Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells

Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based perovskite solar cells (PSCs). Herein, we prepared ZnO–SnO2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH3NH3PbI3-ba...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 144; pp. 623 - 630
Main Authors Song, Jiaxing, Zheng, Enqiang, Wang, Xiao-Feng, Tian, Wenjing, Miyasaka, Tsutomu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based perovskite solar cells (PSCs). Herein, we prepared ZnO–SnO2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH3NH3PbI3-based planar-structured PSCs. ZnO–SnO2 nanocomposite with the optimal ~89mol% of the ZnO content gives higher PCE than the ZnO for the best fabricated PSC. The photoluminescence spectroscopies measured in both steady and transient states and the electrochemical impedance spectroscopy were carried out to characterize the interface of CH3NH3PbI3 and different ECLs, namely ZnO, ZnO–SnO2 composite, and SnO2. The high PCE of PSCs based on the ZnO–SnO2 nanocomposite ECL was thus attributed to joint contributions of the high charge extraction efficiency and large charge recombination resistance both on the CH3NH3PbI3/ECL interface. The thermal stability of CH3NH3PbI3 absorber and the device stability of the corresponding PSC are both dependent on the ECLs in the order: SnO2>ZnO–SnO2 >ZnO, suggesting that the hydroxyl-induced degradation of CH3NH3PbI3 may be predominant in the ambient air environment in the initial ~700h. The PCE of the optimized device was further improved to 15.2% by introducing the low-temperature processable Al2O3 as a capping layer to the ZnO–SnO2 composite. [Display omitted] •The first report on ZnO–SnO2 as electron collection layer for perovskite solar cell.•The ZnO–SnO2 electron collection layers are low-temperature-processed.•An optimal ZnO–SnO2 (2:1 weight ratio in solution) gives the relatively high PCE.•The ZnO–SnO2 thin films exhibit better thermal stability of CH3NH3PbI3.•The PCE of the optimized device was further improved by introducing the Al2O3 layer.
AbstractList Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based perovskite solar cells (PSCs). Herein, we prepared ZnO–SnO2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH3NH3PbI3-based planar-structured PSCs. ZnO–SnO2 nanocomposite with the optimal ~89mol% of the ZnO content gives higher PCE than the ZnO for the best fabricated PSC. The photoluminescence spectroscopies measured in both steady and transient states and the electrochemical impedance spectroscopy were carried out to characterize the interface of CH3NH3PbI3 and different ECLs, namely ZnO, ZnO–SnO2 composite, and SnO2. The high PCE of PSCs based on the ZnO–SnO2 nanocomposite ECL was thus attributed to joint contributions of the high charge extraction efficiency and large charge recombination resistance both on the CH3NH3PbI3/ECL interface. The thermal stability of CH3NH3PbI3 absorber and the device stability of the corresponding PSC are both dependent on the ECLs in the order: SnO2>ZnO–SnO2 >ZnO, suggesting that the hydroxyl-induced degradation of CH3NH3PbI3 may be predominant in the ambient air environment in the initial ~700h. The PCE of the optimized device was further improved to 15.2% by introducing the low-temperature processable Al2O3 as a capping layer to the ZnO–SnO2 composite. [Display omitted] •The first report on ZnO–SnO2 as electron collection layer for perovskite solar cell.•The ZnO–SnO2 electron collection layers are low-temperature-processed.•An optimal ZnO–SnO2 (2:1 weight ratio in solution) gives the relatively high PCE.•The ZnO–SnO2 thin films exhibit better thermal stability of CH3NH3PbI3.•The PCE of the optimized device was further improved by introducing the Al2O3 layer.
Author Tian, Wenjing
Miyasaka, Tsutomu
Zheng, Enqiang
Wang, Xiao-Feng
Song, Jiaxing
Author_xml – sequence: 1
  givenname: Jiaxing
  surname: Song
  fullname: Song, Jiaxing
  email: jiaxing2199@126.com
  organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
– sequence: 2
  givenname: Enqiang
  surname: Zheng
  fullname: Zheng, Enqiang
  email: 804670601@qq.com
  organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China
– sequence: 3
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
  email: xf_wang@jlu.edu.cn
  organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China
– sequence: 4
  givenname: Wenjing
  surname: Tian
  fullname: Tian, Wenjing
  email: wjtian@jlu.edu.cn
  organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
– sequence: 5
  givenname: Tsutomu
  surname: Miyasaka
  fullname: Miyasaka, Tsutomu
  email: miyasaka@toin.ac.jp
  organization: Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8503, Japan
BookMark eNqFkM9KxDAQh4MouK6-gYe-QOukSdvEgyDiP1jYg3rxYEjTKWTtJiWJijffwTf0SeyynjzoaeA3fD9mvgOy67xDQo4pFBRofbIqoh_WOhUl0KoAWUDFd8iMikbmjEmxS2YgyyaHkot9chDjCgDKmvEZeVr4tzzhesSg00vAfAzeYIzYZY9u-fXxeeeWZea088avRx9twqz3IcO-t8aiS9k4aKdDNhX41_i82U_HTIHBYYiHZK_XQ8SjnzknD1eX9xc3-WJ5fXtxvsgNpyzlojVai5YJDti1vOpA8kYCq2tTYscb2lSMda1uJa1BCuxNJepaCoBG6oa3bE5Ot70m-BgD9srYpJP1LgVtB0VBbUypldqaUhtTCqSaTE0w_wWPwa51eP8PO9tiOD32ajGouDFisLMBTVKdt38XfANfRoop
CitedBy_id crossref_primary_10_1002_adma_201905766
crossref_primary_10_1039_C6TA08565B
crossref_primary_10_3390_ma11050778
crossref_primary_10_1039_C7TC04649A
crossref_primary_10_1002_pssa_202200736
crossref_primary_10_1039_D0TA07282F
crossref_primary_10_1016_j_snb_2018_10_138
crossref_primary_10_1039_C7TA03331A
crossref_primary_10_1016_j_ces_2024_120249
crossref_primary_10_1002_aenm_201700623
crossref_primary_10_1016_j_poly_2021_115089
crossref_primary_10_1002_aenm_201900903
crossref_primary_10_1002_solr_201900200
crossref_primary_10_1039_C8QM00620B
crossref_primary_10_1002_er_4244
crossref_primary_10_1021_acsami_7b08536
crossref_primary_10_1021_acsami_7b04833
crossref_primary_10_1021_acsami_6b03276
crossref_primary_10_1039_C6RA10072D
crossref_primary_10_1039_C9DT00930B
crossref_primary_10_1021_acsami_9b03304
crossref_primary_10_1002_smll_201907531
crossref_primary_10_1002_solr_202201026
crossref_primary_10_1016_j_jechem_2018_11_011
crossref_primary_10_1246_bcsj_20180071
crossref_primary_10_1002_solr_201700017
crossref_primary_10_1016_j_orgel_2018_08_016
crossref_primary_10_1039_C8TA09838G
crossref_primary_10_1002_smll_201902579
crossref_primary_10_1016_j_jpowsour_2019_226907
crossref_primary_10_1002_admi_202100128
crossref_primary_10_1002_adfm_201905694
crossref_primary_10_1007_s10854_019_01561_0
crossref_primary_10_1039_C7TA08040A
crossref_primary_10_1039_D1RA08946C
crossref_primary_10_3390_coatings8110408
crossref_primary_10_1039_D3RA01692G
crossref_primary_10_1002_cssc_201600860
crossref_primary_10_1016_j_solmat_2018_02_007
crossref_primary_10_1002_cjoc_202000369
crossref_primary_10_1007_s10854_016_5492_3
crossref_primary_10_1002_aenm_201602803
crossref_primary_10_1002_chem_201701858
crossref_primary_10_1021_jacs_7b13229
crossref_primary_10_3390_su14116780
crossref_primary_10_1016_j_apsusc_2018_11_163
crossref_primary_10_1021_acs_chemrev_8b00539
crossref_primary_10_1016_j_jmst_2017_11_003
crossref_primary_10_1016_j_cej_2021_128436
crossref_primary_10_3390_nano9020193
crossref_primary_10_1039_C9NA00182D
crossref_primary_10_1016_j_jallcom_2022_164399
crossref_primary_10_1016_j_electacta_2018_07_028
crossref_primary_10_1039_C8TA01617H
crossref_primary_10_1002_solr_201900331
crossref_primary_10_1002_solr_202200865
crossref_primary_10_1016_j_jechem_2018_03_018
crossref_primary_10_1002_er_4298
crossref_primary_10_1039_C7NR00154A
crossref_primary_10_1007_s12596_024_01678_4
crossref_primary_10_1016_j_solener_2018_01_035
crossref_primary_10_1039_C8TA12254G
crossref_primary_10_1002_aesr_202400119
crossref_primary_10_1021_acsaem_9b00845
crossref_primary_10_1007_s11705_020_1917_x
crossref_primary_10_1021_acsami_9b01952
crossref_primary_10_1002_aelm_201700329
crossref_primary_10_1007_s10854_025_14571_y
crossref_primary_10_1038_s41598_022_24829_8
crossref_primary_10_1016_j_solmat_2016_09_003
crossref_primary_10_1002_adfm_202415215
crossref_primary_10_1142_S2010135X21600080
crossref_primary_10_1002_adfm_201802757
crossref_primary_10_1088_1361_6463_abb1e8
crossref_primary_10_1016_j_spmi_2016_12_012
crossref_primary_10_1021_acsami_6b13675
crossref_primary_10_1039_C6TA07876A
crossref_primary_10_1039_D1RA00090J
crossref_primary_10_1016_j_apt_2021_02_042
crossref_primary_10_1021_acsami_4c02406
crossref_primary_10_1088_1361_6528_abd207
crossref_primary_10_1109_TED_2020_3042449
crossref_primary_10_1002_solr_202100983
crossref_primary_10_1021_acsami_8b18330
crossref_primary_10_1016_j_orgel_2021_106293
crossref_primary_10_1016_j_jcis_2018_11_045
crossref_primary_10_1016_j_jallcom_2016_09_038
crossref_primary_10_1016_j_orgel_2019_04_012
crossref_primary_10_35848_1347_4065_abe5c1
crossref_primary_10_1021_acsaem_1c03160
crossref_primary_10_3390_solids2040026
crossref_primary_10_1021_acsami_9b09209
crossref_primary_10_1039_C6TA01074A
crossref_primary_10_1016_j_solmat_2018_04_021
crossref_primary_10_1364_OME_6_003651
crossref_primary_10_3390_nano12040718
crossref_primary_10_1007_s12598_020_01676_y
crossref_primary_10_1155_2022_6043406
crossref_primary_10_1016_j_apsusc_2019_143552
crossref_primary_10_1016_j_jechem_2017_09_026
crossref_primary_10_1016_j_solmat_2019_110351
crossref_primary_10_1039_C8TA04444A
crossref_primary_10_1016_j_mssp_2019_02_009
crossref_primary_10_1016_j_solener_2016_08_044
crossref_primary_10_1007_s40843_017_9130_x
crossref_primary_10_1039_C9QM00377K
crossref_primary_10_1002_solr_201900266
crossref_primary_10_1002_cssc_201600944
crossref_primary_10_1039_D3TC00666B
crossref_primary_10_1016_j_solmat_2016_10_002
crossref_primary_10_1002_solr_201800292
crossref_primary_10_1021_acsami_6b12683
crossref_primary_10_1002_admi_201801118
crossref_primary_10_1016_j_cej_2017_11_189
crossref_primary_10_1002_solr_202201080
crossref_primary_10_1016_j_jpowsour_2016_11_046
crossref_primary_10_1021_acsami_7b15008
crossref_primary_10_1039_C6RA12126H
crossref_primary_10_1007_s11581_024_05553_x
crossref_primary_10_1016_j_rser_2021_111689
crossref_primary_10_1186_s11671_018_2651_x
crossref_primary_10_1016_j_orgel_2018_05_056
crossref_primary_10_1021_acsami_7b17798
crossref_primary_10_1021_acsami_9b09238
crossref_primary_10_1021_acsami_1c00896
crossref_primary_10_3390_nano8090720
crossref_primary_10_1016_j_apsusc_2017_03_096
crossref_primary_10_1016_j_solener_2020_03_041
crossref_primary_10_1002_pssr_202000514
crossref_primary_10_1039_C7TA10742K
Cites_doi 10.1038/nphoton.2013.80
10.1246/cl.150175
10.1126/science.1254763
10.1038/ncomms8747
10.1039/C4TA02637C
10.1039/a806801a
10.1038/nphoton.2013.342
10.1021/am502131t
10.1021/acs.jpcc.5b00541
10.1021/nn5029828
10.1126/science.1254050
10.1063/1.4905835
10.1002/adfm.201401557
10.1021/jacs.5b01994
10.1126/science.1228604
10.1039/c3ee40810h
10.3390/molecules18033107
10.1039/C4EE00762J
10.1021/jp409025w
10.1021/ic300794j
10.1088/2040-8978/17/4/045106
10.1002/anie.201308719
10.1126/science.aaa9272
10.1021/jz4020162
10.1016/j.jelechem.2010.05.003
10.1246/cl.150056
10.1038/nature12340
10.1002/adfm.201302090
10.1021/acs.jpclett.5b00010
10.1038/nature12509
10.1149/2.013311ssl
10.1039/C5TA01207D
10.1021/acs.chemmater.5b01598
10.1021/cr3000626
10.1021/ja411509g
10.1016/j.solmat.2015.01.023
10.1021/jp206206x
10.1021/jz400892a
10.1021/ja809598r
10.1021/am302729v
10.1021/ja508758k
10.1039/C4TA03674C
10.1021/jp051753g
10.1002/adma.201304803
10.1021/jp412407j
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.solmat.2015.09.054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
EndPage 630
ExternalDocumentID 10_1016_j_solmat_2015_09_054
S0927024815004870
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c413t-8bcaa8b3840edb45d094790366c2ed4717533dbab916098efc5866980079a74b3
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Tue Jul 01 04:09:54 EDT 2025
Thu Apr 24 22:57:53 EDT 2025
Fri Feb 23 02:16:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Planar
Low-temperature-processed
Electron collection layer
Perovskite solar cells
ZnO–SnO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-8bcaa8b3840edb45d094790366c2ed4717533dbab916098efc5866980079a74b3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_solmat_2015_09_054
crossref_primary_10_1016_j_solmat_2015_09_054
elsevier_sciencedirect_doi_10_1016_j_solmat_2015_09_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Solar energy materials and solar cells
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Son, Im, Kim, Park (bib25) 2014; 118
Chen, Zhou, Hong, Luo, Duan, Wang, Liu, Li, Yang (bib21) 2014; 136
Rakshit, Manna, Ray (bib31) 2015; 117
Uddin, Nicolas, Olivier, Toupance, Servant, Mu¨ller, Kleebe, Ziegler, Jaegermann (bib39) 2012; 51
Heo, Im, Noh, Mandal, Lim, Chang, Lee, Kim, Sarkar, Nazeeruddin, Gra¨tzel, Seok (bib3) 2013; 7
Song, Zheng, Bian, Wang, Tian, Sanehira, Miyasaka (bib29) 2015; 3
Burschka, Pellet, Moon, Humphry-Baker, Gao, Nazeeruddin, Gra¨tzel (bib4) 2013; 499
Yang, Noh, Jeon, Kim, Ryu, Seo, Seok (bib6) 2015; 348
Liu, Yang, Kelly (bib42) 2014; 136
Bi, Wang, Shao1, Yuan1, Xiao, Huang (bib46) 2015; 6
Huu, Son, Jang, Lee, Park (bib33) 2013; 5
Liu, Johnston, Snaith (bib5) 2013; 501
Miyasaka (bib9) 2015; 44
Conings, Baeten, De Dobbelaere, D׳Haen, Manca, Boyen (bib16) 2014; 26
Lee, Teuscher, Miyasaka, Murakami, Snaith (bib2) 2012; 338
Park (bib11) 2013; 4
Zhang, Yates (bib44) 2012; 112
Chiang, Tseng, Wu (bib40) 2014; 2
Chaouachi, Chtourou, M׳nif (bib8) 2015; 17
Liu, Gangishetty, Kelly (bib24) 2014; 2
Chen, Liu, Zeng, Cheng, Du, Jin, Zhang, Yang (bib45) 2015; 3
Snaith (bib10) 2013; 4
Liu, Kelly (bib23) 2014; 8
Sheikh, Bera, Haque, Rakhi, Del Gobbo, Alshareef, Wu (bib15) 2015; 137
Ryu, Noh, Jeon, Kim, Yang, Seo, Seok (bib7) 2014; 7
Liu, Ojima, Hong, Kido, Tian, Wang (bib38) 2013; 18
Niinobe, Makari, Kitamura, Wada, Yanagida (bib35) 2005; 109
Wang, Shi, Dong, Li, Wang, Yu, Wu, Ma (bib30) 2015; 6
Bhattacharjeez, Hung (bib32) 2013; 2
Dharmadasa, Wijayantha, Tahir (bib37) 2010; 646
Ball, Lee, Hey, Snaith (bib14) 2013; 6
Shi, Luo, Wei, Luo, Dong, Lv, Xiao, Xu, Zhu, Xu, Wu, Li, Meng (bib17) 2014; 6
Yang, Siempelkamp, Mosconi, Angelis, Kelly (bib34) 2015; 27
Kojima, Teshima, Shirai, Miyasaka (bib1) 2009; 131
Zhu, Bai., Lee, Mu, Zhang, Zhang, Wang, Yan, So, Yang (bib43) 2014; 24
Zhou, Chen, Li, Luo, Song, Duan, Hong, You, Liu, Yang (bib18) 2014; 345
Wang, Wang, Tamai, Kitao, Tamiaki, Sasaki (bib41) 2011; 115
Kim, Im, Park (bib13) 2014; 118
Ke, Fang, Liu, Xiong, Qin, Tao, Wang, Lei, Li, Wan, Yang, Yan (bib28) 2015; 137
Hu, Wu, Jiang, Liu, Que, Zhu, Gong (bib19) 2014; 8
Eperon, Burlakov, Docampo, Goriely, Snaith (bib22) 2014; 24
Mei, Li, Liu, Ku, Liu, Rong, Xu, Hu, Chen, Yang, Grätzel, Han (bib20) 2014; 345
Dong, Shi, Wang, Li, Wang, Zhang, Xing, Du, Bai, Ma (bib27) 2015; 119
Tennakone, Kumara, Kottegoda, Perera (bib36) 1999; 1
Song, Bian, Zheng, Wang, Tian, Miyasaka (bib26) 2015; 44
Kazim, Nazeeruddin, Gra¨tzel, Ahmad (bib12) 2014; 53
Hu (10.1016/j.solmat.2015.09.054_bib19) 2014; 8
Chen (10.1016/j.solmat.2015.09.054_bib21) 2014; 136
Yang (10.1016/j.solmat.2015.09.054_bib34) 2015; 27
Snaith (10.1016/j.solmat.2015.09.054_bib10) 2013; 4
Kim (10.1016/j.solmat.2015.09.054_bib13) 2014; 118
Ball (10.1016/j.solmat.2015.09.054_bib14) 2013; 6
Sheikh (10.1016/j.solmat.2015.09.054_bib15) 2015; 137
Ryu (10.1016/j.solmat.2015.09.054_bib7) 2014; 7
Heo (10.1016/j.solmat.2015.09.054_bib3) 2013; 7
Ke (10.1016/j.solmat.2015.09.054_bib28) 2015; 137
Liu (10.1016/j.solmat.2015.09.054_bib5) 2013; 501
Kazim (10.1016/j.solmat.2015.09.054_bib12) 2014; 53
Shi (10.1016/j.solmat.2015.09.054_bib17) 2014; 6
Zhou (10.1016/j.solmat.2015.09.054_bib18) 2014; 345
Dong (10.1016/j.solmat.2015.09.054_bib27) 2015; 119
Park (10.1016/j.solmat.2015.09.054_bib11) 2013; 4
Liu (10.1016/j.solmat.2015.09.054_bib38) 2013; 18
Zhu (10.1016/j.solmat.2015.09.054_bib43) 2014; 24
Song (10.1016/j.solmat.2015.09.054_bib26) 2015; 44
Miyasaka (10.1016/j.solmat.2015.09.054_bib9) 2015; 44
Liu (10.1016/j.solmat.2015.09.054_bib24) 2014; 2
Huu (10.1016/j.solmat.2015.09.054_bib33) 2013; 5
Liu (10.1016/j.solmat.2015.09.054_bib42) 2014; 136
Yang (10.1016/j.solmat.2015.09.054_bib6) 2015; 348
Chiang (10.1016/j.solmat.2015.09.054_bib40) 2014; 2
Song (10.1016/j.solmat.2015.09.054_bib29) 2015; 3
Eperon (10.1016/j.solmat.2015.09.054_bib22) 2014; 24
Wang (10.1016/j.solmat.2015.09.054_bib41) 2011; 115
Zhang (10.1016/j.solmat.2015.09.054_bib44) 2012; 112
Kojima (10.1016/j.solmat.2015.09.054_bib1) 2009; 131
Son (10.1016/j.solmat.2015.09.054_bib25) 2014; 118
Bhattacharjeez (10.1016/j.solmat.2015.09.054_bib32) 2013; 2
Lee (10.1016/j.solmat.2015.09.054_bib2) 2012; 338
Chen (10.1016/j.solmat.2015.09.054_bib45) 2015; 3
Mei (10.1016/j.solmat.2015.09.054_bib20) 2014; 345
Rakshit (10.1016/j.solmat.2015.09.054_bib31) 2015; 117
Tennakone (10.1016/j.solmat.2015.09.054_bib36) 1999; 1
Bi (10.1016/j.solmat.2015.09.054_bib46) 2015; 6
Burschka (10.1016/j.solmat.2015.09.054_bib4) 2013; 499
Conings (10.1016/j.solmat.2015.09.054_bib16) 2014; 26
Liu (10.1016/j.solmat.2015.09.054_bib23) 2014; 8
Uddin (10.1016/j.solmat.2015.09.054_bib39) 2012; 51
Wang (10.1016/j.solmat.2015.09.054_bib30) 2015; 6
Chaouachi (10.1016/j.solmat.2015.09.054_bib8) 2015; 17
Niinobe (10.1016/j.solmat.2015.09.054_bib35) 2005; 109
Dharmadasa (10.1016/j.solmat.2015.09.054_bib37) 2010; 646
References_xml – volume: 338
  start-page: 643
  year: 2012
  end-page: 647
  ident: bib2
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
– volume: 6
  start-page: 1739
  year: 2013
  end-page: 1743
  ident: bib14
  article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 15897
  year: 2014
  end-page: 15903
  ident: bib40
  article-title: Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process
  publication-title: J. Mater. Chem. A
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: bib1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 7357
  year: 2014
  end-page: 7365
  ident: bib43
  article-title: Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic−organic hybrid perovskite solar cells
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 2812
  year: 2014
  end-page: 2824
  ident: bib12
  article-title: Perovskite as light harvester: a game changer in photovoltaics
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 7747
  year: 2015
  ident: bib46
  article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: Nature Commun
– volume: 501
  start-page: 395
  year: 2013
  end-page: 398
  ident: bib5
  article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition
  publication-title: Nature
– volume: 17
  start-page: 045106
  year: 2015
  ident: bib8
  article-title: Optimal enhancement in conversion efficiency of crystalline Si solar cells using inverse opal photonic crystals as back reflectors
  publication-title: J. Opt.
– volume: 3
  start-page: 10837
  year: 2015
  end-page: 10844
  ident: bib29
  article-title: Low-temperature SnO
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 6730
  year: 2015
  end-page: 6733
  ident: bib28
  article-title: Low-temperature solution processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 646
  start-page: 124
  year: 2010
  end-page: 132
  ident: bib37
  article-title: ZnO–SnO
  publication-title: J. Electroanal. Chem.
– volume: 112
  start-page: 5520
  year: 2012
  end-page: 5551
  ident: bib44
  article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces
  publication-title: Chem. Rev.
– volume: 119
  start-page: 10212
  year: 2015
  end-page: 10217
  ident: bib27
  article-title: Insight into perovskite solar cells based on SnO
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 2041
  year: 2014
  end-page: 2046
  ident: bib16
  article-title: Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach
  publication-title: Adv. Mater.
– volume: 8
  start-page: 133
  year: 2014
  end-page: 138
  ident: bib23
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat. Photon.
– volume: 499
  start-page: 316
  year: 2013
  end-page: 319
  ident: bib4
  article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells
  publication-title: Nature
– volume: 137
  start-page: 6
  year: 2015
  end-page: 14
  ident: bib15
  article-title: Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 44
  start-page: 720
  year: 2015
  end-page: 729
  ident: bib9
  article-title: Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices
  publication-title: Chem. Lett.
– volume: 6
  start-page: 9711
  year: 2014
  end-page: 9718
  ident: bib17
  article-title: Modified two-step deposition method for high-efficiency TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: Q101
  year: 2013
  end-page: Q104
  ident: bib32
  article-title: A SnO
  publication-title: ECS Solid State Lett.
– volume: 44
  start-page: 610
  year: 2015
  end-page: 612
  ident: bib26
  article-title: Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer
  publication-title: Chem. Lett.
– volume: 18
  start-page: 3107
  year: 2013
  end-page: 3117
  ident: bib38
  article-title: Solution-processed organic photovoltaics based on indoline dye molecules developed in dye-sensitized solar cells
  publication-title: Molecules
– volume: 345
  start-page: 295
  year: 2014
  end-page: 298
  ident: bib20
  article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
  publication-title: Science
– volume: 1
  start-page: 15
  year: 1999
  end-page: 16
  ident: bib36
  article-title: An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc
  publication-title: Chem. Commun.
– volume: 24
  start-page: 151
  year: 2014
  end-page: 157
  ident: bib22
  article-title: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells
  publication-title: Adv. Funct. Mater.
– volume: 118
  start-page: 16567
  year: 2014
  end-page: 16573
  ident: bib25
  article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system
  publication-title: J. Phys. Chem. C
– volume: 117
  start-page: 025704
  year: 2015
  ident: bib31
  article-title: Effect of SnO
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1038
  year: 2013
  end-page: 1043
  ident: bib33
  article-title: Hierarchical SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 348
  start-page: 1234
  year: 2015
  end-page: 1237
  ident: bib6
  article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
  publication-title: Science
– volume: 136
  start-page: 17116
  year: 2014
  end-page: 17122
  ident: bib42
  article-title: Compact layer free perovskite solar cells with 13.5% efficiency
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 486
  year: 2013
  end-page: 491
  ident: bib3
  article-title: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
  publication-title: Nat. Photonics
– volume: 118
  start-page: 5615
  year: 2014
  end-page: 5625
  ident: bib13
  article-title: Organolead halide perovskite: new horizons in solar cell research
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 3623
  year: 2013
  end-page: 3630
  ident: bib10
  article-title: The emergence of a new era for low-cost, high-efficiency solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 136
  start-page: 622
  year: 2014
  end-page: 625
  ident: bib21
  article-title: Planar heterojunction perovskite solar cells via vapor assisted solution process
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2423
  year: 2013
  end-page: 2429
  ident: bib11
  article-title: Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell
  publication-title: J. Phys. Chem. Lett.
– volume: 27
  start-page: 4229
  year: 2015
  end-page: 4236
  ident: bib34
  article-title: Origin of the thermal instability in CH
  publication-title: Chem. Mater.
– volume: 51
  start-page: 7764
  year: 2012
  end-page: 7773
  ident: bib39
  article-title: Nanostructured SnO
  publication-title: Inorg. Chem.
– volume: 8
  start-page: 10161
  year: 2014
  end-page: 10167
  ident: bib19
  article-title: Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%
  publication-title: ACS Nano
– volume: 115
  start-page: 24394
  year: 2011
  end-page: 24402
  ident: bib41
  article-title: Development of solar cells based on synthetic near-infrared absorbing purpurins: observation of multiple electron injection pathways at cyclic tetrapyrrole–semiconductor interface
  publication-title: J. Phys. Chem. C
– volume: 345
  start-page: 542
  year: 2014
  end-page: 546
  ident: bib18
  article-title: Interface engineering of highly efficient perovskite solar cells
  publication-title: Science
– volume: 109
  start-page: 17892
  year: 2005
  end-page: 17900
  ident: bib35
  article-title: Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 2614
  year: 2014
  end-page: 2618
  ident: bib7
  article-title: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 19873
  year: 2014
  end-page: 19881
  ident: bib24
  article-title: Effect of CH
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 10969
  year: 2015
  end-page: 10975
  ident: bib45
  article-title: Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandgap
  publication-title: ,
– volume: 6
  start-page: 755
  year: 2015
  end-page: 759
  ident: bib30
  article-title: Low-temperature and solution-processed amorphous WO
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 486
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib3
  article-title: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.80
– volume: 44
  start-page: 720
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib9
  article-title: Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices
  publication-title: Chem. Lett.
  doi: 10.1246/cl.150175
– volume: 345
  start-page: 295
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib20
  article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
  publication-title: Science
  doi: 10.1126/science.1254763
– volume: 6
  start-page: 7747
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib46
  article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: Nature Commun
  doi: 10.1038/ncomms8747
– volume: 2
  start-page: 19873
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib24
  article-title: Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02637C
– volume: 1
  start-page: 15
  year: 1999
  ident: 10.1016/j.solmat.2015.09.054_bib36
  article-title: An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc
  publication-title: Chem. Commun.
  doi: 10.1039/a806801a
– volume: 8
  start-page: 133
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib23
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.342
– volume: 6
  start-page: 9711
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib17
  article-title: Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502131t
– volume: 119
  start-page: 10212
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib27
  article-title: Insight into perovskite solar cells based on SnO2 compact electron-selective layer
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b00541
– volume: 8
  start-page: 10161
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib19
  article-title: Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%
  publication-title: ACS Nano
  doi: 10.1021/nn5029828
– volume: 345
  start-page: 542
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib18
  article-title: Interface engineering of highly efficient perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 117
  start-page: 025704
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib31
  article-title: Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO–SnO2 composite thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4905835
– volume: 24
  start-page: 7357
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib43
  article-title: Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic−organic hybrid perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401557
– volume: 137
  start-page: 6730
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib28
  article-title: Low-temperature solution processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01994
– volume: 338
  start-page: 643
  year: 2012
  ident: 10.1016/j.solmat.2015.09.054_bib2
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 6
  start-page: 1739
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib14
  article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40810h
– volume: 18
  start-page: 3107
  issue: 3
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib38
  article-title: Solution-processed organic photovoltaics based on indoline dye molecules developed in dye-sensitized solar cells
  publication-title: Molecules
  doi: 10.3390/molecules18033107
– volume: 7
  start-page: 2614
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib7
  article-title: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00762J
– volume: 118
  start-page: 5615
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib13
  article-title: Organolead halide perovskite: new horizons in solar cell research
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409025w
– volume: 3
  start-page: 10969
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib45
  article-title: Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandgap
  publication-title: ,
– volume: 51
  start-page: 7764
  year: 2012
  ident: 10.1016/j.solmat.2015.09.054_bib39
  article-title: Nanostructured SnO2−ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300794j
– volume: 17
  start-page: 045106
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib8
  article-title: Optimal enhancement in conversion efficiency of crystalline Si solar cells using inverse opal photonic crystals as back reflectors
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/17/4/045106
– volume: 53
  start-page: 2812
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib12
  article-title: Perovskite as light harvester: a game changer in photovoltaics
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308719
– volume: 348
  start-page: 1234
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib6
  article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
  publication-title: Science
  doi: 10.1126/science.aaa9272
– volume: 4
  start-page: 3623
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib10
  article-title: The emergence of a new era for low-cost, high-efficiency solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4020162
– volume: 646
  start-page: 124
  year: 2010
  ident: 10.1016/j.solmat.2015.09.054_bib37
  article-title: ZnO–SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2010.05.003
– volume: 44
  start-page: 610
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib26
  article-title: Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer
  publication-title: Chem. Lett.
  doi: 10.1246/cl.150056
– volume: 499
  start-page: 316
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib4
  article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 24
  start-page: 151
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib22
  article-title: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302090
– volume: 6
  start-page: 755
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib30
  article-title: Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00010
– volume: 501
  start-page: 395
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib5
  article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 2
  start-page: Q101
  issue: 11
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib32
  article-title: A SnO2 and ZnO nano-composite photoanodes in dye-sensitized solar cells
  publication-title: ECS Solid State Lett.
  doi: 10.1149/2.013311ssl
– volume: 3
  start-page: 10837
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib29
  article-title: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01207D
– volume: 27
  start-page: 4229
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib34
  article-title: Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01598
– volume: 112
  start-page: 5520
  year: 2012
  ident: 10.1016/j.solmat.2015.09.054_bib44
  article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces
  publication-title: Chem. Rev.
  doi: 10.1021/cr3000626
– volume: 136
  start-page: 622
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib21
  article-title: Planar heterojunction perovskite solar cells via vapor assisted solution process
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411509g
– volume: 137
  start-page: 6
  year: 2015
  ident: 10.1016/j.solmat.2015.09.054_bib15
  article-title: Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.01.023
– volume: 115
  start-page: 24394
  year: 2011
  ident: 10.1016/j.solmat.2015.09.054_bib41
  article-title: Development of solar cells based on synthetic near-infrared absorbing purpurins: observation of multiple electron injection pathways at cyclic tetrapyrrole–semiconductor interface
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp206206x
– volume: 4
  start-page: 2423
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib11
  article-title: Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400892a
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.solmat.2015.09.054_bib1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 5
  start-page: 1038
  year: 2013
  ident: 10.1016/j.solmat.2015.09.054_bib33
  article-title: Hierarchical SnO2 nanoparticle-ZnO nanorod photoanode for improving transport and life time of photoinjected electrons in dye-sensitized solar cell
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302729v
– volume: 136
  start-page: 17116
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib42
  article-title: Compact layer free perovskite solar cells with 13.5% efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508758k
– volume: 2
  start-page: 15897
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib40
  article-title: Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03674C
– volume: 109
  start-page: 17892
  year: 2005
  ident: 10.1016/j.solmat.2015.09.054_bib35
  article-title: Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051753g
– volume: 26
  start-page: 2041
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib16
  article-title: Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304803
– volume: 118
  start-page: 16567
  year: 2014
  ident: 10.1016/j.solmat.2015.09.054_bib25
  article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp412407j
SSID ssj0002634
Score 2.5317435
Snippet Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 623
SubjectTerms Electron collection layer
Low-temperature-processed
Perovskite solar cells
Planar
ZnO–SnO2
Title Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells
URI https://dx.doi.org/10.1016/j.solmat.2015.09.054
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY7fdZDd7LMVSH9hDLRQPhmSTQqVsl7bqTfwP_kN_iTP70Aqi4HGXJCyTYeab7DdfCDkVYSZUJpg1QjNunWXSWsGaMXcWPCSIc4LsTdAb8suRGFVIp-yFQVplEfvzmJ5F6-JNo7BmI51MGgMvwl4qFBtBNwyxbuc8RC8_e_miebSC7M8yDmY4umyfyzhesL2AC5HgJTK1U8F_Tk8rKae7RTYLrEjb-edsk4pLdsjGioLgLrm_nj0zlJcqtJFZmhP_naV3Sf_99W2Q9Fs00ckMueNI0HIUYCp1mXIEJByaTnWi5xT1wp8WeJRLF1jtUjzRX-yRYff8ttNjxZUJLIZstGTSxFpL40PZ5qzhwkL1FkaQpYK45SwkIqhOfGu0AVToRdKNYyGDIALUGEY65MbfJ9VklrgDQoPY53IM9ZiVsBoPjfMBm3lN40dSNgNbI35pKRUXeuJ4rcVUlcSxB5XbV6F9lRcpsG-NsM9Zaa6n8cf4sNwE9c0vFIT8X2ce_nvmEVmHp-Kg5ZhUl_NHdwLQY2nqmW_VyVr74qp38wHoGNpX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFWU1QeupmljJ84RVVQFSntoK1UcsOLYlYqqNGoL3BD_wB_yJcxkgSIhkLgmnigaT2beOM_PhJwJPxUqE8xoETJurGHSGMFqEbcGIsSLMoJsx2sN-PVQDEukUeyFQVplnvuznJ5m6_xKNfdmNRmPqz0nwL1UKDaCYehD377C4fPFYwzOX754HnUv_bWMoxkOL_bPpSQvmF8AhsjwEqncqeA_16elmtPcJBs5WKQX2ftskZKNt8n6koTgDrlvT58Z6kvl4sgsyZj_1tC7uPv--taLu3Uah_EUyePI0LIUcCq1qXQEVByaTMI4nFEUDH-a41ounWO7S3FJf75LBs3LfqPF8jMTWATlaMGkjsJQahf6Nms0FwbaNz-AMuVFdWugEkF74hodaoCFTiDtKBLS8wKAjX4Q-ly7e6QcT2O7T6gXuVyOoCEzEp7GfW1dAGdOTbuBlDXPVIhbeEpFuaA4nmsxUQVz7EFl_lXoX-UECvxbIezTKskENf4Y7xeToL4FhoKc_6vlwb8tT8lqq3_bVu2rzs0hWYM7-arLESkvZo_2GHDIQp-kcfYBBQjb5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature-processed+ZnO%E2%80%93SnO2+nanocomposite+for+efficient+planar+perovskite+solar+cells&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Song%2C+Jiaxing&rft.au=Zheng%2C+Enqiang&rft.au=Wang%2C+Xiao-Feng&rft.au=Tian%2C+Wenjing&rft.date=2016-01-01&rft.pub=Elsevier+B.V&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=144&rft.spage=623&rft.epage=630&rft_id=info:doi/10.1016%2Fj.solmat.2015.09.054&rft.externalDocID=S0927024815004870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon