GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery

The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investi...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 13; no. 10; pp. 4799 - 4817
Main Authors Zhang, Miao, Wu, Bingfang, Zeng, Hongwei, He, Guojin, Liu, Chong, Tao, Shiqi, Zhang, Qi, Nabil, Mohsen, Tian, Fuyou, Bofana, José, Beyene, Awetahegn Niguse, Elnashar, Abdelrazek, Yan, Nana, Wang, Zhengdong, Liu, Yiliang
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 21.10.2021
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020).
AbstractList The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016-2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28x10.sup.6 km.sup.2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse:
The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020).
The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % ( 12.28×106  km 2 ) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020).
The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: 10.7910/DVN/86M4PO (Zhang et al., 2020).
Audience Academic
Author Zhang, Miao
Liu, Chong
Beyene, Awetahegn Niguse
Elnashar, Abdelrazek
Zhang, Qi
Tian, Fuyou
Yan, Nana
Zeng, Hongwei
Bofana, José
Tao, Shiqi
Nabil, Mohsen
He, Guojin
Wang, Zhengdong
Wu, Bingfang
Liu, Yiliang
Author_xml – sequence: 1
  givenname: Miao
  surname: Zhang
  fullname: Zhang, Miao
– sequence: 2
  givenname: Bingfang
  surname: Wu
  fullname: Wu, Bingfang
– sequence: 3
  givenname: Hongwei
  surname: Zeng
  fullname: Zeng, Hongwei
– sequence: 4
  givenname: Guojin
  surname: He
  fullname: He, Guojin
– sequence: 5
  givenname: Chong
  surname: Liu
  fullname: Liu, Chong
– sequence: 6
  givenname: Shiqi
  surname: Tao
  fullname: Tao, Shiqi
– sequence: 7
  givenname: Qi
  orcidid: 0000-0002-4242-7614
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 8
  givenname: Mohsen
  orcidid: 0000-0003-2362-6711
  surname: Nabil
  fullname: Nabil, Mohsen
– sequence: 9
  givenname: Fuyou
  surname: Tian
  fullname: Tian, Fuyou
– sequence: 10
  givenname: José
  surname: Bofana
  fullname: Bofana, José
– sequence: 11
  givenname: Awetahegn Niguse
  surname: Beyene
  fullname: Beyene, Awetahegn Niguse
– sequence: 12
  givenname: Abdelrazek
  orcidid: 0000-0001-8008-5670
  surname: Elnashar
  fullname: Elnashar, Abdelrazek
– sequence: 13
  givenname: Nana
  surname: Yan
  fullname: Yan, Nana
– sequence: 14
  givenname: Zhengdong
  surname: Wang
  fullname: Wang, Zhengdong
– sequence: 15
  givenname: Yiliang
  surname: Liu
  fullname: Liu, Yiliang
BookMark eNp1ksuKFDEUhgsZwZnRB3AXcOWixpwklVTcDY2ODQOCl6WETC5FmqpKm6TA3s3W1_RJTNmKtihZ5JzD9_-5nHPRnM1xdk3zFPBVB5K9cDnbFmjLhJQtwQQeNOfQc97SDvjZH_Gj5iLnHcacgejOm083my3FL5FGwxjv9IisLjq7gqJHFH-7_zohk-J-H-YBhbm4OYdyQEte82kZS8hxScah5KZYHMorsKKTHlw6PG4eej1m9-Tnftl8fP3qw-ZNe_v2Zru5vm0NA1raXkhCOWjNCGeytx1oYIYIIcydEZabDhvX17TXXApivZfgrcc1ohx3ml4226OvjXqn9qkenw4q6qB-FGIalE4lmNEpIMQ4bHvOGDDuuOSUdFSy3pv6RcCq17Oj1z7Fz4vLRe3qE-d6fUW6nvYcAye_qUFX0zD7WJI2U8hGXXMhheAEukpd_YOqy7opmNpBH2r9RPD8RFCZ4r6UQS85q-37d6esOLK1QTkn55UJRZdQJUmHUQFW62iodTQUULWOhlpHoyrhL-WvL_u_5jv90LuW
CitedBy_id crossref_primary_10_3390_rs15205033
crossref_primary_10_1038_s41597_024_04248_2
crossref_primary_10_1016_j_geoderma_2024_116798
crossref_primary_10_1038_s43247_023_00933_z
crossref_primary_10_1109_TGRS_2023_3299956
crossref_primary_10_1016_j_rse_2024_114070
crossref_primary_10_1016_j_crope_2022_03_006
crossref_primary_10_1109_JSTARS_2022_3218881
crossref_primary_10_1016_j_compag_2024_109018
crossref_primary_10_1016_j_compag_2024_109777
crossref_primary_10_1016_j_catena_2024_107813
crossref_primary_10_1002_ldr_4581
crossref_primary_10_1016_j_cj_2023_12_010
crossref_primary_10_1016_j_jag_2022_103178
crossref_primary_10_1016_j_ecolind_2023_110264
crossref_primary_10_1109_TGRS_2024_3515157
crossref_primary_10_1016_j_jhydrol_2022_127885
crossref_primary_10_5194_essd_17_855_2025
crossref_primary_10_1016_j_apgeog_2023_103150
crossref_primary_10_1016_j_iswcr_2023_07_003
crossref_primary_10_1038_s43247_024_01516_2
crossref_primary_10_1017_S002185962300014X
crossref_primary_10_3390_rs16244801
crossref_primary_10_5194_essd_13_5969_2021
crossref_primary_10_1016_j_scitotenv_2023_163013
crossref_primary_10_3390_rs14030566
crossref_primary_10_1016_j_ecolind_2023_111314
crossref_primary_10_1016_j_scitotenv_2022_159738
crossref_primary_10_1016_j_compag_2023_108428
crossref_primary_10_1016_j_isprsjprs_2023_07_017
crossref_primary_10_1016_j_compag_2023_108509
crossref_primary_10_1016_j_jag_2023_103504
crossref_primary_10_1080_10106049_2024_2387786
crossref_primary_10_1016_j_landusepol_2024_107355
crossref_primary_10_1038_s41597_024_03456_0
crossref_primary_10_1016_j_agsy_2022_103437
crossref_primary_10_1016_j_jenvman_2022_116754
crossref_primary_10_5194_essd_16_3893_2024
crossref_primary_10_1088_2515_7620_ad2a90
crossref_primary_10_1016_j_jhydrol_2024_131846
crossref_primary_10_3389_fsufs_2024_1393124
crossref_primary_10_1111_gcb_16996
crossref_primary_10_3390_rs16030440
crossref_primary_10_3390_land12091764
crossref_primary_10_1016_j_compag_2025_110317
crossref_primary_10_1038_s41597_024_03247_7
crossref_primary_10_1080_17538947_2024_2302579
crossref_primary_10_1016_j_compag_2024_109025
crossref_primary_10_1038_s43016_025_01131_0
crossref_primary_10_3390_land14030561
crossref_primary_10_3390_rs15194712
crossref_primary_10_1109_TGRS_2025_3549296
crossref_primary_10_1021_acs_est_5c01119
crossref_primary_10_1177_1420326X241277966
Cites_doi 10.1016/j.rse.2017.01.008
10.1016/j.rse.2017.03.015
10.1016/j.envsoft.2011.11.015
10.1016/j.isprsjprs.2019.06.014
10.1109/JSTARS.2020.3021052
10.1023/A:1017551529813
10.1007/s00484-016-1199-7
10.1016/j.rse.2018.11.012
10.1080/01431161.2016.1194545
10.1016/j.scitotenv.2020.136719
10.1111/gcb.12808
10.3390/su8111123
10.1088/1748-9326/aaf9c7
10.3390/rs9101065
10.1016/j.rse.2019.111624
10.4060/ca9692en
10.1038/s41598-018-23804-6
10.1016/j.rse.2014.10.009
10.1038/s41598-018-31175-1
10.1016/j.scitotenv.2017.12.120
10.1016/j.gfs.2014.11.003
10.1007/s11629-017-4750-z
10.5194/essd-12-1217-2020
10.1088/1748-9326/8/4/044041
10.1016/j.isprsjprs.2016.05.010
10.1596/1813-9450-9188
10.2136/sssaj2003.1533
10.1029/2019EF001287
10.1016/j.rse.2015.01.004
10.1016/j.rse.2017.06.031
10.1038/s41597-019-0036-3
10.1088/1755-1315/17/1/012048
10.1088/1748-9326/11/2/024015
10.1127/0941-2948/2011/105
10.1016/j.rse.2013.02.029
10.1016/j.rse.2018.09.002
10.1016/j.rse.2019.05.024
10.1038/sdata.2018.214
10.1002/fes3.73
10.1021/ac034173t
10.1051/978-2-7598-2442-7
10.1073/pnas.0606377103
10.3390/rs12152433
10.3390/rs2071625
10.1016/j.isprsjprs.2019.07.005
10.1038/s41558-020-0718-z
10.1016/j.jag.2019.102010
10.1073/pnas.1116437108
10.1038/s41561-018-0166-9
10.1016/j.gloenvcha.2020.102131
10.1111/gcb.12838
10.1016/j.worlddev.2015.10.041
10.1038/sdata.2018.28
10.1016/j.rse.2011.10.028
10.1016/j.rse.2020.112095
10.1016/j.isprsjprs.2020.04.001
10.1016/S2095-3119(19)62599-2
10.1016/j.rse.2020.111685
10.1016/j.landusepol.2018.02.032
10.3390/rs6032473
10.1016/j.rse.2016.02.016
10.5194/hess-19-4441-2015
10.1016/S0269-7491(01)00211-1
10.1016/j.rse.2019.111470
10.1080/02693799008941549
10.1016/j.rse.2004.12.009
10.1016/j.rse.2018.11.007
10.1080/01431161.2012.748992
10.3390/rs12061022
10.3389/frwa.2021.640544
10.1016/j.rse.2015.08.004
10.3390/rs6065774
10.1016/j.rse.2018.12.031
10.1109/JSTARS.2014.2344630
10.1007/s11769-013-0637-2
10.5194/hess-19-3319-2015
10.1016/j.worlddev.2018.12.006
10.1038/s41597-019-0229-9
10.1016/j.agrformet.2006.06.012
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.5194/essd-13-4799-2021
DatabaseName CrossRef
Gale In Context: Science
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Agriculture
EISSN 1866-3516
EndPage 4817
ExternalDocumentID oai_doaj_org_article_122ce0d8644146e6963253948fc86614
A679776215
10_5194_essd_13_4799_2021
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RKB
RNS
TR2
TUS
ZBA
BBORY
PQGLB
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
COVID
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PUEGO
ID FETCH-LOGICAL-c413t-8792361aa426498d51a14c2777cbc7d6c50ce87778a6972dff91fdf02df3605a3
IEDL.DBID DOA
ISSN 1866-3516
1866-3508
IngestDate Wed Aug 27 01:30:18 EDT 2025
Fri Jul 25 10:30:12 EDT 2025
Tue Jun 17 22:04:24 EDT 2025
Thu Jul 17 05:59:30 EDT 2025
Fri Jun 27 05:25:22 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Tue Jul 01 02:14:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-8792361aa426498d51a14c2777cbc7d6c50ce87778a6972dff91fdf02df3605a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2362-6711
0000-0001-8008-5670
0000-0002-4242-7614
OpenAccessLink https://doaj.org/article/122ce0d8644146e6963253948fc86614
PQID 2583860162
PQPubID 105729
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_122ce0d8644146e6963253948fc86614
proquest_journals_2583860162
gale_infotracmisc_A679776215
gale_infotracacademiconefile_A679776215
gale_incontextgauss_ISR_A679776215
crossref_citationtrail_10_5194_essd_13_4799_2021
crossref_primary_10_5194_essd_13_4799_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-21
PublicationDateYYYYMMDD 2021-10-21
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-21
  day: 21
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref65
  doi: 10.1016/j.rse.2017.01.008
– ident: ref44
  doi: 10.1016/j.rse.2017.03.015
– ident: ref20
  doi: 10.1016/j.envsoft.2011.11.015
– ident: ref39
  doi: 10.1016/j.isprsjprs.2019.06.014
– ident: ref1
  doi: 10.1109/JSTARS.2020.3021052
– ident: ref3
  doi: 10.1023/A:1017551529813
– ident: ref24
  doi: 10.1007/s00484-016-1199-7
– ident: ref81
– ident: ref6
  doi: 10.1016/j.rse.2018.11.012
– ident: ref70
  doi: 10.1080/01431161.2016.1194545
– ident: ref87
  doi: 10.1016/j.scitotenv.2020.136719
– ident: ref5
  doi: 10.1111/gcb.12808
– ident: ref11
  doi: 10.3390/su8111123
– ident: ref79
  doi: 10.1088/1748-9326/aaf9c7
– ident: ref77
  doi: 10.3390/rs9101065
– ident: ref48
  doi: 10.1016/j.rse.2019.111624
– ident: ref18
  doi: 10.4060/ca9692en
– ident: ref57
  doi: 10.1038/s41598-018-23804-6
– ident: ref71
  doi: 10.1016/j.rse.2014.10.009
– ident: ref37
  doi: 10.1038/s41598-018-31175-1
– ident: ref30
  doi: 10.1016/j.scitotenv.2017.12.120
– ident: ref34
  doi: 10.1016/j.gfs.2014.11.003
– ident: ref35
  doi: 10.1007/s11629-017-4750-z
– ident: ref47
  doi: 10.5194/essd-12-1217-2020
– ident: ref56
  doi: 10.1088/1748-9326/8/4/044041
– ident: ref13
  doi: 10.1016/j.isprsjprs.2016.05.010
– ident: ref22
  doi: 10.1596/1813-9450-9188
– ident: ref62
  doi: 10.2136/sssaj2003.1533
– ident: ref33
  doi: 10.1029/2019EF001287
– ident: ref14
  doi: 10.1016/j.rse.2015.01.004
– ident: ref26
  doi: 10.1016/j.rse.2017.06.031
– ident: ref64
  doi: 10.1038/s41597-019-0036-3
– ident: ref82
  doi: 10.1088/1755-1315/17/1/012048
– ident: ref17
  doi: 10.1088/1748-9326/11/2/024015
– ident: ref41
  doi: 10.1127/0941-2948/2011/105
– ident: ref36
  doi: 10.1016/j.rse.2013.02.029
– ident: ref8
  doi: 10.1016/j.rse.2018.09.002
– ident: ref55
  doi: 10.1016/j.rse.2019.05.024
– ident: ref2
  doi: 10.1038/sdata.2018.214
– ident: ref23
  doi: 10.1002/fes3.73
– ident: ref16
  doi: 10.1021/ac034173t
– ident: ref29
  doi: 10.1051/978-2-7598-2442-7
– ident: ref51
  doi: 10.1073/pnas.0606377103
– ident: ref7
– ident: ref60
  doi: 10.3390/rs12152433
– ident: ref63
  doi: 10.3390/rs2071625
– ident: ref76
  doi: 10.1016/j.isprsjprs.2019.07.005
– ident: ref68
– ident: ref38
  doi: 10.1038/s41558-020-0718-z
– ident: ref52
  doi: 10.1016/j.jag.2019.102010
– ident: ref67
  doi: 10.1073/pnas.1116437108
– ident: ref80
  doi: 10.1038/s41561-018-0166-9
– ident: ref69
  doi: 10.1016/j.gloenvcha.2020.102131
– ident: ref21
  doi: 10.1111/gcb.12838
– ident: ref49
  doi: 10.1016/j.worlddev.2015.10.041
– ident: ref58
  doi: 10.1038/sdata.2018.28
– ident: ref86
  doi: 10.1016/j.rse.2011.10.028
– ident: ref46
  doi: 10.1016/j.rse.2020.112095
– ident: ref19
– ident: ref66
  doi: 10.1016/j.isprsjprs.2020.04.001
– ident: ref32
  doi: 10.1016/S2095-3119(19)62599-2
– ident: ref4
  doi: 10.1016/j.rse.2020.111685
– ident: ref74
  doi: 10.1016/j.landusepol.2018.02.032
– ident: ref45
  doi: 10.3390/rs6032473
– ident: ref84
– ident: ref15
  doi: 10.1016/j.rse.2016.02.016
– ident: ref42
  doi: 10.5194/hess-19-4441-2015
– ident: ref43
  doi: 10.1016/S0269-7491(01)00211-1
– ident: ref72
  doi: 10.1016/j.rse.2019.111470
– ident: ref28
– ident: ref53
  doi: 10.1080/02693799008941549
– ident: ref75
  doi: 10.1016/j.rse.2004.12.009
– ident: ref9
  doi: 10.1016/j.rse.2018.11.007
– ident: ref73
– ident: ref25
  doi: 10.1080/01431161.2012.748992
– ident: ref12
  doi: 10.3390/rs12061022
– ident: ref59
  doi: 10.3389/frwa.2021.640544
– ident: ref40
  doi: 10.1016/j.rse.2015.08.004
– ident: ref83
  doi: 10.3390/rs6065774
– ident: ref85
  doi: 10.1016/j.rse.2018.12.031
– ident: ref27
  doi: 10.1109/JSTARS.2014.2344630
– ident: ref78
  doi: 10.1007/s11769-013-0637-2
– ident: ref31
  doi: 10.5194/hess-19-3319-2015
– ident: ref10
– ident: ref50
  doi: 10.1016/j.worlddev.2018.12.006
– ident: ref61
  doi: 10.1038/s41597-019-0229-9
– ident: ref54
  doi: 10.1016/j.agrformet.2006.06.012
SSID ssj0064175
Score 2.4719589
Snippet The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has...
The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4799
SubjectTerms Agricultural land
Agricultural practices
Agricultural production
Agriculture
Algorithms
Analysis
Anthropogenic factors
COVID-19
Cropping systems
Datasets
Estimates
Farming systems
Floods
Food
Imagery
Land management
Land use
Land use management
Remote sensing
Resolution
Satellite data
Satellites
Spatial analysis
Spatial discrimination
Spatial resolution
Statistical methods
Sustainable agriculture
Sustainable development
Time series
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3yQSE9lCZN6LZpEaFQKJhYsmRLvZRNyCc0lLSBQA9CK0tLoVmna-ew_74ztjZlD83FGHt88Iz89EYavwH4oKMyggeRYeqACYrKfeaUwoN0SEaii5O-89zXq_L8Rl7eqtu04NamssolJvZAXTee1sgPBe3vkXaI-HL_J6OuUbS7mlporMMmQrDG5Gvz6OTq2_USi0vJe6ldUnXLCuQiw74mshZ5iEBSZ7ygpSWDY0XwlZmpF_D_H0z3c8_pS3iRSCMbD1HehrUw24Hn4-k8CWeEHXh21rfoXbyCn2fHF0X-mTk2iH0wKgJtQ8eayIqc3TFq2kV_SbFfQ_l6t2BU_T5lfXHhsJrP5gFjGFhLBmR6R1oXi124OT35cXyepRYKmcfZqUOsM6Su4hwRH6NrxR2XXlRV5Se-qkuPwQkkCahdaSpRx2h4rGOOZwUmOq7Yg41ZMwuvgQWpAtIHH6pJkHmMWpvItVEOI-qCCiPIl-6zPumLU5uL3xbzDPK4JY9bXljyuCWPj-DT4yP3g7jGU8ZHFJNHQ9LF7i8086lNn5nlQviQ15pYnixDifAiVGGkjl4TExnBAUXUkvLFjEprpu6hbe3F92s7LivkwiVSoBF8TEaxwTfwLv2pgH4gsawVy_0VS_w0_ert5cCxCRpa-28gv3n69lvYovemiVLwfdjo5g_hHTKgbvI-DfO_P0EA7A
  priority: 102
  providerName: ProQuest
Title GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery
URI https://www.proquest.com/docview/2583860162
https://doaj.org/article/122ce0d8644146e6963253948fc86614
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9RAEB5qS8EX0drS03osIghCaHazm-z6dld71xYsUi30RZa9zW4R7J006cO9-erf9Jc4k80V70F98SUJyQSSmcnMN8nkG4BXOiojeBAZlg5YoKjcZ04pXEiHYCS6OOsmz70_L08u5dmVuvpt1Bf1hCV64KS4Qy6ED3mtKW_LMpToMEIVRuroNeUWir6Y81bFVIrBpeQdxS6xuWUFYpD0PRPRijzEAFJnvKBXSgZ9RPC1jNQR9_8pPHc5Z_IYHvVgkY3SRT6BjTDfge1pN4x3-RQ-T49Oi_wtcyzRejBq92xCyxaRFfnP7z9uGA3ooj-i2JfUqt4uGXW6X7OukTC9uWe3Ae0VWEMCJHpDvBbLXbicHH86Osn6cQmZx0zUYlwzxKTiHIEco2vFHZdeVFXlZ76qS4-GCET_p11pKlHHaHisY45bBRY1rtiDzfliHvaBBakCQgUfqlmQeYxam8i1UQ6t54IKA8hXKrO-5xKnkRZfLdYUpGVLWra8sKRlS1oewJv7U74lIo2_CY_JDveCxIHd7UDPsL1n2H95xgBekhUtsVzMqY3m2t01jT39eGFHZYW4t0S4M4DXvVBc4B141_-VgHogYqw1yYM1SXwM_frhlbPYPgw0VtBHaSK8Ec_-xx09h4ekHUqdgh_AZnt7F14gJmpnQ3igJ9MhbI3G78YTXI-Pzz9cDLuH4heERwcX
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIOCAqIhQIWAiEhRY1fiY2E0FLYB30coJUqcTBex14h0U3ZpEL7p_iNzORRtAd66yWKkkmUjGfGn-3xN4S81FEZzgJPYOgAAxSV-sQpBQfpAIxEF2dN5bmDw2xyLD-fqJMN8qffC4NplX1MbAJ1UXqcI9_huL6H3CH8_dmvBKtG4epqX0KjNYu9sPoNQ7bq3fQjtO8rzkefjnYnSVdVIPEQsGtwf4OEI84hFjC6UMwx6Xme537m8yLz8L0BWfK0y0zOixgNi0VM4UwA9ncC3nuNXJdCGPQoPRr3kT-TrCH2RQ65RADyaVdRASPJHQhbRcIETmQZsEzO1vrBplzA_zqFpqcb3SV3OohKh61N3SMbYbFFbg_ny46mI2yRG-OmIPDqPvk23p2K9C11tKUWoZhyWoWalpGKlJ5SLBGGe7LojzZZvl5RzLWf0yaVsV07oMsAFhNohQIoeorMGqsH5PhKVPuQbC7KRXhEaJAqAFjxIZ8FmcaotYlMG-XAflxQYUDSXn3Wd2zmWFTjp4VRDWrcosYtExY1blHjA_Lm4pGzlsrjMuEP2CYXgsjC3Vwol3PbObVlnPuQFhoxpcxCBsGMK2Gkjl4j7hmQF9iiFnk2FpjIM3fnVWWnX7_YYZYD8s4AcA3I604olvAH3nX7IkAPSM21Jrm9JgmBwK_f7g3HdoGosv_c5vHlt5-Tm5Ojg327Pz3ce0JuoQ6wi-Zsm2zWy_PwFLBXPXvWGDwl36_aw_4Ckbc7mg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VVCB44FJABAqsEAgJya137bXXSAilLWlDacWtohIPy2a9GyFoUmJHKHwav8LPMONLUZDoWx94iax4Etnrs7NnvDNnAB4qLzPBnQgwdMAARYY2MFLiR2yQjHjjh1Xnub39ZOcgfnkoD5fgZ1sLQ2mVrU-sHHU-sfSOfF3Q_h5ph4h136RFvN7qPz_-FlAHKdppbdtp1BDZdfPvGL4VzwZb-KwfCdF_8X5zJ2g6DAQWnXeJriAj8RFjiBdkKpfc8NiKNE3t0KZ5YvHaHSnmKZNkqci9z7jPfYhHEcYBJsL_PQfLKlFSdGB5o7_35kO7DiQxr2R-SVEuiJAH1XuqyJjidXRiecAjeq2VIU4FX1gVq-YB_1oiqnWvfwV-tSNWp7t8WZuVwzX74y8xyf9zSK_C5YaOs149f67BkhuvwKXeaNpIkrgVOL9dNT-eX4eP25uDKHzKDKtlVBil1xauZBPPopAdMWqHRvVn7HNdGFDOGdUVjFiVtlnvk7Cpw9nhWEEGZHpEKiLzG3BwJvd5EzrjydjdAuZi6ZCYWZcOXRx6r1TmucqkwblinHRdCFtwaNsot1MDka8aIzjCkyY8aR5pwpMmPHXhyclPjmvZktOMNwhxJ4akOF59MZmOdOPANBfCujBXxJ_jxCXouIWMslh5q4jjdeEB4VWTpsiYoDQys6LQg3dvdS9JMcpIkFx24XFj5Cd4B9Y0NSA4DiRDtmC5umCJTs8unm4hrRunW-g_eL59-un7cAGBrl8N9nfvwEUaAmIjgq9Cp5zO3F2kmeXwXjOfGXw6a7z_BtFwiFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCI30%3A+a+global+dataset+of+30+m+cropping+intensity+using+multisource+remote+sensing+imagery&rft.jtitle=Earth+system+science+data&rft.au=Zhang%2C+Miao&rft.au=Wu%2C+Bingfang&rft.au=Zeng%2C+Hongwei&rft.au=He%2C+Guojin&rft.date=2021-10-21&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.volume=13&rft.issue=10&rft.spage=4799&rft_id=info:doi/10.5194%2Fessd-13-4799-2021&rft.externalDocID=A679776215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon