Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium
Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a coll...
Saved in:
Published in | Chinese physics letters Vol. 40; no. 11; pp. 117102 - 129 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.11.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a collection of one-dimensional chains, and lone-pair instability is responsible for the (anti)ferroelectricity. The total polarization is determined to be 0.34 × 10
−10
C/m for the FE ground state. Due to the local polarization field in the FE film, we show a large Rashba splitting (
α
R
∼ 2 eV⋅Å) with nonzero spin Hall conductivity for experimental detection. Furthermore, a dipole-like distribution of Berry curvature is verified, which may facilitate a nonlinear Hall effect. Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field, they can be reversed through FE phase transition. Our results not only broaden the elemental FE materials, but also shed light on their intriguing transport phenomena. |
---|---|
AbstractList | Two-dimensional(2D)ferroelectric(FE)systems are promising candidates for non-volatile nanodevices.Pre-vious studies mainly focused on 2D compounds.Though counter-intuitive,here we propose several new phases of tellurium with(anti)ferroelectricity.Two-dimensional films can be viewed as a collection of one-dimensional chains,and lone-pair instability is responsible for the(anti)ferroelectricity.The total polarization is determined to be 0.34 × 10-10 C/m for the FE ground state.Due to the local polarization field in the FE film,we show a large Rashba splitting(αR~2 eV·?)with nonzero spin Hall conductivity for experimental detection.Furthermore,a dipole-like distribution of Berry curvature is verified,which may facilitate a nonlinear Hall effect.Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field,they can be reversed through FE phase transition.Our results not only broaden the elemental FE materials,but also shed light on their intriguing transport phenomena. Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though counter-intuitive, here we propose several new phases of tellurium with (anti)ferroelectricity. Two-dimensional films can be viewed as a collection of one-dimensional chains, and lone-pair instability is responsible for the (anti)ferroelectricity. The total polarization is determined to be 0.34 × 10 −10 C/m for the FE ground state. Due to the local polarization field in the FE film, we show a large Rashba splitting ( α R ∼ 2 eV⋅Å) with nonzero spin Hall conductivity for experimental detection. Furthermore, a dipole-like distribution of Berry curvature is verified, which may facilitate a nonlinear Hall effect. Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field, they can be reversed through FE phase transition. Our results not only broaden the elemental FE materials, but also shed light on their intriguing transport phenomena. |
Author | Wang, Yao Lu, Yunhao Zhang, Jinsen Hua, Chenqiang Lei, Zhenzhen Tao, Xinyong |
Author_xml | – sequence: 1 givenname: Yao surname: Wang fullname: Wang, Yao organization: Moganshan Research Institute at Deqing County Zhejiang University of Technology , China – sequence: 2 givenname: Zhenzhen surname: Lei fullname: Lei, Zhenzhen organization: College of Materials Science and Engineering, Zhejiang University of Technology , China – sequence: 3 givenname: Jinsen surname: Zhang fullname: Zhang, Jinsen organization: College of Materials Science and Engineering, Zhejiang University of Technology , China – sequence: 4 givenname: Xinyong surname: Tao fullname: Tao, Xinyong organization: College of Materials Science and Engineering, Zhejiang University of Technology , China – sequence: 5 givenname: Chenqiang surname: Hua fullname: Hua, Chenqiang organization: Zhongfa Aviation Institute of Beihang University , China – sequence: 6 givenname: Yunhao surname: Lu fullname: Lu, Yunhao organization: School of Physics, Zhejiang University , China |
BookMark | eNqFkFFLwzAUhYNMcE7_gvRRH-pyk2at4ItM54SBoBN8C2ma1swsLUnHmL_elIqiCINLLtx7vsvJOUYDW1uF0BngS8BZNsaETWKK09dxgscAoVLA5AANIU0gpizBAzT8Fh2hY-9XGANkAEM0nynnamWUbJ2Wut1FwhbRQrhKRU_Cv-Uiem6Mblttq0jbaLmt41u9Vtbr2goTLZUxG6c36xN0WArj1elXH6GX2d1yOo8Xj_cP05tFLBOgbZwpBllR5hIrzOgVoUASIXNV5IpRIsvuYVROyjQtFWWYhA0JawKsgEwAHaGL_u5W2FLYiq_qjQtOPP-otuY954rgcBUwZEF73Wulq713quThh6INzlsntOGAeZcg78LhXTg8CRPgfYIBn_zBG6fXwu32g6QHdd38-NsLnf8Dycb8kvGmKOkna1iTUA |
CitedBy_id | crossref_primary_10_1088_0256_307X_41_5_057501 crossref_primary_10_1103_PhysRevB_110_085110 crossref_primary_10_1002_adma_202405590 |
Cites_doi | 10.1126/science.1102896 10.1002/adom.202200898 10.1016/j.cpc.2007.11.016 10.1103/PhysRevB.83.195131 10.1039/C9TC04187G 10.1038/s41586-021-03449-8 10.1038/s41524-023-00972-2 10.1039/C8NR07501H 10.1103/PhysRevLett.93.046403 10.1002/adma.202005098 10.1107/S0021889808012016 10.1002/anie.200502673 10.1088/0256-307X/38/8/087702 10.1103/PhysRevLett.115.216806 10.1021/acsnano.9b08396 10.1016/0927-0256(96)00008-0 10.1103/PhysRevLett.77.3865 10.1021/nl4027346 10.1016/j.mattod.2019.03.015 10.1021/acs.jpclett.2c00177 10.1126/science.abd3230 10.1103/PhysRevLett.119.106101 10.1021/j100135a014 10.1038/s41586-018-0807-6 10.1103/PhysRevLett.94.226601 10.1038/s41586-023-05848-5 10.1021/acs.nanolett.6b04309 10.1021/jacs.0c12809 10.1038/s41928-018-0058-4 10.1103/PhysRevB.48.4442 10.1039/D1NR06598J 10.1088/0256-307X/40/6/067701 10.1021/acs.jpclett.3c00376 10.1103/RevModPhys.87.1213 10.1038/s41524-023-01026-3 10.1016/j.cpc.2021.108033 10.1038/s41467-019-09669-x 10.1103/PhysRevLett.77.3419 10.1103/PhysRevLett.108.066804 10.1021/acs.chemrev.8b00501 10.1103/PhysRevLett.128.067601 10.1038/s41524-017-0011-5 10.1088/1674-1056/ab81ff 10.1007/s40242-020-0182-3 10.1039/C9NR04112E 10.1016/j.scib.2018.01.010 10.1038/nmat3279 10.1088/0256-307X/38/7/077501 10.1103/PhysRevLett.108.196802 10.1038/s41565-020-0715-4 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.68.3603 10.1103/PhysRevB.86.165108 10.1103/PhysRevB.90.205420 10.1038/ncomms10287 10.1103/PhysRevLett.99.236809 10.1038/s41467-021-25587-3 10.1063/1.1329672 10.1088/1674-1056/ab4174 10.1126/science.1195816 10.1039/C8MH00082D 10.1038/s41563-022-01422-y 10.1103/PhysRevB.98.214402 10.1021/acs.chemrev.1c00165 10.1002/adfm.201707383 10.1088/0256-307X/40/4/047303 10.1103/PhysRevLett.130.246802 10.1002/anie.200801691 10.1021/acs.nanolett.8b01639 10.1103/PhysRevLett.114.206401 10.1103/PhysRevB.107.165419 10.1039/C9CS00821G 10.1103/RevModPhys.92.021003 |
ContentType | Journal Article |
Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/0256-307X/40/11/117102 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1741-3540 |
EndPage | 129 |
ExternalDocumentID | zgwlkb_e202311018 10_1088_0256_307X_40_11_117102 cpl_40_11_117102 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE Q-- R4D RIN RNS RO9 ROL RPA SY9 U1G U5K UCJ W28 XPP ~02 AAYXX ADEQX CITATION TGP 02O 042 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NS0 NT- NT. PSX Q02 S3P T37 TCJ |
ID | FETCH-LOGICAL-c413t-8e518dfbc0e053923124acbedbe532cf532c53c6f77fe3502edb2bed215d18a13 |
IEDL.DBID | IOP |
ISSN | 0256-307X |
IngestDate | Thu May 29 04:07:19 EDT 2025 Tue Jul 01 01:35:39 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Tue Aug 20 22:16:39 EDT 2024 Sun Aug 18 14:40:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-8e518dfbc0e053923124acbedbe532cf532c53c6f77fe3502edb2bed215d18a13 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/0256-307X/40/11/117102/pdf |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1088_0256_307X_40_11_117102 wanfang_journals_zgwlkb_e202311018 iop_journals_10_1088_0256_307X_40_11_117102 crossref_citationtrail_10_1088_0256_307X_40_11_117102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Phys. Lett |
PublicationTitle_FL | Chinese Physics Letters |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Gupta (cpl_40_11_117102bib59) 2021; 143 Blöchl (cpl_40_11_117102bib44) 1994; 50 Jungwirth (cpl_40_11_117102bib68) 2012; 11 Ma (cpl_40_11_117102bib72) 2019; 565 Poleschner (cpl_40_11_117102bib55) 2008; 47 Sodemann (cpl_40_11_117102bib73) 2015; 115 Xie (cpl_40_11_117102bib6) 2022; 122 Sheng (cpl_40_11_117102bib60) 2021; 593 Shang (cpl_40_11_117102bib19) 2022; 13 Park (cpl_40_11_117102bib16) 2022; 10 Wu (cpl_40_11_117102bib22) 2023; 40 Zhang (cpl_40_11_117102bib23) 2023; 40 Sinova (cpl_40_11_117102bib66) 2015; 87 Yuan (cpl_40_11_117102bib18) 2019; 10 Momma (cpl_40_11_117102bib53) 2008; 41 Henkelman (cpl_40_11_117102bib50) 2000; 113 Koroteev (cpl_40_11_117102bib62) 2004; 93 Fang (cpl_40_11_117102bib2) 2020; 36 Lu (cpl_40_11_117102bib69) 2023; 107 Qi (cpl_40_11_117102bib5) 2021; 33 Wu (cpl_40_11_117102bib41) 2016; 16 Kresse (cpl_40_11_117102bib42) 1996; 6 Qiao (cpl_40_11_117102bib48) 2018; 98 Mostofi (cpl_40_11_117102bib51) 2008; 178 Rehman (cpl_40_11_117102bib4) 2020; 29 Rojaee (cpl_40_11_117102bib10) 2020; 14 Lin (cpl_40_11_117102bib36) 2016; 7 Deng (cpl_40_11_117102bib30) 2006; 45 Varykhalov (cpl_40_11_117102bib64) 2012; 108 Guo (cpl_40_11_117102bib47) 2005; 94 Wang (cpl_40_11_117102bib61) 2017; 3 Khan (cpl_40_11_117102bib3) 2020; 8 Ye (cpl_40_11_117102bib21) 2021; 38 Wang (cpl_40_11_117102bib52) 2021; 267 Wang (cpl_40_11_117102bib12) 2023; 22 Novoselov (cpl_40_11_117102bib1) 2004; 306 Avsar (cpl_40_11_117102bib14) 2020; 92 Liu (cpl_40_11_117102bib58) 2013; 13 de la Barrera (cpl_40_11_117102bib25) 2021; 12 Liang (cpl_40_11_117102bib33) 2019; 11 Dronskowski (cpl_40_11_117102bib56) 1993; 97 Liu (cpl_40_11_117102bib24) 2023; 9 Gao (cpl_40_11_117102bib11) 2021; 13 Xiao (cpl_40_11_117102bib71) 2012; 108 Fan (cpl_40_11_117102bib8) 2021; 50 Klimeš (cpl_40_11_117102bib45) 2011; 83 Feng (cpl_40_11_117102bib65) 2012; 86 Yasuda (cpl_40_11_117102bib17) 2021; 372 Xiao (cpl_40_11_117102bib28) 2018; 28 Qiu (cpl_40_11_117102bib40) 2020; 15 Wang (cpl_40_11_117102bib7) 2019; 119 Zhu (cpl_40_11_117102bib29) 2017; 119 Perdew (cpl_40_11_117102bib43) 1996; 77 Sethulakshmi (cpl_40_11_117102bib9) 2019; 27 LaShell (cpl_40_11_117102bib63) 1996; 77 Vanderbilt (cpl_40_11_117102bib49) 1993; 48 Wan (cpl_40_11_117102bib15) 2022; 128 Wang (cpl_40_11_117102bib32) 2018; 5 Tan (cpl_40_11_117102bib57) 2023; 130 Xiao (cpl_40_11_117102bib70) 2007; 99 Gou (cpl_40_11_117102bib31) 2023; 617 Wang (cpl_40_11_117102bib34) 2018; 10 Hirayama (cpl_40_11_117102bib35) 2015; 114 Liu (cpl_40_11_117102bib37) 2018; 18 Qiao (cpl_40_11_117102bib39) 2018; 63 Hong (cpl_40_11_117102bib26) 2023; 14 Hua (cpl_40_11_117102bib20) 2021; 38 Wunderlich (cpl_40_11_117102bib67) 2010; 330 Tong (cpl_40_11_117102bib54) 2019; 28 Gonze (cpl_40_11_117102bib46) 1992; 68 Padilha (cpl_40_11_117102bib13) 2014; 90 Qian (cpl_40_11_117102bib27) 2023; 9 Wang (cpl_40_11_117102bib38) 2018; 1 |
References_xml | – volume: 306 start-page: 666 year: 2004 ident: cpl_40_11_117102bib1 publication-title: Science doi: 10.1126/science.1102896 – volume: 10 year: 2022 ident: cpl_40_11_117102bib16 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200898 – volume: 178 start-page: 685 year: 2008 ident: cpl_40_11_117102bib51 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2007.11.016 – volume: 83 year: 2011 ident: cpl_40_11_117102bib45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 8 start-page: 387 year: 2020 ident: cpl_40_11_117102bib3 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04187G – volume: 593 start-page: 56 year: 2021 ident: cpl_40_11_117102bib60 publication-title: Nature doi: 10.1038/s41586-021-03449-8 – volume: 9 start-page: 16 year: 2023 ident: cpl_40_11_117102bib24 publication-title: npj Comput. Mater. doi: 10.1038/s41524-023-00972-2 – volume: 10 year: 2018 ident: cpl_40_11_117102bib34 publication-title: Nanoscale doi: 10.1039/C8NR07501H – volume: 93 year: 2004 ident: cpl_40_11_117102bib62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.046403 – volume: 33 year: 2021 ident: cpl_40_11_117102bib5 publication-title: Adv. Mater. doi: 10.1002/adma.202005098 – volume: 41 start-page: 653 year: 2008 ident: cpl_40_11_117102bib53 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808012016 – volume: 45 start-page: 599 year: 2006 ident: cpl_40_11_117102bib30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200502673 – volume: 38 year: 2021 ident: cpl_40_11_117102bib21 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/8/087702 – volume: 115 year: 2015 ident: cpl_40_11_117102bib73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.216806 – volume: 14 start-page: 2628 year: 2020 ident: cpl_40_11_117102bib10 publication-title: ACS Nano doi: 10.1021/acsnano.9b08396 – volume: 6 start-page: 15 year: 1996 ident: cpl_40_11_117102bib42 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 77 start-page: 3865 year: 1996 ident: cpl_40_11_117102bib43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 13 start-page: 5264 year: 2013 ident: cpl_40_11_117102bib58 publication-title: Nano Lett. doi: 10.1021/nl4027346 – volume: 27 start-page: 107 year: 2019 ident: cpl_40_11_117102bib9 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.03.015 – volume: 13 start-page: 2027 year: 2022 ident: cpl_40_11_117102bib19 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00177 – volume: 372 start-page: 1458 year: 2021 ident: cpl_40_11_117102bib17 publication-title: Science doi: 10.1126/science.abd3230 – volume: 119 year: 2017 ident: cpl_40_11_117102bib29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.106101 – volume: 97 start-page: 8617 year: 1993 ident: cpl_40_11_117102bib56 publication-title: J. Phys. Chem. C doi: 10.1021/j100135a014 – volume: 565 start-page: 337 year: 2019 ident: cpl_40_11_117102bib72 publication-title: Nature doi: 10.1038/s41586-018-0807-6 – volume: 94 year: 2005 ident: cpl_40_11_117102bib47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.226601 – volume: 617 start-page: 67 year: 2023 ident: cpl_40_11_117102bib31 publication-title: Nature doi: 10.1038/s41586-023-05848-5 – volume: 16 start-page: 7309 year: 2016 ident: cpl_40_11_117102bib41 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04309 – volume: 143 start-page: 3503 year: 2021 ident: cpl_40_11_117102bib59 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12809 – volume: 1 start-page: 228 year: 2018 ident: cpl_40_11_117102bib38 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0058-4 – volume: 48 start-page: 4442 year: 1993 ident: cpl_40_11_117102bib49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.4442 – volume: 13 year: 2021 ident: cpl_40_11_117102bib11 publication-title: Nanoscale doi: 10.1039/D1NR06598J – volume: 40 year: 2023 ident: cpl_40_11_117102bib23 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/40/6/067701 – volume: 14 start-page: 3160 year: 2023 ident: cpl_40_11_117102bib26 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c00376 – volume: 87 start-page: 1213 year: 2015 ident: cpl_40_11_117102bib66 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.1213 – volume: 9 start-page: 67 year: 2023 ident: cpl_40_11_117102bib27 publication-title: npj Comput. Mater. doi: 10.1038/s41524-023-01026-3 – volume: 267 year: 2021 ident: cpl_40_11_117102bib52 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 10 start-page: 1775 year: 2019 ident: cpl_40_11_117102bib18 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09669-x – volume: 77 start-page: 3419 year: 1996 ident: cpl_40_11_117102bib63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3419 – volume: 108 year: 2012 ident: cpl_40_11_117102bib64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.066804 – volume: 119 start-page: 1806 year: 2019 ident: cpl_40_11_117102bib7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00501 – volume: 128 year: 2022 ident: cpl_40_11_117102bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.067601 – volume: 3 start-page: 5 year: 2017 ident: cpl_40_11_117102bib61 publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0011-5 – volume: 29 year: 2020 ident: cpl_40_11_117102bib4 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab81ff – volume: 36 start-page: 611 year: 2020 ident: cpl_40_11_117102bib2 publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-020-0182-3 – volume: 11 year: 2019 ident: cpl_40_11_117102bib33 publication-title: Nanoscale doi: 10.1039/C9NR04112E – volume: 63 start-page: 159 year: 2018 ident: cpl_40_11_117102bib39 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.01.010 – volume: 11 start-page: 382 year: 2012 ident: cpl_40_11_117102bib68 publication-title: Nat. Mater. doi: 10.1038/nmat3279 – volume: 38 year: 2021 ident: cpl_40_11_117102bib20 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/7/077501 – volume: 108 year: 2012 ident: cpl_40_11_117102bib71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.196802 – volume: 15 start-page: 585 year: 2020 ident: cpl_40_11_117102bib40 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0715-4 – volume: 50 year: 1994 ident: cpl_40_11_117102bib44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 68 start-page: 3603 year: 1992 ident: cpl_40_11_117102bib46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3603 – volume: 86 year: 2012 ident: cpl_40_11_117102bib65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.165108 – volume: 90 year: 2014 ident: cpl_40_11_117102bib13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.205420 – volume: 7 year: 2016 ident: cpl_40_11_117102bib36 publication-title: Nat. Commun. doi: 10.1038/ncomms10287 – volume: 99 year: 2007 ident: cpl_40_11_117102bib70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.236809 – volume: 12 start-page: 5298 year: 2021 ident: cpl_40_11_117102bib25 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25587-3 – volume: 113 start-page: 9901 year: 2000 ident: cpl_40_11_117102bib50 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 28 year: 2019 ident: cpl_40_11_117102bib54 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab4174 – volume: 330 start-page: 1801 year: 2010 ident: cpl_40_11_117102bib67 publication-title: Science doi: 10.1126/science.1195816 – volume: 5 start-page: 521 year: 2018 ident: cpl_40_11_117102bib32 publication-title: Mater. Horizons doi: 10.1039/C8MH00082D – volume: 22 start-page: 542 year: 2023 ident: cpl_40_11_117102bib12 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01422-y – volume: 98 year: 2018 ident: cpl_40_11_117102bib48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.214402 – volume: 122 start-page: 1127 year: 2022 ident: cpl_40_11_117102bib6 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00165 – volume: 28 year: 2018 ident: cpl_40_11_117102bib28 publication-title: Adv. Funct. doi: 10.1002/adfm.201707383 – volume: 40 year: 2023 ident: cpl_40_11_117102bib22 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/40/4/047303 – volume: 130 year: 2023 ident: cpl_40_11_117102bib57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.246802 – volume: 47 start-page: 6461 year: 2008 ident: cpl_40_11_117102bib55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200801691 – volume: 18 start-page: 4908 year: 2018 ident: cpl_40_11_117102bib37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01639 – volume: 114 year: 2015 ident: cpl_40_11_117102bib35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.206401 – volume: 107 year: 2023 ident: cpl_40_11_117102bib69 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.165419 – volume: 50 year: 2021 ident: cpl_40_11_117102bib8 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00821G – volume: 92 year: 2020 ident: cpl_40_11_117102bib14 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.021003 |
SSID | ssj0011811 |
Score | 2.3767223 |
Snippet | Two-dimensional (2D) ferroelectric (FE) systems are promising candidates for non-volatile nanodevices. Previous studies mainly focused on 2D compounds. Though... Two-dimensional(2D)ferroelectric(FE)systems are promising candidates for non-volatile nanodevices.Pre-vious studies mainly focused on 2D compounds.Though... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117102 |
Title | Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium |
URI | https://iopscience.iop.org/article/10.1088/0256-307X/40/11/117102 https://d.wanfangdata.com.cn/periodical/zgwlkb-e202311018 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEF9s5cAXTz3F3qmscm9H2m6STfceRS1VxJO7Cn1b9itajGnpB0L_emeyiWcFERFCCOxMsplsMrPZmd-PkJ8CQeCU4kFiTBTEHCYoOrE24E4rxn5rm9gC7fMq6d3EFwNeZRMWtTCjcfnpb8KhBwr2JiwT4kQLvTT-Mhm04naLMdjQS9bIaiSSBEkMzv9cPy8kgAMrSPMqnapI-M3zLPmnGvShqObJU5XfvnA83a9EV132-Sb3zflMN83iFZrjp-5pg6yXYSk99gqbZMXlW-RLkR5qpt9Ir-smk5GnzBkaCNypyi29xCxy-ldN77Si_yCaLXKo6TCn_cdRcIq8AR7zg_Zdls0nw_nDNrnpnvVPekHJwRAYcG-zQDjOhE21aSOHBEaDYayMdlY7HoUmxR2PTJJ2OqmLeDuElhCaIZKwTCgW7ZB6PsrdLqEdYSIE14GILkEcfGFhtgZDIQyZA08dNgivLC9NCVCOPBmZLBbKhZBoJYlWkjFOXaS3UoO0nvXGHqLjXY1f8CBk-bZO35U-XJI242ypXY5t2iBH5SD5L7e4fczutXRIUM8QGO37hy77g6yhpq973CP12WTu9iEAmumDYog_AWrM8_I |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED_6YGNftu7F0m2dNvZtOI5sy9E-jrUh3UpXthTyTejlLtR1Qh4U-tfvznKyplBKKRhjkE6yT7LvJ-vudwCfJZHAaS2i3No0ygQuUEzuXCS80Zx_NS53Ndvncd4_zX4MxXADDlaxMONJ8-lv42UgCg4qbBziZExWmn6ZDOOsE3OOB1nJeOKKTdgWaZ4Shf7hr5PVZgIasTpx3lJuGSh8a1trNmoT76OO6KkKXZ1dMz69Z8FJZFZzFpLPyXl7MTdte3WD0fHBz7UDTxt4yr4Foeew4asX8Kh2E7Wzl9Dv-el0HFLnjCwCeKYrx47Im5z91rO_RrM_iGprX2o2qtjgchztU_6AwP3BBr4sF9PR4uIVnPYOBt_7UZOLIbJo5uaR9IJLVxjboVwShAqTTFvjnfEiTWxBJ5HavOh2C5-KToIlCRYjonBcap6-hq1qXPk3wLrSpkSyg8guJz586XDVhlMiSbhHi520QCy1r2xDVE75MkpVb5hLqUhTijSlMlrCqKCpFsQruUmg6rhT4gsOhmre2tmdtT-u1baTcq1c4Ui14FMzUf7Xuzq7LM-N8pSonhNB2u69uv0Aj0_2e-ro8PjnW3hCjYRQyHewNZ8u_HvERHOzV8_4fysf-VY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelectricity+and+Large+Rashba+Splitting+in+Two-Dimensional+Tellurium&rft.jtitle=Chinese+physics+letters&rft.au=Wang+%E7%8E%8B%2C+Yao+%E5%9E%9A&rft.au=Lei+%E9%9B%B7%2C+Zhenzhen+%E7%8F%8D%E7%8F%8D&rft.au=Zhang+%E5%BC%A0%2C+Jinsen+%E9%87%91%E6%A3%AE&rft.au=Tao+%E9%99%B6%2C+Xinyong+%E6%96%B0%E6%B0%B8&rft.date=2023-11-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=40&rft.issue=11&rft.spage=117102&rft_id=info:doi/10.1088%2F0256-307X%2F40%2F11%2F117102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0256_307X_40_11_117102 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg |