Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells
Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based perovskite solar cells (PSCs). Herein, we prepared ZnO–SnO2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH3NH3PbI3-ba...
Saved in:
Published in | Solar energy materials and solar cells Vol. 144; pp. 623 - 630 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based perovskite solar cells (PSCs). Herein, we prepared ZnO–SnO2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH3NH3PbI3-based planar-structured PSCs. ZnO–SnO2 nanocomposite with the optimal ~89mol% of the ZnO content gives higher PCE than the ZnO for the best fabricated PSC. The photoluminescence spectroscopies measured in both steady and transient states and the electrochemical impedance spectroscopy were carried out to characterize the interface of CH3NH3PbI3 and different ECLs, namely ZnO, ZnO–SnO2 composite, and SnO2. The high PCE of PSCs based on the ZnO–SnO2 nanocomposite ECL was thus attributed to joint contributions of the high charge extraction efficiency and large charge recombination resistance both on the CH3NH3PbI3/ECL interface. The thermal stability of CH3NH3PbI3 absorber and the device stability of the corresponding PSC are both dependent on the ECLs in the order: SnO2>ZnO–SnO2 >ZnO, suggesting that the hydroxyl-induced degradation of CH3NH3PbI3 may be predominant in the ambient air environment in the initial ~700h. The PCE of the optimized device was further improved to 15.2% by introducing the low-temperature processable Al2O3 as a capping layer to the ZnO–SnO2 composite.
[Display omitted]
•The first report on ZnO–SnO2 as electron collection layer for perovskite solar cell.•The ZnO–SnO2 electron collection layers are low-temperature-processed.•An optimal ZnO–SnO2 (2:1 weight ratio in solution) gives the relatively high PCE.•The ZnO–SnO2 thin films exhibit better thermal stability of CH3NH3PbI3.•The PCE of the optimized device was further improved by introducing the Al2O3 layer. |
---|---|
AbstractList | Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based perovskite solar cells (PSCs). Herein, we prepared ZnO–SnO2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH3NH3PbI3-based planar-structured PSCs. ZnO–SnO2 nanocomposite with the optimal ~89mol% of the ZnO content gives higher PCE than the ZnO for the best fabricated PSC. The photoluminescence spectroscopies measured in both steady and transient states and the electrochemical impedance spectroscopy were carried out to characterize the interface of CH3NH3PbI3 and different ECLs, namely ZnO, ZnO–SnO2 composite, and SnO2. The high PCE of PSCs based on the ZnO–SnO2 nanocomposite ECL was thus attributed to joint contributions of the high charge extraction efficiency and large charge recombination resistance both on the CH3NH3PbI3/ECL interface. The thermal stability of CH3NH3PbI3 absorber and the device stability of the corresponding PSC are both dependent on the ECLs in the order: SnO2>ZnO–SnO2 >ZnO, suggesting that the hydroxyl-induced degradation of CH3NH3PbI3 may be predominant in the ambient air environment in the initial ~700h. The PCE of the optimized device was further improved to 15.2% by introducing the low-temperature processable Al2O3 as a capping layer to the ZnO–SnO2 composite.
[Display omitted]
•The first report on ZnO–SnO2 as electron collection layer for perovskite solar cell.•The ZnO–SnO2 electron collection layers are low-temperature-processed.•An optimal ZnO–SnO2 (2:1 weight ratio in solution) gives the relatively high PCE.•The ZnO–SnO2 thin films exhibit better thermal stability of CH3NH3PbI3.•The PCE of the optimized device was further improved by introducing the Al2O3 layer. |
Author | Tian, Wenjing Miyasaka, Tsutomu Zheng, Enqiang Wang, Xiao-Feng Song, Jiaxing |
Author_xml | – sequence: 1 givenname: Jiaxing surname: Song fullname: Song, Jiaxing email: jiaxing2199@126.com organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China – sequence: 2 givenname: Enqiang surname: Zheng fullname: Zheng, Enqiang email: 804670601@qq.com organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China – sequence: 3 givenname: Xiao-Feng surname: Wang fullname: Wang, Xiao-Feng email: xf_wang@jlu.edu.cn organization: Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China – sequence: 4 givenname: Wenjing surname: Tian fullname: Tian, Wenjing email: wjtian@jlu.edu.cn organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China – sequence: 5 givenname: Tsutomu surname: Miyasaka fullname: Miyasaka, Tsutomu email: miyasaka@toin.ac.jp organization: Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8503, Japan |
BookMark | eNqFkM9KxDAQh4MouK6-gYe-QOukSdvEgyDiP1jYg3rxYEjTKWTtJiWJijffwTf0SeyynjzoaeA3fD9mvgOy67xDQo4pFBRofbIqoh_WOhUl0KoAWUDFd8iMikbmjEmxS2YgyyaHkot9chDjCgDKmvEZeVr4tzzhesSg00vAfAzeYIzYZY9u-fXxeeeWZea088avRx9twqz3IcO-t8aiS9k4aKdDNhX41_i82U_HTIHBYYiHZK_XQ8SjnzknD1eX9xc3-WJ5fXtxvsgNpyzlojVai5YJDti1vOpA8kYCq2tTYscb2lSMda1uJa1BCuxNJepaCoBG6oa3bE5Ot70m-BgD9srYpJP1LgVtB0VBbUypldqaUhtTCqSaTE0w_wWPwa51eP8PO9tiOD32ajGouDFisLMBTVKdt38XfANfRoop |
CitedBy_id | crossref_primary_10_1002_adma_201905766 crossref_primary_10_1039_C6TA08565B crossref_primary_10_3390_ma11050778 crossref_primary_10_1039_C7TC04649A crossref_primary_10_1002_pssa_202200736 crossref_primary_10_1039_D0TA07282F crossref_primary_10_1016_j_snb_2018_10_138 crossref_primary_10_1039_C7TA03331A crossref_primary_10_1016_j_ces_2024_120249 crossref_primary_10_1002_aenm_201700623 crossref_primary_10_1016_j_poly_2021_115089 crossref_primary_10_1002_aenm_201900903 crossref_primary_10_1002_solr_201900200 crossref_primary_10_1039_C8QM00620B crossref_primary_10_1002_er_4244 crossref_primary_10_1021_acsami_7b08536 crossref_primary_10_1021_acsami_7b04833 crossref_primary_10_1021_acsami_6b03276 crossref_primary_10_1039_C6RA10072D crossref_primary_10_1039_C9DT00930B crossref_primary_10_1021_acsami_9b03304 crossref_primary_10_1002_smll_201907531 crossref_primary_10_1002_solr_202201026 crossref_primary_10_1016_j_jechem_2018_11_011 crossref_primary_10_1246_bcsj_20180071 crossref_primary_10_1002_solr_201700017 crossref_primary_10_1016_j_orgel_2018_08_016 crossref_primary_10_1039_C8TA09838G crossref_primary_10_1002_smll_201902579 crossref_primary_10_1016_j_jpowsour_2019_226907 crossref_primary_10_1002_admi_202100128 crossref_primary_10_1002_adfm_201905694 crossref_primary_10_1007_s10854_019_01561_0 crossref_primary_10_1039_C7TA08040A crossref_primary_10_1039_D1RA08946C crossref_primary_10_3390_coatings8110408 crossref_primary_10_1039_D3RA01692G crossref_primary_10_1002_cssc_201600860 crossref_primary_10_1016_j_solmat_2018_02_007 crossref_primary_10_1002_cjoc_202000369 crossref_primary_10_1007_s10854_016_5492_3 crossref_primary_10_1002_aenm_201602803 crossref_primary_10_1002_chem_201701858 crossref_primary_10_1021_jacs_7b13229 crossref_primary_10_3390_su14116780 crossref_primary_10_1016_j_apsusc_2018_11_163 crossref_primary_10_1021_acs_chemrev_8b00539 crossref_primary_10_1016_j_jmst_2017_11_003 crossref_primary_10_1016_j_cej_2021_128436 crossref_primary_10_3390_nano9020193 crossref_primary_10_1039_C9NA00182D crossref_primary_10_1016_j_jallcom_2022_164399 crossref_primary_10_1016_j_electacta_2018_07_028 crossref_primary_10_1039_C8TA01617H crossref_primary_10_1002_solr_201900331 crossref_primary_10_1002_solr_202200865 crossref_primary_10_1016_j_jechem_2018_03_018 crossref_primary_10_1002_er_4298 crossref_primary_10_1039_C7NR00154A crossref_primary_10_1007_s12596_024_01678_4 crossref_primary_10_1016_j_solener_2018_01_035 crossref_primary_10_1039_C8TA12254G crossref_primary_10_1002_aesr_202400119 crossref_primary_10_1021_acsaem_9b00845 crossref_primary_10_1007_s11705_020_1917_x crossref_primary_10_1021_acsami_9b01952 crossref_primary_10_1002_aelm_201700329 crossref_primary_10_1007_s10854_025_14571_y crossref_primary_10_1038_s41598_022_24829_8 crossref_primary_10_1016_j_solmat_2016_09_003 crossref_primary_10_1002_adfm_202415215 crossref_primary_10_1142_S2010135X21600080 crossref_primary_10_1002_adfm_201802757 crossref_primary_10_1088_1361_6463_abb1e8 crossref_primary_10_1016_j_spmi_2016_12_012 crossref_primary_10_1021_acsami_6b13675 crossref_primary_10_1039_C6TA07876A crossref_primary_10_1039_D1RA00090J crossref_primary_10_1016_j_apt_2021_02_042 crossref_primary_10_1021_acsami_4c02406 crossref_primary_10_1088_1361_6528_abd207 crossref_primary_10_1109_TED_2020_3042449 crossref_primary_10_1002_solr_202100983 crossref_primary_10_1021_acsami_8b18330 crossref_primary_10_1016_j_orgel_2021_106293 crossref_primary_10_1016_j_jcis_2018_11_045 crossref_primary_10_1016_j_jallcom_2016_09_038 crossref_primary_10_1016_j_orgel_2019_04_012 crossref_primary_10_35848_1347_4065_abe5c1 crossref_primary_10_1021_acsaem_1c03160 crossref_primary_10_3390_solids2040026 crossref_primary_10_1021_acsami_9b09209 crossref_primary_10_1039_C6TA01074A crossref_primary_10_1016_j_solmat_2018_04_021 crossref_primary_10_1364_OME_6_003651 crossref_primary_10_3390_nano12040718 crossref_primary_10_1007_s12598_020_01676_y crossref_primary_10_1155_2022_6043406 crossref_primary_10_1016_j_apsusc_2019_143552 crossref_primary_10_1016_j_jechem_2017_09_026 crossref_primary_10_1016_j_solmat_2019_110351 crossref_primary_10_1039_C8TA04444A crossref_primary_10_1016_j_mssp_2019_02_009 crossref_primary_10_1016_j_solener_2016_08_044 crossref_primary_10_1007_s40843_017_9130_x crossref_primary_10_1039_C9QM00377K crossref_primary_10_1002_solr_201900266 crossref_primary_10_1002_cssc_201600944 crossref_primary_10_1039_D3TC00666B crossref_primary_10_1016_j_solmat_2016_10_002 crossref_primary_10_1002_solr_201800292 crossref_primary_10_1021_acsami_6b12683 crossref_primary_10_1002_admi_201801118 crossref_primary_10_1016_j_cej_2017_11_189 crossref_primary_10_1002_solr_202201080 crossref_primary_10_1016_j_jpowsour_2016_11_046 crossref_primary_10_1021_acsami_7b15008 crossref_primary_10_1039_C6RA12126H crossref_primary_10_1007_s11581_024_05553_x crossref_primary_10_1016_j_rser_2021_111689 crossref_primary_10_1186_s11671_018_2651_x crossref_primary_10_1016_j_orgel_2018_05_056 crossref_primary_10_1021_acsami_7b17798 crossref_primary_10_1021_acsami_9b09238 crossref_primary_10_1021_acsami_1c00896 crossref_primary_10_3390_nano8090720 crossref_primary_10_1016_j_apsusc_2017_03_096 crossref_primary_10_1016_j_solener_2020_03_041 crossref_primary_10_1002_pssr_202000514 crossref_primary_10_1039_C7TA10742K |
Cites_doi | 10.1038/nphoton.2013.80 10.1246/cl.150175 10.1126/science.1254763 10.1038/ncomms8747 10.1039/C4TA02637C 10.1039/a806801a 10.1038/nphoton.2013.342 10.1021/am502131t 10.1021/acs.jpcc.5b00541 10.1021/nn5029828 10.1126/science.1254050 10.1063/1.4905835 10.1002/adfm.201401557 10.1021/jacs.5b01994 10.1126/science.1228604 10.1039/c3ee40810h 10.3390/molecules18033107 10.1039/C4EE00762J 10.1021/jp409025w 10.1021/ic300794j 10.1088/2040-8978/17/4/045106 10.1002/anie.201308719 10.1126/science.aaa9272 10.1021/jz4020162 10.1016/j.jelechem.2010.05.003 10.1246/cl.150056 10.1038/nature12340 10.1002/adfm.201302090 10.1021/acs.jpclett.5b00010 10.1038/nature12509 10.1149/2.013311ssl 10.1039/C5TA01207D 10.1021/acs.chemmater.5b01598 10.1021/cr3000626 10.1021/ja411509g 10.1016/j.solmat.2015.01.023 10.1021/jp206206x 10.1021/jz400892a 10.1021/ja809598r 10.1021/am302729v 10.1021/ja508758k 10.1039/C4TA03674C 10.1021/jp051753g 10.1002/adma.201304803 10.1021/jp412407j |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.solmat.2015.09.054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
EndPage | 630 |
ExternalDocumentID | 10_1016_j_solmat_2015_09_054 S0927024815004870 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c413t-8bcaa8b3840edb45d094790366c2ed4717533dbab916098efc5866980079a74b3 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Tue Jul 01 04:09:54 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Fri Feb 23 02:16:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Planar Low-temperature-processed Electron collection layer Perovskite solar cells ZnO–SnO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-8bcaa8b3840edb45d094790366c2ed4717533dbab916098efc5866980079a74b3 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_solmat_2015_09_054 crossref_primary_10_1016_j_solmat_2015_09_054 elsevier_sciencedirect_doi_10_1016_j_solmat_2015_09_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 2016-01-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Son, Im, Kim, Park (bib25) 2014; 118 Chen, Zhou, Hong, Luo, Duan, Wang, Liu, Li, Yang (bib21) 2014; 136 Rakshit, Manna, Ray (bib31) 2015; 117 Uddin, Nicolas, Olivier, Toupance, Servant, Mu¨ller, Kleebe, Ziegler, Jaegermann (bib39) 2012; 51 Heo, Im, Noh, Mandal, Lim, Chang, Lee, Kim, Sarkar, Nazeeruddin, Gra¨tzel, Seok (bib3) 2013; 7 Song, Zheng, Bian, Wang, Tian, Sanehira, Miyasaka (bib29) 2015; 3 Burschka, Pellet, Moon, Humphry-Baker, Gao, Nazeeruddin, Gra¨tzel (bib4) 2013; 499 Yang, Noh, Jeon, Kim, Ryu, Seo, Seok (bib6) 2015; 348 Liu, Yang, Kelly (bib42) 2014; 136 Bi, Wang, Shao1, Yuan1, Xiao, Huang (bib46) 2015; 6 Huu, Son, Jang, Lee, Park (bib33) 2013; 5 Liu, Johnston, Snaith (bib5) 2013; 501 Miyasaka (bib9) 2015; 44 Conings, Baeten, De Dobbelaere, D׳Haen, Manca, Boyen (bib16) 2014; 26 Lee, Teuscher, Miyasaka, Murakami, Snaith (bib2) 2012; 338 Park (bib11) 2013; 4 Zhang, Yates (bib44) 2012; 112 Chiang, Tseng, Wu (bib40) 2014; 2 Chaouachi, Chtourou, M׳nif (bib8) 2015; 17 Liu, Gangishetty, Kelly (bib24) 2014; 2 Chen, Liu, Zeng, Cheng, Du, Jin, Zhang, Yang (bib45) 2015; 3 Snaith (bib10) 2013; 4 Liu, Kelly (bib23) 2014; 8 Sheikh, Bera, Haque, Rakhi, Del Gobbo, Alshareef, Wu (bib15) 2015; 137 Ryu, Noh, Jeon, Kim, Yang, Seo, Seok (bib7) 2014; 7 Liu, Ojima, Hong, Kido, Tian, Wang (bib38) 2013; 18 Niinobe, Makari, Kitamura, Wada, Yanagida (bib35) 2005; 109 Wang, Shi, Dong, Li, Wang, Yu, Wu, Ma (bib30) 2015; 6 Bhattacharjeez, Hung (bib32) 2013; 2 Dharmadasa, Wijayantha, Tahir (bib37) 2010; 646 Ball, Lee, Hey, Snaith (bib14) 2013; 6 Shi, Luo, Wei, Luo, Dong, Lv, Xiao, Xu, Zhu, Xu, Wu, Li, Meng (bib17) 2014; 6 Yang, Siempelkamp, Mosconi, Angelis, Kelly (bib34) 2015; 27 Kojima, Teshima, Shirai, Miyasaka (bib1) 2009; 131 Zhu, Bai., Lee, Mu, Zhang, Zhang, Wang, Yan, So, Yang (bib43) 2014; 24 Zhou, Chen, Li, Luo, Song, Duan, Hong, You, Liu, Yang (bib18) 2014; 345 Wang, Wang, Tamai, Kitao, Tamiaki, Sasaki (bib41) 2011; 115 Kim, Im, Park (bib13) 2014; 118 Ke, Fang, Liu, Xiong, Qin, Tao, Wang, Lei, Li, Wan, Yang, Yan (bib28) 2015; 137 Hu, Wu, Jiang, Liu, Que, Zhu, Gong (bib19) 2014; 8 Eperon, Burlakov, Docampo, Goriely, Snaith (bib22) 2014; 24 Mei, Li, Liu, Ku, Liu, Rong, Xu, Hu, Chen, Yang, Grätzel, Han (bib20) 2014; 345 Dong, Shi, Wang, Li, Wang, Zhang, Xing, Du, Bai, Ma (bib27) 2015; 119 Tennakone, Kumara, Kottegoda, Perera (bib36) 1999; 1 Song, Bian, Zheng, Wang, Tian, Miyasaka (bib26) 2015; 44 Kazim, Nazeeruddin, Gra¨tzel, Ahmad (bib12) 2014; 53 Hu (10.1016/j.solmat.2015.09.054_bib19) 2014; 8 Chen (10.1016/j.solmat.2015.09.054_bib21) 2014; 136 Yang (10.1016/j.solmat.2015.09.054_bib34) 2015; 27 Snaith (10.1016/j.solmat.2015.09.054_bib10) 2013; 4 Kim (10.1016/j.solmat.2015.09.054_bib13) 2014; 118 Ball (10.1016/j.solmat.2015.09.054_bib14) 2013; 6 Sheikh (10.1016/j.solmat.2015.09.054_bib15) 2015; 137 Ryu (10.1016/j.solmat.2015.09.054_bib7) 2014; 7 Heo (10.1016/j.solmat.2015.09.054_bib3) 2013; 7 Ke (10.1016/j.solmat.2015.09.054_bib28) 2015; 137 Liu (10.1016/j.solmat.2015.09.054_bib5) 2013; 501 Kazim (10.1016/j.solmat.2015.09.054_bib12) 2014; 53 Shi (10.1016/j.solmat.2015.09.054_bib17) 2014; 6 Zhou (10.1016/j.solmat.2015.09.054_bib18) 2014; 345 Dong (10.1016/j.solmat.2015.09.054_bib27) 2015; 119 Park (10.1016/j.solmat.2015.09.054_bib11) 2013; 4 Liu (10.1016/j.solmat.2015.09.054_bib38) 2013; 18 Zhu (10.1016/j.solmat.2015.09.054_bib43) 2014; 24 Song (10.1016/j.solmat.2015.09.054_bib26) 2015; 44 Miyasaka (10.1016/j.solmat.2015.09.054_bib9) 2015; 44 Liu (10.1016/j.solmat.2015.09.054_bib24) 2014; 2 Huu (10.1016/j.solmat.2015.09.054_bib33) 2013; 5 Liu (10.1016/j.solmat.2015.09.054_bib42) 2014; 136 Yang (10.1016/j.solmat.2015.09.054_bib6) 2015; 348 Chiang (10.1016/j.solmat.2015.09.054_bib40) 2014; 2 Song (10.1016/j.solmat.2015.09.054_bib29) 2015; 3 Eperon (10.1016/j.solmat.2015.09.054_bib22) 2014; 24 Wang (10.1016/j.solmat.2015.09.054_bib41) 2011; 115 Zhang (10.1016/j.solmat.2015.09.054_bib44) 2012; 112 Kojima (10.1016/j.solmat.2015.09.054_bib1) 2009; 131 Son (10.1016/j.solmat.2015.09.054_bib25) 2014; 118 Bhattacharjeez (10.1016/j.solmat.2015.09.054_bib32) 2013; 2 Lee (10.1016/j.solmat.2015.09.054_bib2) 2012; 338 Chen (10.1016/j.solmat.2015.09.054_bib45) 2015; 3 Mei (10.1016/j.solmat.2015.09.054_bib20) 2014; 345 Rakshit (10.1016/j.solmat.2015.09.054_bib31) 2015; 117 Tennakone (10.1016/j.solmat.2015.09.054_bib36) 1999; 1 Bi (10.1016/j.solmat.2015.09.054_bib46) 2015; 6 Burschka (10.1016/j.solmat.2015.09.054_bib4) 2013; 499 Conings (10.1016/j.solmat.2015.09.054_bib16) 2014; 26 Liu (10.1016/j.solmat.2015.09.054_bib23) 2014; 8 Uddin (10.1016/j.solmat.2015.09.054_bib39) 2012; 51 Wang (10.1016/j.solmat.2015.09.054_bib30) 2015; 6 Chaouachi (10.1016/j.solmat.2015.09.054_bib8) 2015; 17 Niinobe (10.1016/j.solmat.2015.09.054_bib35) 2005; 109 Dharmadasa (10.1016/j.solmat.2015.09.054_bib37) 2010; 646 |
References_xml | – volume: 338 start-page: 643 year: 2012 end-page: 647 ident: bib2 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science – volume: 6 start-page: 1739 year: 2013 end-page: 1743 ident: bib14 article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells publication-title: Energy Environ. Sci. – volume: 2 start-page: 15897 year: 2014 end-page: 15903 ident: bib40 article-title: Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process publication-title: J. Mater. Chem. A – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bib1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 7357 year: 2014 end-page: 7365 ident: bib43 article-title: Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic−organic hybrid perovskite solar cells publication-title: Adv. Funct. Mater. – volume: 53 start-page: 2812 year: 2014 end-page: 2824 ident: bib12 article-title: Perovskite as light harvester: a game changer in photovoltaics publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 7747 year: 2015 ident: bib46 article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells publication-title: Nature Commun – volume: 501 start-page: 395 year: 2013 end-page: 398 ident: bib5 article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition publication-title: Nature – volume: 17 start-page: 045106 year: 2015 ident: bib8 article-title: Optimal enhancement in conversion efficiency of crystalline Si solar cells using inverse opal photonic crystals as back reflectors publication-title: J. Opt. – volume: 3 start-page: 10837 year: 2015 end-page: 10844 ident: bib29 article-title: Low-temperature SnO publication-title: J. Mater. Chem. A – volume: 137 start-page: 6730 year: 2015 end-page: 6733 ident: bib28 article-title: Low-temperature solution processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells publication-title: J. Am. Chem. Soc. – volume: 646 start-page: 124 year: 2010 end-page: 132 ident: bib37 article-title: ZnO–SnO publication-title: J. Electroanal. Chem. – volume: 112 start-page: 5520 year: 2012 end-page: 5551 ident: bib44 article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces publication-title: Chem. Rev. – volume: 119 start-page: 10212 year: 2015 end-page: 10217 ident: bib27 article-title: Insight into perovskite solar cells based on SnO publication-title: J. Phys. Chem. C – volume: 26 start-page: 2041 year: 2014 end-page: 2046 ident: bib16 article-title: Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach publication-title: Adv. Mater. – volume: 8 start-page: 133 year: 2014 end-page: 138 ident: bib23 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat. Photon. – volume: 499 start-page: 316 year: 2013 end-page: 319 ident: bib4 article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells publication-title: Nature – volume: 137 start-page: 6 year: 2015 end-page: 14 ident: bib15 article-title: Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 44 start-page: 720 year: 2015 end-page: 729 ident: bib9 article-title: Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices publication-title: Chem. Lett. – volume: 6 start-page: 9711 year: 2014 end-page: 9718 ident: bib17 article-title: Modified two-step deposition method for high-efficiency TiO publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: Q101 year: 2013 end-page: Q104 ident: bib32 article-title: A SnO publication-title: ECS Solid State Lett. – volume: 44 start-page: 610 year: 2015 end-page: 612 ident: bib26 article-title: Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer publication-title: Chem. Lett. – volume: 18 start-page: 3107 year: 2013 end-page: 3117 ident: bib38 article-title: Solution-processed organic photovoltaics based on indoline dye molecules developed in dye-sensitized solar cells publication-title: Molecules – volume: 345 start-page: 295 year: 2014 end-page: 298 ident: bib20 article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability publication-title: Science – volume: 1 start-page: 15 year: 1999 end-page: 16 ident: bib36 article-title: An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc publication-title: Chem. Commun. – volume: 24 start-page: 151 year: 2014 end-page: 157 ident: bib22 article-title: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells publication-title: Adv. Funct. Mater. – volume: 118 start-page: 16567 year: 2014 end-page: 16573 ident: bib25 article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system publication-title: J. Phys. Chem. C – volume: 117 start-page: 025704 year: 2015 ident: bib31 article-title: Effect of SnO publication-title: J. Appl. Phys. – volume: 5 start-page: 1038 year: 2013 end-page: 1043 ident: bib33 article-title: Hierarchical SnO publication-title: ACS Appl. Mater. Interfaces – volume: 348 start-page: 1234 year: 2015 end-page: 1237 ident: bib6 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science – volume: 136 start-page: 17116 year: 2014 end-page: 17122 ident: bib42 article-title: Compact layer free perovskite solar cells with 13.5% efficiency publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 486 year: 2013 end-page: 491 ident: bib3 article-title: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors publication-title: Nat. Photonics – volume: 118 start-page: 5615 year: 2014 end-page: 5625 ident: bib13 article-title: Organolead halide perovskite: new horizons in solar cell research publication-title: J. Phys. Chem. C – volume: 4 start-page: 3623 year: 2013 end-page: 3630 ident: bib10 article-title: The emergence of a new era for low-cost, high-efficiency solar cells publication-title: J. Phys. Chem. Lett. – volume: 136 start-page: 622 year: 2014 end-page: 625 ident: bib21 article-title: Planar heterojunction perovskite solar cells via vapor assisted solution process publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2423 year: 2013 end-page: 2429 ident: bib11 article-title: Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell publication-title: J. Phys. Chem. Lett. – volume: 27 start-page: 4229 year: 2015 end-page: 4236 ident: bib34 article-title: Origin of the thermal instability in CH publication-title: Chem. Mater. – volume: 51 start-page: 7764 year: 2012 end-page: 7773 ident: bib39 article-title: Nanostructured SnO publication-title: Inorg. Chem. – volume: 8 start-page: 10161 year: 2014 end-page: 10167 ident: bib19 article-title: Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15% publication-title: ACS Nano – volume: 115 start-page: 24394 year: 2011 end-page: 24402 ident: bib41 article-title: Development of solar cells based on synthetic near-infrared absorbing purpurins: observation of multiple electron injection pathways at cyclic tetrapyrrole–semiconductor interface publication-title: J. Phys. Chem. C – volume: 345 start-page: 542 year: 2014 end-page: 546 ident: bib18 article-title: Interface engineering of highly efficient perovskite solar cells publication-title: Science – volume: 109 start-page: 17892 year: 2005 end-page: 17900 ident: bib35 article-title: Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO publication-title: J. Phys. Chem. B – volume: 7 start-page: 2614 year: 2014 end-page: 2618 ident: bib7 article-title: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor publication-title: Energy Environ. Sci. – volume: 2 start-page: 19873 year: 2014 end-page: 19881 ident: bib24 article-title: Effect of CH publication-title: J. Mater. Chem. A – volume: 3 start-page: 10969 year: 2015 end-page: 10975 ident: bib45 article-title: Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandgap publication-title: , – volume: 6 start-page: 755 year: 2015 end-page: 759 ident: bib30 article-title: Low-temperature and solution-processed amorphous WO publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 486 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib3 article-title: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.80 – volume: 44 start-page: 720 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib9 article-title: Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices publication-title: Chem. Lett. doi: 10.1246/cl.150175 – volume: 345 start-page: 295 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib20 article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability publication-title: Science doi: 10.1126/science.1254763 – volume: 6 start-page: 7747 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib46 article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells publication-title: Nature Commun doi: 10.1038/ncomms8747 – volume: 2 start-page: 19873 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib24 article-title: Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02637C – volume: 1 start-page: 15 year: 1999 ident: 10.1016/j.solmat.2015.09.054_bib36 article-title: An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc publication-title: Chem. Commun. doi: 10.1039/a806801a – volume: 8 start-page: 133 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib23 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.342 – volume: 6 start-page: 9711 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib17 article-title: Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502131t – volume: 119 start-page: 10212 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib27 article-title: Insight into perovskite solar cells based on SnO2 compact electron-selective layer publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b00541 – volume: 8 start-page: 10161 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib19 article-title: Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15% publication-title: ACS Nano doi: 10.1021/nn5029828 – volume: 345 start-page: 542 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib18 article-title: Interface engineering of highly efficient perovskite solar cells publication-title: Science doi: 10.1126/science.1254050 – volume: 117 start-page: 025704 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib31 article-title: Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO–SnO2 composite thin films publication-title: J. Appl. Phys. doi: 10.1063/1.4905835 – volume: 24 start-page: 7357 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib43 article-title: Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic−organic hybrid perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401557 – volume: 137 start-page: 6730 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib28 article-title: Low-temperature solution processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01994 – volume: 338 start-page: 643 year: 2012 ident: 10.1016/j.solmat.2015.09.054_bib2 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science doi: 10.1126/science.1228604 – volume: 6 start-page: 1739 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib14 article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40810h – volume: 18 start-page: 3107 issue: 3 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib38 article-title: Solution-processed organic photovoltaics based on indoline dye molecules developed in dye-sensitized solar cells publication-title: Molecules doi: 10.3390/molecules18033107 – volume: 7 start-page: 2614 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib7 article-title: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00762J – volume: 118 start-page: 5615 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib13 article-title: Organolead halide perovskite: new horizons in solar cell research publication-title: J. Phys. Chem. C doi: 10.1021/jp409025w – volume: 3 start-page: 10969 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib45 article-title: Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandgap publication-title: , – volume: 51 start-page: 7764 year: 2012 ident: 10.1016/j.solmat.2015.09.054_bib39 article-title: Nanostructured SnO2−ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes publication-title: Inorg. Chem. doi: 10.1021/ic300794j – volume: 17 start-page: 045106 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib8 article-title: Optimal enhancement in conversion efficiency of crystalline Si solar cells using inverse opal photonic crystals as back reflectors publication-title: J. Opt. doi: 10.1088/2040-8978/17/4/045106 – volume: 53 start-page: 2812 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib12 article-title: Perovskite as light harvester: a game changer in photovoltaics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308719 – volume: 348 start-page: 1234 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib6 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science doi: 10.1126/science.aaa9272 – volume: 4 start-page: 3623 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib10 article-title: The emergence of a new era for low-cost, high-efficiency solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4020162 – volume: 646 start-page: 124 year: 2010 ident: 10.1016/j.solmat.2015.09.054_bib37 article-title: ZnO–SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2010.05.003 – volume: 44 start-page: 610 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib26 article-title: Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer publication-title: Chem. Lett. doi: 10.1246/cl.150056 – volume: 499 start-page: 316 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib4 article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells publication-title: Nature doi: 10.1038/nature12340 – volume: 24 start-page: 151 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib22 article-title: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302090 – volume: 6 start-page: 755 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib30 article-title: Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00010 – volume: 501 start-page: 395 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib5 article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition publication-title: Nature doi: 10.1038/nature12509 – volume: 2 start-page: Q101 issue: 11 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib32 article-title: A SnO2 and ZnO nano-composite photoanodes in dye-sensitized solar cells publication-title: ECS Solid State Lett. doi: 10.1149/2.013311ssl – volume: 3 start-page: 10837 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib29 article-title: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01207D – volume: 27 start-page: 4229 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib34 article-title: Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01598 – volume: 112 start-page: 5520 year: 2012 ident: 10.1016/j.solmat.2015.09.054_bib44 article-title: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces publication-title: Chem. Rev. doi: 10.1021/cr3000626 – volume: 136 start-page: 622 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib21 article-title: Planar heterojunction perovskite solar cells via vapor assisted solution process publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411509g – volume: 137 start-page: 6 year: 2015 ident: 10.1016/j.solmat.2015.09.054_bib15 article-title: Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.01.023 – volume: 115 start-page: 24394 year: 2011 ident: 10.1016/j.solmat.2015.09.054_bib41 article-title: Development of solar cells based on synthetic near-infrared absorbing purpurins: observation of multiple electron injection pathways at cyclic tetrapyrrole–semiconductor interface publication-title: J. Phys. Chem. C doi: 10.1021/jp206206x – volume: 4 start-page: 2423 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib11 article-title: Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400892a – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.solmat.2015.09.054_bib1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 5 start-page: 1038 year: 2013 ident: 10.1016/j.solmat.2015.09.054_bib33 article-title: Hierarchical SnO2 nanoparticle-ZnO nanorod photoanode for improving transport and life time of photoinjected electrons in dye-sensitized solar cell publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302729v – volume: 136 start-page: 17116 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib42 article-title: Compact layer free perovskite solar cells with 13.5% efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508758k – volume: 2 start-page: 15897 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib40 article-title: Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03674C – volume: 109 start-page: 17892 year: 2005 ident: 10.1016/j.solmat.2015.09.054_bib35 article-title: Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells publication-title: J. Phys. Chem. B doi: 10.1021/jp051753g – volume: 26 start-page: 2041 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib16 article-title: Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach publication-title: Adv. Mater. doi: 10.1002/adma.201304803 – volume: 118 start-page: 16567 year: 2014 ident: 10.1016/j.solmat.2015.09.054_bib25 article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system publication-title: J. Phys. Chem. C doi: 10.1021/jp412407j |
SSID | ssj0002634 |
Score | 2.5317435 |
Snippet | Electron collection layer (ECL) is one of the most important fundamentals to determine the power conversion efficiency (PCE) in organometal halide-based... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 623 |
SubjectTerms | Electron collection layer Low-temperature-processed Perovskite solar cells Planar ZnO–SnO2 |
Title | Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells |
URI | https://dx.doi.org/10.1016/j.solmat.2015.09.054 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY7fdZDd7LMVSH9hDLRQPhmSTQqVsl7bqTfwP_kN_iTP70Aqi4HGXJCyTYeab7DdfCDkVYSZUJpg1QjNunWXSWsGaMXcWPCSIc4LsTdAb8suRGFVIp-yFQVplEfvzmJ5F6-JNo7BmI51MGgMvwl4qFBtBNwyxbuc8RC8_e_miebSC7M8yDmY4umyfyzhesL2AC5HgJTK1U8F_Tk8rKae7RTYLrEjb-edsk4pLdsjGioLgLrm_nj0zlJcqtJFZmhP_naV3Sf_99W2Q9Fs00ckMueNI0HIUYCp1mXIEJByaTnWi5xT1wp8WeJRLF1jtUjzRX-yRYff8ttNjxZUJLIZstGTSxFpL40PZ5qzhwkL1FkaQpYK45SwkIqhOfGu0AVToRdKNYyGDIALUGEY65MbfJ9VklrgDQoPY53IM9ZiVsBoPjfMBm3lN40dSNgNbI35pKRUXeuJ4rcVUlcSxB5XbV6F9lRcpsG-NsM9Zaa6n8cf4sNwE9c0vFIT8X2ce_nvmEVmHp-Kg5ZhUl_NHdwLQY2nqmW_VyVr74qp38wHoGNpX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFWU1QeupmljJ84RVVQFSntoK1UcsOLYlYqqNGoL3BD_wB_yJcxkgSIhkLgmnigaT2beOM_PhJwJPxUqE8xoETJurGHSGMFqEbcGIsSLMoJsx2sN-PVQDEukUeyFQVplnvuznJ5m6_xKNfdmNRmPqz0nwL1UKDaCYehD377C4fPFYwzOX754HnUv_bWMoxkOL_bPpSQvmF8AhsjwEqncqeA_16elmtPcJBs5WKQX2ftskZKNt8n6koTgDrlvT58Z6kvl4sgsyZj_1tC7uPv--taLu3Uah_EUyePI0LIUcCq1qXQEVByaTMI4nFEUDH-a41ounWO7S3FJf75LBs3LfqPF8jMTWATlaMGkjsJQahf6Nms0FwbaNz-AMuVFdWugEkF74hodaoCFTiDtKBLS8wKAjX4Q-ly7e6QcT2O7T6gXuVyOoCEzEp7GfW1dAGdOTbuBlDXPVIhbeEpFuaA4nmsxUQVz7EFl_lXoX-UECvxbIezTKskENf4Y7xeToL4FhoKc_6vlwb8tT8lqq3_bVu2rzs0hWYM7-arLESkvZo_2GHDIQp-kcfYBBQjb5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature-processed+ZnO%E2%80%93SnO2+nanocomposite+for+efficient+planar+perovskite+solar+cells&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Song%2C+Jiaxing&rft.au=Zheng%2C+Enqiang&rft.au=Wang%2C+Xiao-Feng&rft.au=Tian%2C+Wenjing&rft.date=2016-01-01&rft.pub=Elsevier+B.V&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=144&rft.spage=623&rft.epage=630&rft_id=info:doi/10.1016%2Fj.solmat.2015.09.054&rft.externalDocID=S0927024815004870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |