Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium

Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a coll...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 40; no. 11; pp. 117102 - 129
Main Authors Wang, Yao, Lei, Zhenzhen, Zhang, Jinsen, Tao, Xinyong, Hua, Chenqiang, Lu, Yunhao
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.11.2023
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a collection of one-dimensional chains, and lone-pair instability is responsible for the (anti)ferroelectricity. The total polarization is determined to be 0.34 × 10 −10 C/m for the FE ground state. Due to the local polarization field in the FE film, we show a large Rashba splitting ( α R ∼ 2 eV⋅Å) with nonzero spin Hall conductivity for experimental detection. Furthermore, a dipole-like distribution of Berry curvature is verified, which may facilitate a nonlinear Hall effect. Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field, they can be reversed through FE phase transition. Our results not only broaden the elemental FE materials, but also shed light on their intriguing transport phenomena.
AbstractList Two-dimensional(2D)ferroelectric(FE)systems are promising candidates for non-volatile nanodevices.Pre-vious studies mainly focused on 2D compounds.Though counter-intuitive,here we propose several new phases of tellurium with(anti)ferroelectricity.Two-dimensional films can be viewed as a collection of one-dimensional chains,and lone-pair instability is responsible for the(anti)ferroelectricity.The total polarization is determined to be 0.34 × 10-10 C/m for the FE ground state.Due to the local polarization field in the FE film,we show a large Rashba splitting(αR~2 eV·?)with nonzero spin Hall conductivity for experimental detection.Furthermore,a dipole-like distribution of Berry curvature is verified,which may facilitate a nonlinear Hall effect.Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field,they can be reversed through FE phase transition.Our results not only broaden the elemental FE materials,but also shed light on their intriguing transport phenomena.
Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a collection of one-dimensional chains, and lone-pair instability is responsible for the (anti)ferroelectricity. The total polarization is determined to be 0.34 × 10 −10 C/m for the FE ground state. Due to the local polarization field in the FE film, we show a large Rashba splitting ( α R ∼ 2 eV⋅Å) with nonzero spin Hall conductivity for experimental detection. Furthermore, a dipole-like distribution of Berry curvature is verified, which may facilitate a nonlinear Hall effect. Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field, they can be reversed through FE phase transition. Our results not only broaden the elemental FE materials, but also shed light on their intriguing transport phenomena.
Author Wang, Yao
Lu, Yunhao
Zhang, Jinsen
Hua, Chenqiang
Lei, Zhenzhen
Tao, Xinyong
Author_xml – sequence: 1
  givenname: Yao
  surname: Wang
  fullname: Wang, Yao
  organization: Moganshan Research Institute at Deqing County Zhejiang University of Technology , China
– sequence: 2
  givenname: Zhenzhen
  surname: Lei
  fullname: Lei, Zhenzhen
  organization: College of Materials Science and Engineering, Zhejiang University of Technology , China
– sequence: 3
  givenname: Jinsen
  surname: Zhang
  fullname: Zhang, Jinsen
  organization: College of Materials Science and Engineering, Zhejiang University of Technology , China
– sequence: 4
  givenname: Xinyong
  surname: Tao
  fullname: Tao, Xinyong
  organization: College of Materials Science and Engineering, Zhejiang University of Technology , China
– sequence: 5
  givenname: Chenqiang
  surname: Hua
  fullname: Hua, Chenqiang
  organization: Zhongfa Aviation Institute of Beihang University , China
– sequence: 6
  givenname: Yunhao
  surname: Lu
  fullname: Lu, Yunhao
  organization: School of Physics, Zhejiang University , China
BookMark eNqFkFFLwzAUhYNMcE7_gvRRH-pyk2at4ItM54SBoBN8C2ma1swsLUnHmL_elIqiCINLLtx7vsvJOUYDW1uF0BngS8BZNsaETWKK09dxgscAoVLA5AANIU0gpizBAzT8Fh2hY-9XGANkAEM0nynnamWUbJ2Wut1FwhbRQrhKRU_Cv-Uiem6Mblttq0jbaLmt41u9Vtbr2goTLZUxG6c36xN0WArj1elXH6GX2d1yOo8Xj_cP05tFLBOgbZwpBllR5hIrzOgVoUASIXNV5IpRIsvuYVROyjQtFWWYhA0JawKsgEwAHaGL_u5W2FLYiq_qjQtOPP-otuY954rgcBUwZEF73Wulq713quThh6INzlsntOGAeZcg78LhXTg8CRPgfYIBn_zBG6fXwu32g6QHdd38-NsLnf8Dycb8kvGmKOkna1iTUA
CitedBy_id crossref_primary_10_1088_0256_307X_41_5_057501
crossref_primary_10_1103_PhysRevB_110_085110
crossref_primary_10_1002_adma_202405590
Cites_doi 10.1126/science.1102896
10.1002/adom.202200898
10.1016/j.cpc.2007.11.016
10.1103/PhysRevB.83.195131
10.1039/C9TC04187G
10.1038/s41586-021-03449-8
10.1038/s41524-023-00972-2
10.1039/C8NR07501H
10.1103/PhysRevLett.93.046403
10.1002/adma.202005098
10.1107/S0021889808012016
10.1002/anie.200502673
10.1088/0256-307X/38/8/087702
10.1103/PhysRevLett.115.216806
10.1021/acsnano.9b08396
10.1016/0927-0256(96)00008-0
10.1103/PhysRevLett.77.3865
10.1021/nl4027346
10.1016/j.mattod.2019.03.015
10.1021/acs.jpclett.2c00177
10.1126/science.abd3230
10.1103/PhysRevLett.119.106101
10.1021/j100135a014
10.1038/s41586-018-0807-6
10.1103/PhysRevLett.94.226601
10.1038/s41586-023-05848-5
10.1021/acs.nanolett.6b04309
10.1021/jacs.0c12809
10.1038/s41928-018-0058-4
10.1103/PhysRevB.48.4442
10.1039/D1NR06598J
10.1088/0256-307X/40/6/067701
10.1021/acs.jpclett.3c00376
10.1103/RevModPhys.87.1213
10.1038/s41524-023-01026-3
10.1016/j.cpc.2021.108033
10.1038/s41467-019-09669-x
10.1103/PhysRevLett.77.3419
10.1103/PhysRevLett.108.066804
10.1021/acs.chemrev.8b00501
10.1103/PhysRevLett.128.067601
10.1038/s41524-017-0011-5
10.1088/1674-1056/ab81ff
10.1007/s40242-020-0182-3
10.1039/C9NR04112E
10.1016/j.scib.2018.01.010
10.1038/nmat3279
10.1088/0256-307X/38/7/077501
10.1103/PhysRevLett.108.196802
10.1038/s41565-020-0715-4
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.68.3603
10.1103/PhysRevB.86.165108
10.1103/PhysRevB.90.205420
10.1038/ncomms10287
10.1103/PhysRevLett.99.236809
10.1038/s41467-021-25587-3
10.1063/1.1329672
10.1088/1674-1056/ab4174
10.1126/science.1195816
10.1039/C8MH00082D
10.1038/s41563-022-01422-y
10.1103/PhysRevB.98.214402
10.1021/acs.chemrev.1c00165
10.1002/adfm.201707383
10.1088/0256-307X/40/4/047303
10.1103/PhysRevLett.130.246802
10.1002/anie.200801691
10.1021/acs.nanolett.8b01639
10.1103/PhysRevLett.114.206401
10.1103/PhysRevB.107.165419
10.1039/C9CS00821G
10.1103/RevModPhys.92.021003
ContentType Journal Article
Copyright 2023 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/0256-307X/40/11/117102
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1741-3540
EndPage 129
ExternalDocumentID zgwlkb_e202311018
10_1088_0256_307X_40_11_117102
cpl_40_11_117102
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
Q--
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
UCJ
W28
XPP
~02
AAYXX
ADEQX
CITATION
TGP
02O
042
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NS0
NT-
NT.
PSX
Q02
S3P
T37
TCJ
ID FETCH-LOGICAL-c413t-8e518dfbc0e053923124acbedbe532cf532c53c6f77fe3502edb2bed215d18a13
IEDL.DBID IOP
ISSN 0256-307X
IngestDate Thu May 29 04:07:19 EDT 2025
Tue Jul 01 01:35:39 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Tue Aug 20 22:16:39 EDT 2024
Sun Aug 18 14:40:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-8e518dfbc0e053923124acbedbe532cf532c53c6f77fe3502edb2bed215d18a13
OpenAccessLink https://iopscience.iop.org/article/10.1088/0256-307X/40/11/117102/pdf
PageCount 7
ParticipantIDs crossref_primary_10_1088_0256_307X_40_11_117102
wanfang_journals_zgwlkb_e202311018
iop_journals_10_1088_0256_307X_40_11_117102
crossref_citationtrail_10_1088_0256_307X_40_11_117102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Phys. Lett
PublicationTitle_FL Chinese Physics Letters
PublicationYear 2023
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Gupta (cpl_40_11_117102bib59) 2021; 143
Blöchl (cpl_40_11_117102bib44) 1994; 50
Jungwirth (cpl_40_11_117102bib68) 2012; 11
Ma (cpl_40_11_117102bib72) 2019; 565
Poleschner (cpl_40_11_117102bib55) 2008; 47
Sodemann (cpl_40_11_117102bib73) 2015; 115
Xie (cpl_40_11_117102bib6) 2022; 122
Sheng (cpl_40_11_117102bib60) 2021; 593
Shang (cpl_40_11_117102bib19) 2022; 13
Park (cpl_40_11_117102bib16) 2022; 10
Wu (cpl_40_11_117102bib22) 2023; 40
Zhang (cpl_40_11_117102bib23) 2023; 40
Sinova (cpl_40_11_117102bib66) 2015; 87
Yuan (cpl_40_11_117102bib18) 2019; 10
Momma (cpl_40_11_117102bib53) 2008; 41
Henkelman (cpl_40_11_117102bib50) 2000; 113
Koroteev (cpl_40_11_117102bib62) 2004; 93
Fang (cpl_40_11_117102bib2) 2020; 36
Lu (cpl_40_11_117102bib69) 2023; 107
Qi (cpl_40_11_117102bib5) 2021; 33
Wu (cpl_40_11_117102bib41) 2016; 16
Kresse (cpl_40_11_117102bib42) 1996; 6
Qiao (cpl_40_11_117102bib48) 2018; 98
Mostofi (cpl_40_11_117102bib51) 2008; 178
Rehman (cpl_40_11_117102bib4) 2020; 29
Rojaee (cpl_40_11_117102bib10) 2020; 14
Lin (cpl_40_11_117102bib36) 2016; 7
Deng (cpl_40_11_117102bib30) 2006; 45
Varykhalov (cpl_40_11_117102bib64) 2012; 108
Guo (cpl_40_11_117102bib47) 2005; 94
Wang (cpl_40_11_117102bib61) 2017; 3
Khan (cpl_40_11_117102bib3) 2020; 8
Ye (cpl_40_11_117102bib21) 2021; 38
Wang (cpl_40_11_117102bib52) 2021; 267
Wang (cpl_40_11_117102bib12) 2023; 22
Novoselov (cpl_40_11_117102bib1) 2004; 306
Avsar (cpl_40_11_117102bib14) 2020; 92
Liu (cpl_40_11_117102bib58) 2013; 13
de la Barrera (cpl_40_11_117102bib25) 2021; 12
Liang (cpl_40_11_117102bib33) 2019; 11
Dronskowski (cpl_40_11_117102bib56) 1993; 97
Liu (cpl_40_11_117102bib24) 2023; 9
Gao (cpl_40_11_117102bib11) 2021; 13
Xiao (cpl_40_11_117102bib71) 2012; 108
Fan (cpl_40_11_117102bib8) 2021; 50
Klimeš (cpl_40_11_117102bib45) 2011; 83
Feng (cpl_40_11_117102bib65) 2012; 86
Yasuda (cpl_40_11_117102bib17) 2021; 372
Xiao (cpl_40_11_117102bib28) 2018; 28
Qiu (cpl_40_11_117102bib40) 2020; 15
Wang (cpl_40_11_117102bib7) 2019; 119
Zhu (cpl_40_11_117102bib29) 2017; 119
Perdew (cpl_40_11_117102bib43) 1996; 77
Sethulakshmi (cpl_40_11_117102bib9) 2019; 27
LaShell (cpl_40_11_117102bib63) 1996; 77
Vanderbilt (cpl_40_11_117102bib49) 1993; 48
Wan (cpl_40_11_117102bib15) 2022; 128
Wang (cpl_40_11_117102bib32) 2018; 5
Tan (cpl_40_11_117102bib57) 2023; 130
Xiao (cpl_40_11_117102bib70) 2007; 99
Gou (cpl_40_11_117102bib31) 2023; 617
Wang (cpl_40_11_117102bib34) 2018; 10
Hirayama (cpl_40_11_117102bib35) 2015; 114
Liu (cpl_40_11_117102bib37) 2018; 18
Qiao (cpl_40_11_117102bib39) 2018; 63
Hong (cpl_40_11_117102bib26) 2023; 14
Hua (cpl_40_11_117102bib20) 2021; 38
Wunderlich (cpl_40_11_117102bib67) 2010; 330
Tong (cpl_40_11_117102bib54) 2019; 28
Gonze (cpl_40_11_117102bib46) 1992; 68
Padilha (cpl_40_11_117102bib13) 2014; 90
Qian (cpl_40_11_117102bib27) 2023; 9
Wang (cpl_40_11_117102bib38) 2018; 1
References_xml – volume: 306
  start-page: 666
  year: 2004
  ident: cpl_40_11_117102bib1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 10
  year: 2022
  ident: cpl_40_11_117102bib16
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202200898
– volume: 178
  start-page: 685
  year: 2008
  ident: cpl_40_11_117102bib51
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.11.016
– volume: 83
  year: 2011
  ident: cpl_40_11_117102bib45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 8
  start-page: 387
  year: 2020
  ident: cpl_40_11_117102bib3
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC04187G
– volume: 593
  start-page: 56
  year: 2021
  ident: cpl_40_11_117102bib60
  publication-title: Nature
  doi: 10.1038/s41586-021-03449-8
– volume: 9
  start-page: 16
  year: 2023
  ident: cpl_40_11_117102bib24
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-023-00972-2
– volume: 10
  year: 2018
  ident: cpl_40_11_117102bib34
  publication-title: Nanoscale
  doi: 10.1039/C8NR07501H
– volume: 93
  year: 2004
  ident: cpl_40_11_117102bib62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.046403
– volume: 33
  year: 2021
  ident: cpl_40_11_117102bib5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005098
– volume: 41
  start-page: 653
  year: 2008
  ident: cpl_40_11_117102bib53
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808012016
– volume: 45
  start-page: 599
  year: 2006
  ident: cpl_40_11_117102bib30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200502673
– volume: 38
  year: 2021
  ident: cpl_40_11_117102bib21
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/8/087702
– volume: 115
  year: 2015
  ident: cpl_40_11_117102bib73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.216806
– volume: 14
  start-page: 2628
  year: 2020
  ident: cpl_40_11_117102bib10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08396
– volume: 6
  start-page: 15
  year: 1996
  ident: cpl_40_11_117102bib42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 77
  start-page: 3865
  year: 1996
  ident: cpl_40_11_117102bib43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 13
  start-page: 5264
  year: 2013
  ident: cpl_40_11_117102bib58
  publication-title: Nano Lett.
  doi: 10.1021/nl4027346
– volume: 27
  start-page: 107
  year: 2019
  ident: cpl_40_11_117102bib9
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.03.015
– volume: 13
  start-page: 2027
  year: 2022
  ident: cpl_40_11_117102bib19
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00177
– volume: 372
  start-page: 1458
  year: 2021
  ident: cpl_40_11_117102bib17
  publication-title: Science
  doi: 10.1126/science.abd3230
– volume: 119
  year: 2017
  ident: cpl_40_11_117102bib29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.106101
– volume: 97
  start-page: 8617
  year: 1993
  ident: cpl_40_11_117102bib56
  publication-title: J. Phys. Chem. C
  doi: 10.1021/j100135a014
– volume: 565
  start-page: 337
  year: 2019
  ident: cpl_40_11_117102bib72
  publication-title: Nature
  doi: 10.1038/s41586-018-0807-6
– volume: 94
  year: 2005
  ident: cpl_40_11_117102bib47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.226601
– volume: 617
  start-page: 67
  year: 2023
  ident: cpl_40_11_117102bib31
  publication-title: Nature
  doi: 10.1038/s41586-023-05848-5
– volume: 16
  start-page: 7309
  year: 2016
  ident: cpl_40_11_117102bib41
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04309
– volume: 143
  start-page: 3503
  year: 2021
  ident: cpl_40_11_117102bib59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12809
– volume: 1
  start-page: 228
  year: 2018
  ident: cpl_40_11_117102bib38
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0058-4
– volume: 48
  start-page: 4442
  year: 1993
  ident: cpl_40_11_117102bib49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.4442
– volume: 13
  year: 2021
  ident: cpl_40_11_117102bib11
  publication-title: Nanoscale
  doi: 10.1039/D1NR06598J
– volume: 40
  year: 2023
  ident: cpl_40_11_117102bib23
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/40/6/067701
– volume: 14
  start-page: 3160
  year: 2023
  ident: cpl_40_11_117102bib26
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.3c00376
– volume: 87
  start-page: 1213
  year: 2015
  ident: cpl_40_11_117102bib66
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.1213
– volume: 9
  start-page: 67
  year: 2023
  ident: cpl_40_11_117102bib27
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-023-01026-3
– volume: 267
  year: 2021
  ident: cpl_40_11_117102bib52
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108033
– volume: 10
  start-page: 1775
  year: 2019
  ident: cpl_40_11_117102bib18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09669-x
– volume: 77
  start-page: 3419
  year: 1996
  ident: cpl_40_11_117102bib63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3419
– volume: 108
  year: 2012
  ident: cpl_40_11_117102bib64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.066804
– volume: 119
  start-page: 1806
  year: 2019
  ident: cpl_40_11_117102bib7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00501
– volume: 128
  year: 2022
  ident: cpl_40_11_117102bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.067601
– volume: 3
  start-page: 5
  year: 2017
  ident: cpl_40_11_117102bib61
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0011-5
– volume: 29
  year: 2020
  ident: cpl_40_11_117102bib4
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab81ff
– volume: 36
  start-page: 611
  year: 2020
  ident: cpl_40_11_117102bib2
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-020-0182-3
– volume: 11
  year: 2019
  ident: cpl_40_11_117102bib33
  publication-title: Nanoscale
  doi: 10.1039/C9NR04112E
– volume: 63
  start-page: 159
  year: 2018
  ident: cpl_40_11_117102bib39
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.01.010
– volume: 11
  start-page: 382
  year: 2012
  ident: cpl_40_11_117102bib68
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3279
– volume: 38
  year: 2021
  ident: cpl_40_11_117102bib20
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/7/077501
– volume: 108
  year: 2012
  ident: cpl_40_11_117102bib71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.196802
– volume: 15
  start-page: 585
  year: 2020
  ident: cpl_40_11_117102bib40
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0715-4
– volume: 50
  year: 1994
  ident: cpl_40_11_117102bib44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 68
  start-page: 3603
  year: 1992
  ident: cpl_40_11_117102bib46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3603
– volume: 86
  year: 2012
  ident: cpl_40_11_117102bib65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.165108
– volume: 90
  year: 2014
  ident: cpl_40_11_117102bib13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.205420
– volume: 7
  year: 2016
  ident: cpl_40_11_117102bib36
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10287
– volume: 99
  year: 2007
  ident: cpl_40_11_117102bib70
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.236809
– volume: 12
  start-page: 5298
  year: 2021
  ident: cpl_40_11_117102bib25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25587-3
– volume: 113
  start-page: 9901
  year: 2000
  ident: cpl_40_11_117102bib50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 28
  year: 2019
  ident: cpl_40_11_117102bib54
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab4174
– volume: 330
  start-page: 1801
  year: 2010
  ident: cpl_40_11_117102bib67
  publication-title: Science
  doi: 10.1126/science.1195816
– volume: 5
  start-page: 521
  year: 2018
  ident: cpl_40_11_117102bib32
  publication-title: Mater. Horizons
  doi: 10.1039/C8MH00082D
– volume: 22
  start-page: 542
  year: 2023
  ident: cpl_40_11_117102bib12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01422-y
– volume: 98
  year: 2018
  ident: cpl_40_11_117102bib48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.214402
– volume: 122
  start-page: 1127
  year: 2022
  ident: cpl_40_11_117102bib6
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00165
– volume: 28
  year: 2018
  ident: cpl_40_11_117102bib28
  publication-title: Adv. Funct.
  doi: 10.1002/adfm.201707383
– volume: 40
  year: 2023
  ident: cpl_40_11_117102bib22
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/40/4/047303
– volume: 130
  year: 2023
  ident: cpl_40_11_117102bib57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.246802
– volume: 47
  start-page: 6461
  year: 2008
  ident: cpl_40_11_117102bib55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200801691
– volume: 18
  start-page: 4908
  year: 2018
  ident: cpl_40_11_117102bib37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01639
– volume: 114
  year: 2015
  ident: cpl_40_11_117102bib35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.206401
– volume: 107
  year: 2023
  ident: cpl_40_11_117102bib69
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.165419
– volume: 50
  year: 2021
  ident: cpl_40_11_117102bib8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00821G
– volume: 92
  year: 2020
  ident: cpl_40_11_117102bib14
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.021003
SSID ssj0011811
Score 2.3767223
Snippet Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though...
Two-dimensional(2D)ferroelectric(FE)systems are promising candidates for non-volatile nanodevices.Pre-vious studies mainly focused on 2D compounds.Though...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117102
Title Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium
URI https://iopscience.iop.org/article/10.1088/0256-307X/40/11/117102
https://d.wanfangdata.com.cn/periodical/zgwlkb-e202311018
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEF9s5cAXTz3F3qmscm9H2m6STfceRS1VxJO7Cn1b9itajGnpB0L_emeyiWcFERFCCOxMsplsMrPZmd-PkJ8CQeCU4kFiTBTEHCYoOrE24E4rxn5rm9gC7fMq6d3EFwNeZRMWtTCjcfnpb8KhBwr2JiwT4kQLvTT-Mhm04naLMdjQS9bIaiSSBEkMzv9cPy8kgAMrSPMqnapI-M3zLPmnGvShqObJU5XfvnA83a9EV132-Sb3zflMN83iFZrjp-5pg6yXYSk99gqbZMXlW-RLkR5qpt9Ir-smk5GnzBkaCNypyi29xCxy-ldN77Si_yCaLXKo6TCn_cdRcIq8AR7zg_Zdls0nw_nDNrnpnvVPekHJwRAYcG-zQDjOhE21aSOHBEaDYayMdlY7HoUmxR2PTJJ2OqmLeDuElhCaIZKwTCgW7ZB6PsrdLqEdYSIE14GILkEcfGFhtgZDIQyZA08dNgivLC9NCVCOPBmZLBbKhZBoJYlWkjFOXaS3UoO0nvXGHqLjXY1f8CBk-bZO35U-XJI242ypXY5t2iBH5SD5L7e4fczutXRIUM8QGO37hy77g6yhpq973CP12WTu9iEAmumDYog_AWrM8_I
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED_6YGNftu7F0m2dNvZtOI5sy9E-jrUh3UpXthTyTejlLtR1Qh4U-tfvznKyplBKKRhjkE6yT7LvJ-vudwCfJZHAaS2i3No0ygQuUEzuXCS80Zx_NS53Ndvncd4_zX4MxXADDlaxMONJ8-lv42UgCg4qbBziZExWmn6ZDOOsE3OOB1nJeOKKTdgWaZ4Shf7hr5PVZgIasTpx3lJuGSh8a1trNmoT76OO6KkKXZ1dMz69Z8FJZFZzFpLPyXl7MTdte3WD0fHBz7UDTxt4yr4Foeew4asX8Kh2E7Wzl9Dv-el0HFLnjCwCeKYrx47Im5z91rO_RrM_iGprX2o2qtjgchztU_6AwP3BBr4sF9PR4uIVnPYOBt_7UZOLIbJo5uaR9IJLVxjboVwShAqTTFvjnfEiTWxBJ5HavOh2C5-KToIlCRYjonBcap6-hq1qXPk3wLrSpkSyg8guJz586XDVhlMiSbhHi520QCy1r2xDVE75MkpVb5hLqUhTijSlMlrCqKCpFsQruUmg6rhT4gsOhmre2tmdtT-u1baTcq1c4Ui14FMzUf7Xuzq7LM-N8pSonhNB2u69uv0Aj0_2e-ro8PjnW3hCjYRQyHewNZ8u_HvERHOzV8_4fysf-VY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelectricity+and+Large+Rashba+Splitting+in+Two-Dimensional+Tellurium&rft.jtitle=Chinese+physics+letters&rft.au=Wang+%E7%8E%8B%2C+Yao+%E5%9E%9A&rft.au=Lei+%E9%9B%B7%2C+Zhenzhen+%E7%8F%8D%E7%8F%8D&rft.au=Zhang+%E5%BC%A0%2C+Jinsen+%E9%87%91%E6%A3%AE&rft.au=Tao+%E9%99%B6%2C+Xinyong+%E6%96%B0%E6%B0%B8&rft.date=2023-11-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=40&rft.issue=11&rft.spage=117102&rft_id=info:doi/10.1088%2F0256-307X%2F40%2F11%2F117102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0256_307X_40_11_117102
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg