29t7h-4_T2TY9kndMgdieocBN8nIb5oUlML56exkW6_5pAmt6RoqYP5ip_aVuYPJCz3rxmwLvrNLxXXI7wkl62I_4Htnx1X1yJ0JLGg9u84B8O8VqGtUFrQP97DdVvXAN6_NEWDvUN6d2UeOFYUPNhtqfBIUU72rp29kJCuuKzh2Ay_kV9K-RzbnxrAumBUF2seoiyFpqOram1YYuNGD6h-Ts-N3p0ZRF5gVmwai1rBBOgWUT3kqfJ3aidZqnqS64cuBgZTnCgNQVkivrkokKhTIaoJiQ3GPpY5M-IrtVXfnHhGZI5WRBkwgDrqgLIG-tCQb64qkT8oDwYaLLZV9goxwiz76Uv6wOEmZKcFgwCu-AvBmWpLy2W0owBP8iPrq2jNsfqzwtFDZ4MaxrCccN31B05et1U4LCkkLJv7QA-57l4OU--b8xPiW3hmvkSfKM7LartX8O-Kc1I3Lj9fdkFHf5D86gCOo |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lggpi_cRqbSP4Gu8uyWaz4EtpLae292Cv0Lcln-3JuXvc7j2coH-7M_vhWRQRfF2SbMgkM79JZn5DyGuecpvoOGJRpZFJPgzMOiUZdyIxPrgsNOliZxM1vpAfLpPLLXLU58JgWGWn-1ud3mjr7sugW83BYjYbnGPOZ5pIQOCIawT47bck0o3Dpn7zfRPnAXihebBE2lFsfpu82gR5IQHGl-Cu43zVPkwgo2dXIOYPRurewlSwdLGtefGb-m5s0skDcr8Dk_Swne9DshWKR2SnA5a0O7bVY_JtilwaxRUtI_0U1kU59xVrs0RY3bObUzcv8bqwonZN3c_yhBRvaunx5Bw7m4LOPEDL2VcY32At5yqwJpQWOrKrZRM_VlPb1GparuncAKJ_Qi5O3k2Pxqyru8AcmLSaZdJrsGsyOBXSkRsaI1IhTMa1B_cqSREECJ8prp0fDXXMtDUAxKTiAYmPrXhKtouyCM8ITbCQkwM9Ii04oj5Cf-dstDAWF16qXcL7hc4XLb1G3sedfc5_kQ6Wy1TgrmAM3i5524skv7FXcjAD_9J9_4YYNz_Wqcg0Njjo5ZrDYcMXFFOEclXloK6U1OovLcC6Jyn4uM__b44H5M54enaan76ffHxB7vYXysPRHtmul6vwEpBQbfebnf4DPvEJww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+of+Reynolds-stress-transport+closures+by+comparison+with+DNS+of+an+idealized+adverse-pressure-gradient+boundary+layer&rft.jtitle=European+journal+of+mechanics%2C+B%2C+Fluids&rft.au=Sciberras%2C+M.A.&rft.au=Coleman%2C+G.N.&rft.date=2007-07-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7546&rft.eissn=1873-7390&rft.volume=26&rft.issue=4&rft.spage=551&rft.epage=582&rft_id=info:doi/10.1016%2Fj.euromechflu.2006.11.001&rft.externalDocID=S0997754606001130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7546&client=summon |