Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis

Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper pr...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 7; p. 2079
Main Authors Feng, Ziwei, Tong, Qingbin, Jiang, Xuedong, Lu, Feiyu, Du, Xin, Xu, Jianjun, Huo, Jingyi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper proposes a deep reconstruction transfer convolutional neural network (DRTCNN), which satisfies the domain adaptability of the model under cross-domain conditions. Firstly, the model uses a deep reconstruction convolutional automatic encoder for feature extraction and data reconstruction. Through sharing parameters and unsupervised training, the structural information of target domain samples is effectively used to extract domain-invariant features. Secondly, a new subdomain alignment loss function is introduced to align the subdomain distribution of the source domain and the target domain, which can improve the classification accuracy by reducing the intra-class distance and increasing the inter-class distance. In addition, a label smoothing algorithm considering the credibility of the sample is introduced to train the model classifier to avoid the impact of wrong labels on the training process. Three datasets are used to verify the versatility of the model, and the results show that the model has a high accuracy and stability.
AbstractList Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper proposes a deep reconstruction transfer convolutional neural network (DRTCNN), which satisfies the domain adaptability of the model under cross-domain conditions. Firstly, the model uses a deep reconstruction convolutional automatic encoder for feature extraction and data reconstruction. Through sharing parameters and unsupervised training, the structural information of target domain samples is effectively used to extract domain-invariant features. Secondly, a new subdomain alignment loss function is introduced to align the subdomain distribution of the source domain and the target domain, which can improve the classification accuracy by reducing the intra-class distance and increasing the inter-class distance. In addition, a label smoothing algorithm considering the credibility of the sample is introduced to train the model classifier to avoid the impact of wrong labels on the training process. Three datasets are used to verify the versatility of the model, and the results show that the model has a high accuracy and stability.
Audience Academic
Author Jiang, Xuedong
Du, Xin
Huo, Jingyi
Feng, Ziwei
Lu, Feiyu
Tong, Qingbin
Xu, Jianjun
Author_xml – sequence: 1
  givenname: Ziwei
  surname: Feng
  fullname: Feng, Ziwei
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Qingbin
  orcidid: 0000-0002-9387-8706
  surname: Tong
  fullname: Tong, Qingbin
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 3
  givenname: Xuedong
  surname: Jiang
  fullname: Jiang, Xuedong
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Feiyu
  surname: Lu
  fullname: Lu, Feiyu
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 5
  givenname: Xin
  surname: Du
  fullname: Du, Xin
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 6
  givenname: Jianjun
  surname: Xu
  fullname: Xu, Jianjun
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 7
  givenname: Jingyi
  surname: Huo
  fullname: Huo, Jingyi
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38610291$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1vEzEQhi3Uin7AgT-AVuIChxR_ZW0fS0qhUgVSVY5oNWuPI4eNHezdVvx7nKREqPLhtV49M2PPe0aOYopIyBtGL4Qw9GPhkipOlXlBTpnkcqY5p0f_3U_IWSkrSrkQQr8kJ0K3jHLDTsnPK8RNc4c2xTLmyY4hxeY-Qywec7NI8SEN09aEofmGU97J-Jjyr8an3NylYQhx2XxCyFu9hmkYm6sAy5hKKK_IsYeh4OsnPSc_rj_fL77Obr9_uVlc3s6sZGKcGcl6BAc9V1xYBK2Z68EbYUCiYW3vuXROqV7OmWWct6CEb4FZbYQWxohzcrPv6xKsuk0Oa8h_ugSh2xkpLzvIY7ADdr1zXlJwRkkrNa9j5wq54763au4N1F7v9702Of2esIzdOhSLwwAR01Q6QYWWQpuWVvTdM3SVplxXtaNUK6hhslIXe2oJdX6IPo0ZbD0O16HuHX2o_qUyNR_GRFsLPuwLbE6lZPSHHzHabQPvDoFX9u3TE6Z-je5A_ktY_AWJo6a8
Cites_doi 10.1109/TIE.2018.2877090
10.1016/j.ymssp.2018.03.025
10.1007/s10845-020-01600-2
10.1007/s00521-019-04612-z
10.20944/preprints201701.0132.v1
10.1117/12.2660534
10.1007/978-3-319-58347-1
10.1016/j.ymssp.2018.12.051
10.1109/TIE.2019.2956366
10.3390/s22114156
10.1016/j.jsv.2016.10.043
10.3390/e21040409
10.1016/j.isatra.2021.12.037
10.3390/s17071564
10.1186/s41601-022-00261-y
10.1016/j.neucom.2020.05.021
10.1016/j.neucom.2020.05.040
10.1007/s00202-021-01309-2
10.1016/j.measurement.2020.108569
10.1016/j.isatra.2017.03.017
10.1016/j.measurement.2022.112346
10.1109/TIM.2021.3123218
10.1109/TII.2022.3141783
10.1109/CVPR.2016.90
10.1109/TIE.2021.3076704
10.1109/TIM.2017.2759418
10.1126/science.1127647
10.1109/CVPR.2016.308
10.1109/PHM.2017.8079168
10.1016/j.knosys.2018.12.019
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24072079
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bddf40ad974c482ead57e2d2fbc75f9a
A790021136
10_3390_s24072079
38610291
Genre Journal Article
GrantInformation_xml – fundername: the Fundamental Research Funds for the Central Universities
  grantid: 2023JBZY039
– fundername: the Beijing Natural Science Foundation
  grantid: L211010, 3212032
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c413t-941beadab2723cea881dbaf939a4e916bf24dd77b451c1226a73f6a1c89383993
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 22 15:10:26 EDT 2024
Sat Oct 26 05:35:40 EDT 2024
Fri Nov 08 20:47:06 EST 2024
Tue Apr 16 05:11:00 EDT 2024
Thu Sep 26 16:16:05 EDT 2024
Sat Nov 02 12:14:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords transfer learning
label smoothing
intelligent fault diagnosis
autoencoder
domain adaptation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-941beadab2723cea881dbaf939a4e916bf24dd77b451c1226a73f6a1c89383993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9387-8706
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24072079
PMID 38610291
PQID 3037630914
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bddf40ad974c482ead57e2d2fbc75f9a
proquest_miscellaneous_3038438960
proquest_journals_3037630914
gale_infotracacademiconefile_A790021136
crossref_primary_10_3390_s24072079
pubmed_primary_38610291
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_16) 2020; 409
Zhu (ref_34) 2023; 206
ref_14
ref_35
Yang (ref_21) 2023; 72
ref_33
ref_10
ref_32
ref_31
Yang (ref_18) 2019; 122
Cheng (ref_22) 2020; 409
Liu (ref_19) 2022; 18
Liu (ref_1) 2021; 173
Zhu (ref_11) 2019; 32
Ozcan (ref_9) 2022; 104
Abdeljaber (ref_7) 2017; 388
Han (ref_26) 2019; 165
Jiao (ref_27) 2020; 67
Guo (ref_5) 2022; 7
Chen (ref_8) 2021; 32
Hinton (ref_13) 2006; 313
Jiao (ref_28) 2022; 69
Shao (ref_12) 2017; 69
ref_25
ref_24
Sun (ref_15) 2018; 67
Jia (ref_20) 2018; 110
Wang (ref_4) 2021; 70
ref_3
ref_2
ref_29
Gretton (ref_30) 2012; 13
Chen (ref_23) 2022; 129
Guo (ref_17) 2019; 66
ref_6
References_xml – volume: 66
  start-page: 7316
  year: 2019
  ident: ref_17
  article-title: Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2877090
  contributor:
    fullname: Guo
– volume: 110
  start-page: 349
  year: 2018
  ident: ref_20
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.025
  contributor:
    fullname: Jia
– volume: 32
  start-page: 971
  year: 2021
  ident: ref_8
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01600-2
  contributor:
    fullname: Chen
– volume: 32
  start-page: 10773
  year: 2019
  ident: ref_11
  article-title: Intelligent bearing fault diagnosis using PCA–DBN framework
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04612-z
  contributor:
    fullname: Zhu
– ident: ref_29
  doi: 10.20944/preprints201701.0132.v1
– ident: ref_32
– ident: ref_24
  doi: 10.1117/12.2660534
– ident: ref_25
  doi: 10.1007/978-3-319-58347-1
– volume: 122
  start-page: 692
  year: 2019
  ident: ref_18
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.12.051
  contributor:
    fullname: Yang
– volume: 67
  start-page: 9904
  year: 2020
  ident: ref_27
  article-title: Unsupervised Adversarial Adaptation Network for Intelligent Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2956366
  contributor:
    fullname: Jiao
– ident: ref_6
  doi: 10.3390/s22114156
– volume: 388
  start-page: 154
  year: 2017
  ident: ref_7
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
  contributor:
    fullname: Abdeljaber
– ident: ref_3
  doi: 10.3390/e21040409
– volume: 129
  start-page: 504
  year: 2022
  ident: ref_23
  article-title: Unsupervised domain adaptation of bearing fault diagnosis based on Join Sliced Wasserstein Distance
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.12.037
  contributor:
    fullname: Chen
– ident: ref_10
  doi: 10.3390/s17071564
– volume: 7
  start-page: 1
  year: 2022
  ident: ref_5
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.1186/s41601-022-00261-y
  contributor:
    fullname: Guo
– volume: 409
  start-page: 275
  year: 2020
  ident: ref_16
  article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.021
  contributor:
    fullname: Li
– volume: 72
  start-page: 3517510
  year: 2023
  ident: ref_21
  article-title: Deep Adversarial Hybrid Domain-Adaptation Network for Varying Working Conditions Fault Diagnosis of High-Speed Train Bogie
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Yang
– volume: 409
  start-page: 35
  year: 2020
  ident: ref_22
  article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.040
  contributor:
    fullname: Cheng
– volume: 104
  start-page: 435
  year: 2022
  ident: ref_9
  article-title: Enhanced bearing fault detection using multichannel, multilevel 1D CNN classifier
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-021-01309-2
  contributor:
    fullname: Ozcan
– ident: ref_31
– volume: 173
  start-page: 108569
  year: 2021
  ident: ref_1
  article-title: Synchrosqueezing extracting transform and its application in bearing fault diagnosis under non-stationary conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108569
  contributor:
    fullname: Liu
– ident: ref_33
– volume: 69
  start-page: 187
  year: 2017
  ident: ref_12
  article-title: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.03.017
  contributor:
    fullname: Shao
– volume: 206
  start-page: 112346
  year: 2023
  ident: ref_34
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112346
  contributor:
    fullname: Zhu
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_4
  article-title: Coupled Hidden Markov Fusion of Multichannel Fast Spectral Coherence Features for Intelligent Fault Diagnosis of Rolling Element Bearings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3123218
  contributor:
    fullname: Wang
– volume: 18
  start-page: 6038
  year: 2022
  ident: ref_19
  article-title: Deep Adversarial Subdomain Adaptation Network for Intelligent Fault Diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3141783
  contributor:
    fullname: Liu
– volume: 13
  start-page: 723
  year: 2012
  ident: ref_30
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Gretton
– ident: ref_2
  doi: 10.1109/CVPR.2016.90
– volume: 69
  start-page: 4275
  year: 2022
  ident: ref_28
  article-title: Multi-Weight Domain Adversarial Network for Partial-Set Transfer Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3076704
  contributor:
    fullname: Jiao
– volume: 67
  start-page: 185
  year: 2018
  ident: ref_15
  article-title: Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2759418
  contributor:
    fullname: Sun
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_13
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: Hinton
– ident: ref_35
  doi: 10.1109/CVPR.2016.308
– ident: ref_14
  doi: 10.1109/PHM.2017.8079168
– volume: 165
  start-page: 474
  year: 2019
  ident: ref_26
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.12.019
  contributor:
    fullname: Han
SSID ssj0023338
Score 2.4641085
Snippet Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most...
SourceID doaj
proquest
gale
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 2079
SubjectTerms Accuracy
Algorithms
autoencoder
Classification
Deep learning
domain adaptation
Fault diagnosis
intelligent fault diagnosis
label smoothing
Methods
Neural networks
Signal processing
transfer learning
Working conditions
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KTumhNH06SYNaCj2ZWLKsxzGPLqHQnhrIpQjJkqBQvCG76e_vjOTdLu0hl5z8xJbmG3m-waNPAB_9oEaNeUcb_ShaGaNpQ8Q9G9F_lFfGa5qc_PWburqWX26Gm52lvqgmrMoDV8Odhhiz7HxE3jtKI7Djg04iihzwHdlWatTZTTI1p1o9Zl5VR6jHpP50VXTAOqrX2ok-RaT__0_xPwSzBJrFc3g2M0R2Vlt2AE_S9AKe7ugGvoQflyndMsoc_-q_shJ1crpjF8vp9-xQ-BxS3yibUu7NkKOyWYibnaOX03bh73-t2WUtuvu5egXXi8_fL67aeZ2EdsQQtG6t5AHt4oPQoh-TN8hBg8-2t14mpH8hCwRB6yAHPnLkW173WXk-IlcxRFBew960nNJbYB1-bjpuYhqUloiZV1b3yeSEh1ly3sCHjf3cbZXDcJhGkJHd1sgNnJNltzeQgnU5gbi6GVf3EK4NfCJcHI2z9Z0f_TxdANtJilXuTFviJ7xXDRxvoHPzAFw5jMzUFctlA--3l3Ho0P8QP6XlfbnH0OLvqmvgTYV82-beIK8Ulh8-Rl-OYF8gF6oFP8ewh56R3iGXWYeT4rZ_AFZq9DY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaU9hDZ9uU2DWgo9mdiyLNmnkk2yhEJDKQ3kUoReDoVib3c3-f2dkbVOaCEnv4QR89B8I40-AXw0tXQK847cG8dz4X2TW493rUf7kUY2RtHm5K8X8vxSfLmqr9KE2zqVVW7HxDhQ-8HRHPkRDrXoChjdxOfln5xOjaLV1XSExiPY5ZgpFDPYnZ9dfPs-pVwVZmAjn1CFyf3ROvKBFVS3dS8KRbL-_4fkf4BmDDiLp7CXkCI7HlX7DHZCvw9P7vEHPoefpyEsGWWQdzywLEafLqzYydDfJsPC_xALR7zEsm-GWJUlQm42R2un68Lc_N6w07H47tf6BVwuzn6cnOfpvITcYSja5K0oLRqGsVzxygXTIBa1pmur1oiAMNB2HJWhlBV16UrEXUZVnTSlQ8zSEFB5CbN-6MNrYAXJumx8qKUSqDsjW1WFpgv42ImyzODDVn56OdJiaEwnSMh6EnIGc5Ls1ICYrOOLYXWtk2No630nCuMxr3Gi4dj_WgXueWfRhrrWZPCJ9KLJ3zYr40zaNoD9JOYqfaxawillJTM42KpOJ0dc6zuzyeD99BldiNZFTB-Gm9imoUPgZZHBq1HlU5-rBvElb8s3D__8LTzmiHbGkp4DmKHOwztEKxt7mEzyL_4t6v4
  priority: 102
  providerName: ProQuest
Title Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/38610291
https://www.proquest.com/docview/3037630914
https://search.proquest.com/docview/3038438960
https://doaj.org/article/bddf40ad974c482ead57e2d2fbc75f9a
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3txwUOiG8CS2UQEqdA7Dj-OCC03d2yQmKFEJV6QZYd2whplS5tF8G_Z-ykgQWOXJo2sSJn5jnzXuM8AzyzjWgl6o7S25aV3HtVOo_ftEf8CCuUlenl5Hdn4nTO3y6axQ5s19gcArj-p7RL60nNV-cvvn_98RoH_KukOFGyv1xnl69K6l3YZxwFeprBx8eHCaxGGdabCl1tfqUUZcf-v-_Lf7DNXHVmN-HGQBfJYZ_fW7ATuttw_TcTwTvw6TiEC5Jk5C8zWJJLUAwrcrTsvg3owvMkK468yXO_CRJWMrhykylCPm1n9vJ8Q477GXhf1ndhPjv5eHRaDosmlC3Wo02pOXWIDuuYZHUbrEJC6mzUtbY8IBd0kWFGpHS8oS1F8mVlHYWlLRIXldjKPdjrll14AKTCe09FlQ-NkBwTaIWWdVAx4M_IKS3g6TZ-5qL3xjCoKVKQzRjkAqYpsmODZGeddyxXn80wOozzPvLKehQ3LVcM-9_IwDyLDoEUtS3gecqLSTDYrGxrh3cHsJ_JvsocSp3ICq1FAQfb1JktmAyW6XQpmvICnoyHcRylhyO2C8vL3EalleBFVcD9PuVjn2uFJJNp-vB_XMsjuMaQGPWzfw5gD5ERHiOx2bgJ7MqFxE81ezOB_enJ2fsPk_wnwSQD-ifPjP16
link.rule.ids 315,783,787,867,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74079,74369,74636
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQAHxJtAAYOQOEXdOI7tnFAfLAu0PbVSL8hy_EBIKFl2t_x-ZhxvWoHEKS8rsubh-cYefwZ4ZxvpFOYdpbeOl8J7XXYe71qP9iOt1FbR5uSTU7k4F18umos84bbOZZXbMTEN1H5wNEe-h0MtugJGN_Fh-aukU6NodTUfoXETbokaYzXtFJ9_mhKuGvOvkU2oxtR-b53YwGZUtXUtBiWq_n8H5L9gZgo38_twL-NEtj8q9gHcCP1DuHuNPfARfDsKYckof7xigWUp9sSwYodD_zubFf6HODjSJRV9M0SqLNNxswO0dbrO7eXPDTsaS-9-rB_D-fzj2eGizKcllA4D0aZsRdWhWdiOK167YDUi0c7Gtm6tCAgCu8hRFUp1oqlchajLqjpKWzlELJpgyhPY6Yc-PAM2I0lX2odGKoGas7JVddAx4GMUVVXA2638zHIkxTCYTJCQzSTkAg5IslMD4rFOL4bVd5PdwnTeRzGzHrMaJzTH_jcqcM9jhxYUW1vAe9KLIW_brKyzedMA9pN4q8y-agmlVLUsYHerOpPdcG2ujKaAN9NndCBaFbF9GC5TG01HwMtZAU9HlU99rjWiS95Wz___89dwe3F2cmyOP59-fQF3OOKesbhnF3ZQ_-El4pZN9yoZ5x88UOyJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAcEG8CLRiExCnaTeLYzgm1XUJ5VRyo1AuyHD9QpSpZdrf8fmYcb1qB1FOeiqyZbzzfJJPPAG9NLazEuiN3xpY5d07lncO9xiF-hBHKSPo5-duxODrhn0_r09T_tE5tlds5MU7UbrD0jnyGUy2GAmY3PgupLeL7on2__J3TClL0pTUtp3ETbmFWFIRw1X6ciq8Ka7FRWajCMn-2jspgc-rgupKPomz__5PzP5Qzpp72PtxLnJHtj05-ADd8_xDuXlESfAQ_F94vGdWSl4qwLOah4FfscOj_JIjhc0iPI25iAzhD1sqSNDc7QNzTtjUX5xu2GNvwztaP4aT98OPwKE8rJ-QWk9Imb3jRIURMV8qyst4oZKWdCU3VGO6REHahRLdI2fG6sAUyMCOrIExhkb0ooixPYKcfev8M2JysXijnayE5etGIRlZeBY-HgRdFBm-29tPLUSBDY2FBRtaTkTM4IMtON5CmdTwxrH7pFCK6cy7wuXFY4ViuShx_LX3pytAhmkJjMnhHftEUeZuVsSb9QIDjJA0rvS8bYixFJTLY3bpOp5Bc60sAZfB6uozBRF9ITO-Hi3iPouXgxTyDp6PLpzFXCplm2RTPr3_4K7iNuNRfPx1_eQF3SqRAY5_PLuyg-_0eUphN9zJi8y9Qx_DH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reconstruction+Transfer+Convolutional+Neural+Network+for+Rolling+Bearing+Fault+Diagnosis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ziwei+Feng&rft.au=Qingbin+Tong&rft.au=Xuedong+Jiang&rft.au=Feiyu+Lu&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=7&rft.spage=2079&rft_id=info:doi/10.3390%2Fs24072079&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bddf40ad974c482ead57e2d2fbc75f9a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon