Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis
Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper pr...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 7; p. 2079 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper proposes a deep reconstruction transfer convolutional neural network (DRTCNN), which satisfies the domain adaptability of the model under cross-domain conditions. Firstly, the model uses a deep reconstruction convolutional automatic encoder for feature extraction and data reconstruction. Through sharing parameters and unsupervised training, the structural information of target domain samples is effectively used to extract domain-invariant features. Secondly, a new subdomain alignment loss function is introduced to align the subdomain distribution of the source domain and the target domain, which can improve the classification accuracy by reducing the intra-class distance and increasing the inter-class distance. In addition, a label smoothing algorithm considering the credibility of the sample is introduced to train the model classifier to avoid the impact of wrong labels on the training process. Three datasets are used to verify the versatility of the model, and the results show that the model has a high accuracy and stability. |
---|---|
AbstractList | Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper proposes a deep reconstruction transfer convolutional neural network (DRTCNN), which satisfies the domain adaptability of the model under cross-domain conditions. Firstly, the model uses a deep reconstruction convolutional automatic encoder for feature extraction and data reconstruction. Through sharing parameters and unsupervised training, the structural information of target domain samples is effectively used to extract domain-invariant features. Secondly, a new subdomain alignment loss function is introduced to align the subdomain distribution of the source domain and the target domain, which can improve the classification accuracy by reducing the intra-class distance and increasing the inter-class distance. In addition, a label smoothing algorithm considering the credibility of the sample is introduced to train the model classifier to avoid the impact of wrong labels on the training process. Three datasets are used to verify the versatility of the model, and the results show that the model has a high accuracy and stability. |
Audience | Academic |
Author | Jiang, Xuedong Du, Xin Huo, Jingyi Feng, Ziwei Lu, Feiyu Tong, Qingbin Xu, Jianjun |
Author_xml | – sequence: 1 givenname: Ziwei surname: Feng fullname: Feng, Ziwei organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 2 givenname: Qingbin orcidid: 0000-0002-9387-8706 surname: Tong fullname: Tong, Qingbin organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 3 givenname: Xuedong surname: Jiang fullname: Jiang, Xuedong organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 4 givenname: Feiyu surname: Lu fullname: Lu, Feiyu organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 5 givenname: Xin surname: Du fullname: Du, Xin organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 6 givenname: Jianjun surname: Xu fullname: Xu, Jianjun organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China – sequence: 7 givenname: Jingyi surname: Huo fullname: Huo, Jingyi organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38610291$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1vEzEQhi3Uin7AgT-AVuIChxR_ZW0fS0qhUgVSVY5oNWuPI4eNHezdVvx7nKREqPLhtV49M2PPe0aOYopIyBtGL4Qw9GPhkipOlXlBTpnkcqY5p0f_3U_IWSkrSrkQQr8kJ0K3jHLDTsnPK8RNc4c2xTLmyY4hxeY-Qywec7NI8SEN09aEofmGU97J-Jjyr8an3NylYQhx2XxCyFu9hmkYm6sAy5hKKK_IsYeh4OsnPSc_rj_fL77Obr9_uVlc3s6sZGKcGcl6BAc9V1xYBK2Z68EbYUCiYW3vuXROqV7OmWWct6CEb4FZbYQWxohzcrPv6xKsuk0Oa8h_ugSh2xkpLzvIY7ADdr1zXlJwRkkrNa9j5wq54763au4N1F7v9702Of2esIzdOhSLwwAR01Q6QYWWQpuWVvTdM3SVplxXtaNUK6hhslIXe2oJdX6IPo0ZbD0O16HuHX2o_qUyNR_GRFsLPuwLbE6lZPSHHzHabQPvDoFX9u3TE6Z-je5A_ktY_AWJo6a8 |
Cites_doi | 10.1109/TIE.2018.2877090 10.1016/j.ymssp.2018.03.025 10.1007/s10845-020-01600-2 10.1007/s00521-019-04612-z 10.20944/preprints201701.0132.v1 10.1117/12.2660534 10.1007/978-3-319-58347-1 10.1016/j.ymssp.2018.12.051 10.1109/TIE.2019.2956366 10.3390/s22114156 10.1016/j.jsv.2016.10.043 10.3390/e21040409 10.1016/j.isatra.2021.12.037 10.3390/s17071564 10.1186/s41601-022-00261-y 10.1016/j.neucom.2020.05.021 10.1016/j.neucom.2020.05.040 10.1007/s00202-021-01309-2 10.1016/j.measurement.2020.108569 10.1016/j.isatra.2017.03.017 10.1016/j.measurement.2022.112346 10.1109/TIM.2021.3123218 10.1109/TII.2022.3141783 10.1109/CVPR.2016.90 10.1109/TIE.2021.3076704 10.1109/TIM.2017.2759418 10.1126/science.1127647 10.1109/CVPR.2016.308 10.1109/PHM.2017.8079168 10.1016/j.knosys.2018.12.019 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24072079 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_bddf40ad974c482ead57e2d2fbc75f9a A790021136 10_3390_s24072079 38610291 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Fundamental Research Funds for the Central Universities grantid: 2023JBZY039 – fundername: the Beijing Natural Science Foundation grantid: L211010, 3212032 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c413t-941beadab2723cea881dbaf939a4e916bf24dd77b451c1226a73f6a1c89383993 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:10:26 EDT 2024 Sat Oct 26 05:35:40 EDT 2024 Fri Nov 08 20:47:06 EST 2024 Tue Apr 16 05:11:00 EDT 2024 Thu Sep 26 16:16:05 EDT 2024 Sat Nov 02 12:14:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | transfer learning label smoothing intelligent fault diagnosis autoencoder domain adaptation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-941beadab2723cea881dbaf939a4e916bf24dd77b451c1226a73f6a1c89383993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9387-8706 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24072079 |
PMID | 38610291 |
PQID | 3037630914 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bddf40ad974c482ead57e2d2fbc75f9a proquest_miscellaneous_3038438960 proquest_journals_3037630914 gale_infotracacademiconefile_A790021136 crossref_primary_10_3390_s24072079 pubmed_primary_38610291 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_16) 2020; 409 Zhu (ref_34) 2023; 206 ref_14 ref_35 Yang (ref_21) 2023; 72 ref_33 ref_10 ref_32 ref_31 Yang (ref_18) 2019; 122 Cheng (ref_22) 2020; 409 Liu (ref_19) 2022; 18 Liu (ref_1) 2021; 173 Zhu (ref_11) 2019; 32 Ozcan (ref_9) 2022; 104 Abdeljaber (ref_7) 2017; 388 Han (ref_26) 2019; 165 Jiao (ref_27) 2020; 67 Guo (ref_5) 2022; 7 Chen (ref_8) 2021; 32 Hinton (ref_13) 2006; 313 Jiao (ref_28) 2022; 69 Shao (ref_12) 2017; 69 ref_25 ref_24 Sun (ref_15) 2018; 67 Jia (ref_20) 2018; 110 Wang (ref_4) 2021; 70 ref_3 ref_2 ref_29 Gretton (ref_30) 2012; 13 Chen (ref_23) 2022; 129 Guo (ref_17) 2019; 66 ref_6 |
References_xml | – volume: 66 start-page: 7316 year: 2019 ident: ref_17 article-title: Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2877090 contributor: fullname: Guo – volume: 110 start-page: 349 year: 2018 ident: ref_20 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.03.025 contributor: fullname: Jia – volume: 32 start-page: 971 year: 2021 ident: ref_8 article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01600-2 contributor: fullname: Chen – volume: 32 start-page: 10773 year: 2019 ident: ref_11 article-title: Intelligent bearing fault diagnosis using PCA–DBN framework publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04612-z contributor: fullname: Zhu – ident: ref_29 doi: 10.20944/preprints201701.0132.v1 – ident: ref_32 – ident: ref_24 doi: 10.1117/12.2660534 – ident: ref_25 doi: 10.1007/978-3-319-58347-1 – volume: 122 start-page: 692 year: 2019 ident: ref_18 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.12.051 contributor: fullname: Yang – volume: 67 start-page: 9904 year: 2020 ident: ref_27 article-title: Unsupervised Adversarial Adaptation Network for Intelligent Fault Diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2956366 contributor: fullname: Jiao – ident: ref_6 doi: 10.3390/s22114156 – volume: 388 start-page: 154 year: 2017 ident: ref_7 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.043 contributor: fullname: Abdeljaber – ident: ref_3 doi: 10.3390/e21040409 – volume: 129 start-page: 504 year: 2022 ident: ref_23 article-title: Unsupervised domain adaptation of bearing fault diagnosis based on Join Sliced Wasserstein Distance publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.12.037 contributor: fullname: Chen – ident: ref_10 doi: 10.3390/s17071564 – volume: 7 start-page: 1 year: 2022 ident: ref_5 article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network publication-title: Prot. Control Mod. Power Syst. doi: 10.1186/s41601-022-00261-y contributor: fullname: Guo – volume: 409 start-page: 275 year: 2020 ident: ref_16 article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.021 contributor: fullname: Li – volume: 72 start-page: 3517510 year: 2023 ident: ref_21 article-title: Deep Adversarial Hybrid Domain-Adaptation Network for Varying Working Conditions Fault Diagnosis of High-Speed Train Bogie publication-title: IEEE Trans. Instrum. Meas. contributor: fullname: Yang – volume: 409 start-page: 35 year: 2020 ident: ref_22 article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.040 contributor: fullname: Cheng – volume: 104 start-page: 435 year: 2022 ident: ref_9 article-title: Enhanced bearing fault detection using multichannel, multilevel 1D CNN classifier publication-title: Electr. Eng. doi: 10.1007/s00202-021-01309-2 contributor: fullname: Ozcan – ident: ref_31 – volume: 173 start-page: 108569 year: 2021 ident: ref_1 article-title: Synchrosqueezing extracting transform and its application in bearing fault diagnosis under non-stationary conditions publication-title: Measurement doi: 10.1016/j.measurement.2020.108569 contributor: fullname: Liu – ident: ref_33 – volume: 69 start-page: 187 year: 2017 ident: ref_12 article-title: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.03.017 contributor: fullname: Shao – volume: 206 start-page: 112346 year: 2023 ident: ref_34 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement doi: 10.1016/j.measurement.2022.112346 contributor: fullname: Zhu – volume: 70 start-page: 1 year: 2021 ident: ref_4 article-title: Coupled Hidden Markov Fusion of Multichannel Fast Spectral Coherence Features for Intelligent Fault Diagnosis of Rolling Element Bearings publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3123218 contributor: fullname: Wang – volume: 18 start-page: 6038 year: 2022 ident: ref_19 article-title: Deep Adversarial Subdomain Adaptation Network for Intelligent Fault Diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3141783 contributor: fullname: Liu – volume: 13 start-page: 723 year: 2012 ident: ref_30 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. contributor: fullname: Gretton – ident: ref_2 doi: 10.1109/CVPR.2016.90 – volume: 69 start-page: 4275 year: 2022 ident: ref_28 article-title: Multi-Weight Domain Adversarial Network for Partial-Set Transfer Diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3076704 contributor: fullname: Jiao – volume: 67 start-page: 185 year: 2018 ident: ref_15 article-title: Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2759418 contributor: fullname: Sun – volume: 313 start-page: 504 year: 2006 ident: ref_13 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science doi: 10.1126/science.1127647 contributor: fullname: Hinton – ident: ref_35 doi: 10.1109/CVPR.2016.308 – ident: ref_14 doi: 10.1109/PHM.2017.8079168 – volume: 165 start-page: 474 year: 2019 ident: ref_26 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.12.019 contributor: fullname: Han |
SSID | ssj0023338 |
Score | 2.4641085 |
Snippet | Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most... |
SourceID | doaj proquest gale crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2079 |
SubjectTerms | Accuracy Algorithms autoencoder Classification Deep learning domain adaptation Fault diagnosis intelligent fault diagnosis label smoothing Methods Neural networks Signal processing transfer learning Working conditions |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KTumhNH06SYNaCj2ZWLKsxzGPLqHQnhrIpQjJkqBQvCG76e_vjOTdLu0hl5z8xJbmG3m-waNPAB_9oEaNeUcb_ShaGaNpQ8Q9G9F_lFfGa5qc_PWburqWX26Gm52lvqgmrMoDV8Odhhiz7HxE3jtKI7Djg04iihzwHdlWatTZTTI1p1o9Zl5VR6jHpP50VXTAOqrX2ok-RaT__0_xPwSzBJrFc3g2M0R2Vlt2AE_S9AKe7ugGvoQflyndMsoc_-q_shJ1crpjF8vp9-xQ-BxS3yibUu7NkKOyWYibnaOX03bh73-t2WUtuvu5egXXi8_fL67aeZ2EdsQQtG6t5AHt4oPQoh-TN8hBg8-2t14mpH8hCwRB6yAHPnLkW173WXk-IlcxRFBew960nNJbYB1-bjpuYhqUloiZV1b3yeSEh1ly3sCHjf3cbZXDcJhGkJHd1sgNnJNltzeQgnU5gbi6GVf3EK4NfCJcHI2z9Z0f_TxdANtJilXuTFviJ7xXDRxvoHPzAFw5jMzUFctlA--3l3Ho0P8QP6XlfbnH0OLvqmvgTYV82-beIK8Ulh8-Rl-OYF8gF6oFP8ewh56R3iGXWYeT4rZ_AFZq9DY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaU9hDZ9uU2DWgo9mdiyLNmnkk2yhEJDKQ3kUoReDoVib3c3-f2dkbVOaCEnv4QR89B8I40-AXw0tXQK847cG8dz4X2TW493rUf7kUY2RtHm5K8X8vxSfLmqr9KE2zqVVW7HxDhQ-8HRHPkRDrXoChjdxOfln5xOjaLV1XSExiPY5ZgpFDPYnZ9dfPs-pVwVZmAjn1CFyf3ROvKBFVS3dS8KRbL-_4fkf4BmDDiLp7CXkCI7HlX7DHZCvw9P7vEHPoefpyEsGWWQdzywLEafLqzYydDfJsPC_xALR7zEsm-GWJUlQm42R2un68Lc_N6w07H47tf6BVwuzn6cnOfpvITcYSja5K0oLRqGsVzxygXTIBa1pmur1oiAMNB2HJWhlBV16UrEXUZVnTSlQ8zSEFB5CbN-6MNrYAXJumx8qKUSqDsjW1WFpgv42ImyzODDVn56OdJiaEwnSMh6EnIGc5Ls1ICYrOOLYXWtk2No630nCuMxr3Gi4dj_WgXueWfRhrrWZPCJ9KLJ3zYr40zaNoD9JOYqfaxawillJTM42KpOJ0dc6zuzyeD99BldiNZFTB-Gm9imoUPgZZHBq1HlU5-rBvElb8s3D__8LTzmiHbGkp4DmKHOwztEKxt7mEzyL_4t6v4 priority: 102 providerName: ProQuest |
Title | Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38610291 https://www.proquest.com/docview/3037630914 https://search.proquest.com/docview/3038438960 https://doaj.org/article/bddf40ad974c482ead57e2d2fbc75f9a |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3txwUOiG8CS2UQEqdA7Dj-OCC03d2yQmKFEJV6QZYd2whplS5tF8G_Z-ykgQWOXJo2sSJn5jnzXuM8AzyzjWgl6o7S25aV3HtVOo_ftEf8CCuUlenl5Hdn4nTO3y6axQ5s19gcArj-p7RL60nNV-cvvn_98RoH_KukOFGyv1xnl69K6l3YZxwFeprBx8eHCaxGGdabCl1tfqUUZcf-v-_Lf7DNXHVmN-HGQBfJYZ_fW7ATuttw_TcTwTvw6TiEC5Jk5C8zWJJLUAwrcrTsvg3owvMkK468yXO_CRJWMrhykylCPm1n9vJ8Q477GXhf1ndhPjv5eHRaDosmlC3Wo02pOXWIDuuYZHUbrEJC6mzUtbY8IBd0kWFGpHS8oS1F8mVlHYWlLRIXldjKPdjrll14AKTCe09FlQ-NkBwTaIWWdVAx4M_IKS3g6TZ-5qL3xjCoKVKQzRjkAqYpsmODZGeddyxXn80wOozzPvLKehQ3LVcM-9_IwDyLDoEUtS3gecqLSTDYrGxrh3cHsJ_JvsocSp3ICq1FAQfb1JktmAyW6XQpmvICnoyHcRylhyO2C8vL3EalleBFVcD9PuVjn2uFJJNp-vB_XMsjuMaQGPWzfw5gD5ERHiOx2bgJ7MqFxE81ezOB_enJ2fsPk_wnwSQD-ifPjP16 |
link.rule.ids | 315,783,787,867,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74079,74369,74636 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQAHxJtAAYOQOEXdOI7tnFAfLAu0PbVSL8hy_EBIKFl2t_x-ZhxvWoHEKS8rsubh-cYefwZ4ZxvpFOYdpbeOl8J7XXYe71qP9iOt1FbR5uSTU7k4F18umos84bbOZZXbMTEN1H5wNEe-h0MtugJGN_Fh-aukU6NodTUfoXETbokaYzXtFJ9_mhKuGvOvkU2oxtR-b53YwGZUtXUtBiWq_n8H5L9gZgo38_twL-NEtj8q9gHcCP1DuHuNPfARfDsKYckof7xigWUp9sSwYodD_zubFf6HODjSJRV9M0SqLNNxswO0dbrO7eXPDTsaS-9-rB_D-fzj2eGizKcllA4D0aZsRdWhWdiOK167YDUi0c7Gtm6tCAgCu8hRFUp1oqlchajLqjpKWzlELJpgyhPY6Yc-PAM2I0lX2odGKoGas7JVddAx4GMUVVXA2638zHIkxTCYTJCQzSTkAg5IslMD4rFOL4bVd5PdwnTeRzGzHrMaJzTH_jcqcM9jhxYUW1vAe9KLIW_brKyzedMA9pN4q8y-agmlVLUsYHerOpPdcG2ujKaAN9NndCBaFbF9GC5TG01HwMtZAU9HlU99rjWiS95Wz___89dwe3F2cmyOP59-fQF3OOKesbhnF3ZQ_-El4pZN9yoZ5x88UOyJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAcEG8CLRiExCnaTeLYzgm1XUJ5VRyo1AuyHD9QpSpZdrf8fmYcb1qB1FOeiqyZbzzfJJPPAG9NLazEuiN3xpY5d07lncO9xiF-hBHKSPo5-duxODrhn0_r09T_tE5tlds5MU7UbrD0jnyGUy2GAmY3PgupLeL7on2__J3TClL0pTUtp3ETbmFWFIRw1X6ciq8Ka7FRWajCMn-2jspgc-rgupKPomz__5PzP5Qzpp72PtxLnJHtj05-ADd8_xDuXlESfAQ_F94vGdWSl4qwLOah4FfscOj_JIjhc0iPI25iAzhD1sqSNDc7QNzTtjUX5xu2GNvwztaP4aT98OPwKE8rJ-QWk9Imb3jRIURMV8qyst4oZKWdCU3VGO6REHahRLdI2fG6sAUyMCOrIExhkb0ooixPYKcfev8M2JysXijnayE5etGIRlZeBY-HgRdFBm-29tPLUSBDY2FBRtaTkTM4IMtON5CmdTwxrH7pFCK6cy7wuXFY4ViuShx_LX3pytAhmkJjMnhHftEUeZuVsSb9QIDjJA0rvS8bYixFJTLY3bpOp5Bc60sAZfB6uozBRF9ITO-Hi3iPouXgxTyDp6PLpzFXCplm2RTPr3_4K7iNuNRfPx1_eQF3SqRAY5_PLuyg-_0eUphN9zJi8y9Qx_DH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reconstruction+Transfer+Convolutional+Neural+Network+for+Rolling+Bearing+Fault+Diagnosis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ziwei+Feng&rft.au=Qingbin+Tong&rft.au=Xuedong+Jiang&rft.au=Feiyu+Lu&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=7&rft.spage=2079&rft_id=info:doi/10.3390%2Fs24072079&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bddf40ad974c482ead57e2d2fbc75f9a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |