GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery
The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investi...
Saved in:
Published in | Earth system science data Vol. 13; no. 10; pp. 4799 - 4817 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
21.10.2021
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The global distribution of cropping intensity (CI) is
essential to our understanding of agricultural land use management on Earth.
Optical remote sensing has revolutionized our ability to map CI over large
areas in a repeated and cost-efficient manner. Previous studies have mainly
focused on investigating the spatiotemporal patterns of CI ranging from
regions to the entire globe with the use of coarse-resolution data, which
are inadequate for characterizing farming practices within heterogeneous
landscapes. To fill this knowledge gap, in this study, we utilized multiple
satellite data to develop a global, spatially continuous CI map dataset at
30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited
high agreement with visually interpreted validation samples and in situ
observations from the PhenoCam network. We carried out both statistical and
spatial comparisons of GCI30 with six existing global CI estimates. Based on
GCI30, we estimated that the global average annual CI during 2016–2018 was
1.05, which is close to the mean (1.09) and median (1.07) CI values of the
existing six global CI estimates, although the spatial resolution and
temporal coverage vary significantly among products. A spatial comparison
with two satellite-based land surface phenology products further suggested
that GCI30 was not only capable of capturing the overall pattern of global
CI but also provided many spatial details. GCI30 indicated that single
cropping was the primary agricultural system on Earth, accounting for
81.57 % (12.28×106 km2) of the world's cropland extent.
Multiple-cropping systems, on the other hand, were commonly observed in
South America and Asia. We found large variations across countries and
agroecological zones, reflecting the joint control of natural and
anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap
for promoting sustainable agriculture by depicting worldwide diversity of
agricultural land use intensity. The GCI30 dataset is available on Harvard
Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020). |
---|---|
AbstractList | The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016-2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28x10.sup.6 km.sup.2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020). The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % ( 12.28×106 km 2 ) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020). The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: 10.7910/DVN/86M4PO (Zhang et al., 2020). |
Audience | Academic |
Author | Zhang, Miao Liu, Chong Beyene, Awetahegn Niguse Elnashar, Abdelrazek Zhang, Qi Tian, Fuyou Yan, Nana Zeng, Hongwei Bofana, José Tao, Shiqi Nabil, Mohsen He, Guojin Wang, Zhengdong Wu, Bingfang Liu, Yiliang |
Author_xml | – sequence: 1 givenname: Miao surname: Zhang fullname: Zhang, Miao – sequence: 2 givenname: Bingfang surname: Wu fullname: Wu, Bingfang – sequence: 3 givenname: Hongwei surname: Zeng fullname: Zeng, Hongwei – sequence: 4 givenname: Guojin surname: He fullname: He, Guojin – sequence: 5 givenname: Chong surname: Liu fullname: Liu, Chong – sequence: 6 givenname: Shiqi surname: Tao fullname: Tao, Shiqi – sequence: 7 givenname: Qi orcidid: 0000-0002-4242-7614 surname: Zhang fullname: Zhang, Qi – sequence: 8 givenname: Mohsen orcidid: 0000-0003-2362-6711 surname: Nabil fullname: Nabil, Mohsen – sequence: 9 givenname: Fuyou surname: Tian fullname: Tian, Fuyou – sequence: 10 givenname: José surname: Bofana fullname: Bofana, José – sequence: 11 givenname: Awetahegn Niguse surname: Beyene fullname: Beyene, Awetahegn Niguse – sequence: 12 givenname: Abdelrazek orcidid: 0000-0001-8008-5670 surname: Elnashar fullname: Elnashar, Abdelrazek – sequence: 13 givenname: Nana surname: Yan fullname: Yan, Nana – sequence: 14 givenname: Zhengdong surname: Wang fullname: Wang, Zhengdong – sequence: 15 givenname: Yiliang surname: Liu fullname: Liu, Yiliang |
BookMark | eNp1ksuKFDEUhgsZwZnRB3AXcOWixpwklVTcDY2ODQOCl6WETC5FmqpKm6TA3s3W1_RJTNmKtihZ5JzD9_-5nHPRnM1xdk3zFPBVB5K9cDnbFmjLhJQtwQQeNOfQc97SDvjZH_Gj5iLnHcacgejOm083my3FL5FGwxjv9IisLjq7gqJHFH-7_zohk-J-H-YBhbm4OYdyQEte82kZS8hxScah5KZYHMorsKKTHlw6PG4eej1m9-Tnftl8fP3qw-ZNe_v2Zru5vm0NA1raXkhCOWjNCGeytx1oYIYIIcydEZabDhvX17TXXApivZfgrcc1ohx3ml4226OvjXqn9qkenw4q6qB-FGIalE4lmNEpIMQ4bHvOGDDuuOSUdFSy3pv6RcCq17Oj1z7Fz4vLRe3qE-d6fUW6nvYcAye_qUFX0zD7WJI2U8hGXXMhheAEukpd_YOqy7opmNpBH2r9RPD8RFCZ4r6UQS85q-37d6esOLK1QTkn55UJRZdQJUmHUQFW62iodTQUULWOhlpHoyrhL-WvL_u_5jv90LuW |
CitedBy_id | crossref_primary_10_3390_rs15205033 crossref_primary_10_1038_s41597_024_04248_2 crossref_primary_10_1016_j_geoderma_2024_116798 crossref_primary_10_1038_s43247_023_00933_z crossref_primary_10_1109_TGRS_2023_3299956 crossref_primary_10_1016_j_rse_2024_114070 crossref_primary_10_1016_j_crope_2022_03_006 crossref_primary_10_1109_JSTARS_2022_3218881 crossref_primary_10_1016_j_compag_2024_109018 crossref_primary_10_1016_j_compag_2024_109777 crossref_primary_10_1016_j_catena_2024_107813 crossref_primary_10_1002_ldr_4581 crossref_primary_10_1016_j_cj_2023_12_010 crossref_primary_10_1016_j_jag_2022_103178 crossref_primary_10_1016_j_ecolind_2023_110264 crossref_primary_10_1109_TGRS_2024_3515157 crossref_primary_10_1016_j_jhydrol_2022_127885 crossref_primary_10_5194_essd_17_855_2025 crossref_primary_10_1016_j_apgeog_2023_103150 crossref_primary_10_1016_j_iswcr_2023_07_003 crossref_primary_10_1038_s43247_024_01516_2 crossref_primary_10_1017_S002185962300014X crossref_primary_10_3390_rs16244801 crossref_primary_10_5194_essd_13_5969_2021 crossref_primary_10_1016_j_scitotenv_2023_163013 crossref_primary_10_3390_rs14030566 crossref_primary_10_1016_j_ecolind_2023_111314 crossref_primary_10_1016_j_scitotenv_2022_159738 crossref_primary_10_1016_j_compag_2023_108428 crossref_primary_10_1016_j_isprsjprs_2023_07_017 crossref_primary_10_1016_j_compag_2023_108509 crossref_primary_10_1016_j_jag_2023_103504 crossref_primary_10_1080_10106049_2024_2387786 crossref_primary_10_1016_j_landusepol_2024_107355 crossref_primary_10_1038_s41597_024_03456_0 crossref_primary_10_1016_j_agsy_2022_103437 crossref_primary_10_1016_j_jenvman_2022_116754 crossref_primary_10_5194_essd_16_3893_2024 crossref_primary_10_1088_2515_7620_ad2a90 crossref_primary_10_1016_j_jhydrol_2024_131846 crossref_primary_10_3389_fsufs_2024_1393124 crossref_primary_10_1111_gcb_16996 crossref_primary_10_3390_rs16030440 crossref_primary_10_3390_land12091764 crossref_primary_10_1016_j_compag_2025_110317 crossref_primary_10_1038_s41597_024_03247_7 crossref_primary_10_1080_17538947_2024_2302579 crossref_primary_10_1016_j_compag_2024_109025 crossref_primary_10_1038_s43016_025_01131_0 crossref_primary_10_3390_land14030561 crossref_primary_10_3390_rs15194712 crossref_primary_10_1109_TGRS_2025_3549296 crossref_primary_10_1021_acs_est_5c01119 crossref_primary_10_1177_1420326X241277966 |
Cites_doi | 10.1016/j.rse.2017.01.008 10.1016/j.rse.2017.03.015 10.1016/j.envsoft.2011.11.015 10.1016/j.isprsjprs.2019.06.014 10.1109/JSTARS.2020.3021052 10.1023/A:1017551529813 10.1007/s00484-016-1199-7 10.1016/j.rse.2018.11.012 10.1080/01431161.2016.1194545 10.1016/j.scitotenv.2020.136719 10.1111/gcb.12808 10.3390/su8111123 10.1088/1748-9326/aaf9c7 10.3390/rs9101065 10.1016/j.rse.2019.111624 10.4060/ca9692en 10.1038/s41598-018-23804-6 10.1016/j.rse.2014.10.009 10.1038/s41598-018-31175-1 10.1016/j.scitotenv.2017.12.120 10.1016/j.gfs.2014.11.003 10.1007/s11629-017-4750-z 10.5194/essd-12-1217-2020 10.1088/1748-9326/8/4/044041 10.1016/j.isprsjprs.2016.05.010 10.1596/1813-9450-9188 10.2136/sssaj2003.1533 10.1029/2019EF001287 10.1016/j.rse.2015.01.004 10.1016/j.rse.2017.06.031 10.1038/s41597-019-0036-3 10.1088/1755-1315/17/1/012048 10.1088/1748-9326/11/2/024015 10.1127/0941-2948/2011/105 10.1016/j.rse.2013.02.029 10.1016/j.rse.2018.09.002 10.1016/j.rse.2019.05.024 10.1038/sdata.2018.214 10.1002/fes3.73 10.1021/ac034173t 10.1051/978-2-7598-2442-7 10.1073/pnas.0606377103 10.3390/rs12152433 10.3390/rs2071625 10.1016/j.isprsjprs.2019.07.005 10.1038/s41558-020-0718-z 10.1016/j.jag.2019.102010 10.1073/pnas.1116437108 10.1038/s41561-018-0166-9 10.1016/j.gloenvcha.2020.102131 10.1111/gcb.12838 10.1016/j.worlddev.2015.10.041 10.1038/sdata.2018.28 10.1016/j.rse.2011.10.028 10.1016/j.rse.2020.112095 10.1016/j.isprsjprs.2020.04.001 10.1016/S2095-3119(19)62599-2 10.1016/j.rse.2020.111685 10.1016/j.landusepol.2018.02.032 10.3390/rs6032473 10.1016/j.rse.2016.02.016 10.5194/hess-19-4441-2015 10.1016/S0269-7491(01)00211-1 10.1016/j.rse.2019.111470 10.1080/02693799008941549 10.1016/j.rse.2004.12.009 10.1016/j.rse.2018.11.007 10.1080/01431161.2012.748992 10.3390/rs12061022 10.3389/frwa.2021.640544 10.1016/j.rse.2015.08.004 10.3390/rs6065774 10.1016/j.rse.2018.12.031 10.1109/JSTARS.2014.2344630 10.1007/s11769-013-0637-2 10.5194/hess-19-3319-2015 10.1016/j.worlddev.2018.12.006 10.1038/s41597-019-0229-9 10.1016/j.agrformet.2006.06.012 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU COVID DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.5194/essd-13-4799-2021 |
DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Agriculture |
EISSN | 1866-3516 |
EndPage | 4817 |
ExternalDocumentID | oai_doaj_org_article_122ce0d8644146e6963253948fc86614 A679776215 10_5194_essd_13_4799_2021 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA BBORY PQGLB 7SN 7TG 7TN 7UA 8FD AZQEC C1K COVID DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PUEGO |
ID | FETCH-LOGICAL-c413t-8792361aa426498d51a14c2777cbc7d6c50ce87778a6972dff91fdf02df3605a3 |
IEDL.DBID | DOA |
ISSN | 1866-3516 1866-3508 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Fri Jul 25 10:30:12 EDT 2025 Tue Jun 17 22:04:24 EDT 2025 Thu Jul 17 05:59:30 EDT 2025 Fri Jun 27 05:25:22 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Tue Jul 01 02:14:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-8792361aa426498d51a14c2777cbc7d6c50ce87778a6972dff91fdf02df3605a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2362-6711 0000-0001-8008-5670 0000-0002-4242-7614 |
OpenAccessLink | https://doaj.org/article/122ce0d8644146e6963253948fc86614 |
PQID | 2583860162 |
PQPubID | 105729 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_122ce0d8644146e6963253948fc86614 proquest_journals_2583860162 gale_infotracmisc_A679776215 gale_infotracacademiconefile_A679776215 gale_incontextgauss_ISR_A679776215 crossref_citationtrail_10_5194_essd_13_4799_2021 crossref_primary_10_5194_essd_13_4799_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-21 |
PublicationDateYYYYMMDD | 2021-10-21 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2021 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref65 doi: 10.1016/j.rse.2017.01.008 – ident: ref44 doi: 10.1016/j.rse.2017.03.015 – ident: ref20 doi: 10.1016/j.envsoft.2011.11.015 – ident: ref39 doi: 10.1016/j.isprsjprs.2019.06.014 – ident: ref1 doi: 10.1109/JSTARS.2020.3021052 – ident: ref3 doi: 10.1023/A:1017551529813 – ident: ref24 doi: 10.1007/s00484-016-1199-7 – ident: ref81 – ident: ref6 doi: 10.1016/j.rse.2018.11.012 – ident: ref70 doi: 10.1080/01431161.2016.1194545 – ident: ref87 doi: 10.1016/j.scitotenv.2020.136719 – ident: ref5 doi: 10.1111/gcb.12808 – ident: ref11 doi: 10.3390/su8111123 – ident: ref79 doi: 10.1088/1748-9326/aaf9c7 – ident: ref77 doi: 10.3390/rs9101065 – ident: ref48 doi: 10.1016/j.rse.2019.111624 – ident: ref18 doi: 10.4060/ca9692en – ident: ref57 doi: 10.1038/s41598-018-23804-6 – ident: ref71 doi: 10.1016/j.rse.2014.10.009 – ident: ref37 doi: 10.1038/s41598-018-31175-1 – ident: ref30 doi: 10.1016/j.scitotenv.2017.12.120 – ident: ref34 doi: 10.1016/j.gfs.2014.11.003 – ident: ref35 doi: 10.1007/s11629-017-4750-z – ident: ref47 doi: 10.5194/essd-12-1217-2020 – ident: ref56 doi: 10.1088/1748-9326/8/4/044041 – ident: ref13 doi: 10.1016/j.isprsjprs.2016.05.010 – ident: ref22 doi: 10.1596/1813-9450-9188 – ident: ref62 doi: 10.2136/sssaj2003.1533 – ident: ref33 doi: 10.1029/2019EF001287 – ident: ref14 doi: 10.1016/j.rse.2015.01.004 – ident: ref26 doi: 10.1016/j.rse.2017.06.031 – ident: ref64 doi: 10.1038/s41597-019-0036-3 – ident: ref82 doi: 10.1088/1755-1315/17/1/012048 – ident: ref17 doi: 10.1088/1748-9326/11/2/024015 – ident: ref41 doi: 10.1127/0941-2948/2011/105 – ident: ref36 doi: 10.1016/j.rse.2013.02.029 – ident: ref8 doi: 10.1016/j.rse.2018.09.002 – ident: ref55 doi: 10.1016/j.rse.2019.05.024 – ident: ref2 doi: 10.1038/sdata.2018.214 – ident: ref23 doi: 10.1002/fes3.73 – ident: ref16 doi: 10.1021/ac034173t – ident: ref29 doi: 10.1051/978-2-7598-2442-7 – ident: ref51 doi: 10.1073/pnas.0606377103 – ident: ref7 – ident: ref60 doi: 10.3390/rs12152433 – ident: ref63 doi: 10.3390/rs2071625 – ident: ref76 doi: 10.1016/j.isprsjprs.2019.07.005 – ident: ref68 – ident: ref38 doi: 10.1038/s41558-020-0718-z – ident: ref52 doi: 10.1016/j.jag.2019.102010 – ident: ref67 doi: 10.1073/pnas.1116437108 – ident: ref80 doi: 10.1038/s41561-018-0166-9 – ident: ref69 doi: 10.1016/j.gloenvcha.2020.102131 – ident: ref21 doi: 10.1111/gcb.12838 – ident: ref49 doi: 10.1016/j.worlddev.2015.10.041 – ident: ref58 doi: 10.1038/sdata.2018.28 – ident: ref86 doi: 10.1016/j.rse.2011.10.028 – ident: ref46 doi: 10.1016/j.rse.2020.112095 – ident: ref19 – ident: ref66 doi: 10.1016/j.isprsjprs.2020.04.001 – ident: ref32 doi: 10.1016/S2095-3119(19)62599-2 – ident: ref4 doi: 10.1016/j.rse.2020.111685 – ident: ref74 doi: 10.1016/j.landusepol.2018.02.032 – ident: ref45 doi: 10.3390/rs6032473 – ident: ref84 – ident: ref15 doi: 10.1016/j.rse.2016.02.016 – ident: ref42 doi: 10.5194/hess-19-4441-2015 – ident: ref43 doi: 10.1016/S0269-7491(01)00211-1 – ident: ref72 doi: 10.1016/j.rse.2019.111470 – ident: ref28 – ident: ref53 doi: 10.1080/02693799008941549 – ident: ref75 doi: 10.1016/j.rse.2004.12.009 – ident: ref9 doi: 10.1016/j.rse.2018.11.007 – ident: ref73 – ident: ref25 doi: 10.1080/01431161.2012.748992 – ident: ref12 doi: 10.3390/rs12061022 – ident: ref59 doi: 10.3389/frwa.2021.640544 – ident: ref40 doi: 10.1016/j.rse.2015.08.004 – ident: ref83 doi: 10.3390/rs6065774 – ident: ref85 doi: 10.1016/j.rse.2018.12.031 – ident: ref27 doi: 10.1109/JSTARS.2014.2344630 – ident: ref78 doi: 10.1007/s11769-013-0637-2 – ident: ref31 doi: 10.5194/hess-19-3319-2015 – ident: ref10 – ident: ref50 doi: 10.1016/j.worlddev.2018.12.006 – ident: ref61 doi: 10.1038/s41597-019-0229-9 – ident: ref54 doi: 10.1016/j.agrformet.2006.06.012 |
SSID | ssj0064175 |
Score | 2.4719589 |
Snippet | The global distribution of cropping intensity (CI) is
essential to our understanding of agricultural land use management on Earth.
Optical remote sensing has... The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4799 |
SubjectTerms | Agricultural land Agricultural practices Agricultural production Agriculture Algorithms Analysis Anthropogenic factors COVID-19 Cropping systems Datasets Estimates Farming systems Floods Food Imagery Land management Land use Land use management Remote sensing Resolution Satellite data Satellites Spatial analysis Spatial discrimination Spatial resolution Statistical methods Sustainable agriculture Sustainable development Time series Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3yQSE9lCZN6LZpEaFQKJhYsmRLvZRNyCc0lLSBQA9CK0tLoVmna-ew_74ztjZlD83FGHt88Iz89EYavwH4oKMyggeRYeqACYrKfeaUwoN0SEaii5O-89zXq_L8Rl7eqtu04NamssolJvZAXTee1sgPBe3vkXaI-HL_J6OuUbS7mlporMMmQrDG5Gvz6OTq2_USi0vJe6ldUnXLCuQiw74mshZ5iEBSZ7ygpSWDY0XwlZmpF_D_H0z3c8_pS3iRSCMbD1HehrUw24Hn4-k8CWeEHXh21rfoXbyCn2fHF0X-mTk2iH0wKgJtQ8eayIqc3TFq2kV_SbFfQ_l6t2BU_T5lfXHhsJrP5gFjGFhLBmR6R1oXi124OT35cXyepRYKmcfZqUOsM6Su4hwRH6NrxR2XXlRV5Se-qkuPwQkkCahdaSpRx2h4rGOOZwUmOq7Yg41ZMwuvgQWpAtIHH6pJkHmMWpvItVEOI-qCCiPIl-6zPumLU5uL3xbzDPK4JY9bXljyuCWPj-DT4yP3g7jGU8ZHFJNHQ9LF7i8086lNn5nlQviQ15pYnixDifAiVGGkjl4TExnBAUXUkvLFjEprpu6hbe3F92s7LivkwiVSoBF8TEaxwTfwLv2pgH4gsawVy_0VS_w0_ert5cCxCRpa-28gv3n69lvYovemiVLwfdjo5g_hHTKgbvI-DfO_P0EA7A priority: 102 providerName: ProQuest |
Title | GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery |
URI | https://www.proquest.com/docview/2583860162 https://doaj.org/article/122ce0d8644146e6963253948fc86614 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9RAEB5qS8EX0drS03osIghCaHazm-z6dld71xYsUi30RZa9zW4R7J006cO9-erf9Jc4k80V70F98SUJyQSSmcnMN8nkG4BXOiojeBAZlg5YoKjcZ04pXEiHYCS6OOsmz70_L08u5dmVuvpt1Bf1hCV64KS4Qy6ED3mtKW_LMpToMEIVRuroNeUWir6Y81bFVIrBpeQdxS6xuWUFYpD0PRPRijzEAFJnvKBXSgZ9RPC1jNQR9_8pPHc5Z_IYHvVgkY3SRT6BjTDfge1pN4x3-RQ-T49Oi_wtcyzRejBq92xCyxaRFfnP7z9uGA3ooj-i2JfUqt4uGXW6X7OukTC9uWe3Ae0VWEMCJHpDvBbLXbicHH86Osn6cQmZx0zUYlwzxKTiHIEco2vFHZdeVFXlZ76qS4-GCET_p11pKlHHaHisY45bBRY1rtiDzfliHvaBBakCQgUfqlmQeYxam8i1UQ6t54IKA8hXKrO-5xKnkRZfLdYUpGVLWra8sKRlS1oewJv7U74lIo2_CY_JDveCxIHd7UDPsL1n2H95xgBekhUtsVzMqY3m2t01jT39eGFHZYW4t0S4M4DXvVBc4B141_-VgHogYqw1yYM1SXwM_frhlbPYPgw0VtBHaSK8Ec_-xx09h4ekHUqdgh_AZnt7F14gJmpnQ3igJ9MhbI3G78YTXI-Pzz9cDLuH4heERwcX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIOCAqIhQIWAiEhRY1fiY2E0FLYB30coJUqcTBex14h0U3ZpEL7p_iNzORRtAd66yWKkkmUjGfGn-3xN4S81FEZzgJPYOgAAxSV-sQpBQfpAIxEF2dN5bmDw2xyLD-fqJMN8qffC4NplX1MbAJ1UXqcI9_huL6H3CH8_dmvBKtG4epqX0KjNYu9sPoNQ7bq3fQjtO8rzkefjnYnSVdVIPEQsGtwf4OEI84hFjC6UMwx6Xme537m8yLz8L0BWfK0y0zOixgNi0VM4UwA9ncC3nuNXJdCGPQoPRr3kT-TrCH2RQ65RADyaVdRASPJHQhbRcIETmQZsEzO1vrBplzA_zqFpqcb3SV3OohKh61N3SMbYbFFbg_ny46mI2yRG-OmIPDqPvk23p2K9C11tKUWoZhyWoWalpGKlJ5SLBGGe7LojzZZvl5RzLWf0yaVsV07oMsAFhNohQIoeorMGqsH5PhKVPuQbC7KRXhEaJAqAFjxIZ8FmcaotYlMG-XAflxQYUDSXn3Wd2zmWFTjp4VRDWrcosYtExY1blHjA_Lm4pGzlsrjMuEP2CYXgsjC3Vwol3PbObVlnPuQFhoxpcxCBsGMK2Gkjl4j7hmQF9iiFnk2FpjIM3fnVWWnX7_YYZYD8s4AcA3I604olvAH3nX7IkAPSM21Jrm9JgmBwK_f7g3HdoGosv_c5vHlt5-Tm5Ojg327Pz3ce0JuoQ6wi-Zsm2zWy_PwFLBXPXvWGDwl36_aw_4Ckbc7mg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VVCB44FJABAqsEAgJya137bXXSAilLWlDacWtohIPy2a9GyFoUmJHKHwav8LPMONLUZDoWx94iax4Etnrs7NnvDNnAB4qLzPBnQgwdMAARYY2MFLiR2yQjHjjh1Xnub39ZOcgfnkoD5fgZ1sLQ2mVrU-sHHU-sfSOfF3Q_h5ph4h136RFvN7qPz_-FlAHKdppbdtp1BDZdfPvGL4VzwZb-KwfCdF_8X5zJ2g6DAQWnXeJriAj8RFjiBdkKpfc8NiKNE3t0KZ5YvHaHSnmKZNkqci9z7jPfYhHEcYBJsL_PQfLKlFSdGB5o7_35kO7DiQxr2R-SVEuiJAH1XuqyJjidXRiecAjeq2VIU4FX1gVq-YB_1oiqnWvfwV-tSNWp7t8WZuVwzX74y8xyf9zSK_C5YaOs149f67BkhuvwKXeaNpIkrgVOL9dNT-eX4eP25uDKHzKDKtlVBil1xauZBPPopAdMWqHRvVn7HNdGFDOGdUVjFiVtlnvk7Cpw9nhWEEGZHpEKiLzG3BwJvd5EzrjydjdAuZi6ZCYWZcOXRx6r1TmucqkwblinHRdCFtwaNsot1MDka8aIzjCkyY8aR5pwpMmPHXhyclPjmvZktOMNwhxJ4akOF59MZmOdOPANBfCujBXxJ_jxCXouIWMslh5q4jjdeEB4VWTpsiYoDQys6LQg3dvdS9JMcpIkFx24XFj5Cd4B9Y0NSA4DiRDtmC5umCJTs8unm4hrRunW-g_eL59-un7cAGBrl8N9nfvwEUaAmIjgq9Cp5zO3F2kmeXwXjOfGXw6a7z_BtFwiFk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCI30%3A+a+global+dataset+of+30+m+cropping+intensity+using+multisource+remote+sensing+imagery&rft.jtitle=Earth+system+science+data&rft.au=Zhang%2C+Miao&rft.au=Wu%2C+Bingfang&rft.au=Zeng%2C+Hongwei&rft.au=He%2C+Guojin&rft.date=2021-10-21&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.volume=13&rft.issue=10&rft.spage=4799&rft_id=info:doi/10.5194%2Fessd-13-4799-2021&rft.externalDocID=A679776215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |