Using force or EMG envelope as feedback signal for motor control system
This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). Aim: to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for F...
Saved in:
Published in | Journal of electromyography and kinesiology Vol. 74; p. 102851 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). Aim: to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF.
Subjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition.
a) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks.
The influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system. |
---|---|
AbstractList | AbstractPurposeThis work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). Aim: to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF. MethodSubjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100% of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition. Resultsa) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR was greater than UGR EMCE in all four tasks. ConclusionThe influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system. This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF. Subjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition. a) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks. The influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system. This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). Aim: to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF. Subjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition. a) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks. The influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system. This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR).PURPOSEThis work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR).to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF.AIMto evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF.Subjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition.METHODSubjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition.a) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks.RESULTSa) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks.The influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system.CONCLUSIONThe influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system. |
ArticleNumber | 102851 |
Author | Orizio, C. Cogliati, M. Cudicio, A. |
Author_xml | – sequence: 1 givenname: M. surname: Cogliati fullname: Cogliati, M. – sequence: 2 givenname: A. surname: Cudicio fullname: Cudicio, A. – sequence: 3 givenname: C. orcidid: 0000-0003-2534-2296 surname: Orizio fullname: Orizio, C. email: claudio.orizio@unibs.it |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38048656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9r3DAQxUVIaf71I6To2Iu3GsmytYcWSki3hZQempyFLI-DvLK0lbyB_faR2W1vpZeZQfzmoXnvipyHGJCQW2ArYNB8HFcjety6sOKMi_LGlYQzcgmqFZVsAc7LzCSrmhrgglzlPDIGLVPsLbkQitWqkc0l2TxlF57pEJNFGhO9_7GhGF7Qxx1Sk-mA2HfGbml2z8H4BaRTnEu1McwpepoPecbphrwZjM_47tSvydPX-8e7b9XDz833uy8Pla1BzJVqm16YRmDHWcctAwOSc8VEr6BB3klkIIUqw1oN1jbDugMjh1phWw9gmbgmH466uxR_7zHPenLZovcmYNxnzdVaCah53Rb0_QnddxP2epfcZNJB_zm-APII2BRzTjj8RYDpxWQ96pPJejFZH00ue5-Pe1gOfXGYtPUuOGv8Fg-Yx7hPxaqsQWeumf61xLCkwEVJAFhdBD79W0D30f3nA6-WAZk9 |
Cites_doi | 10.1111/apha.12930 10.1113/jphysiol.1973.sp010193 10.3389/fbioe.2020.00800 10.1007/s00221-003-1518-1 10.1016/j.jelekin.2019.07.008 10.1152/jn.00194.2020 10.1002/mus.880111012 10.1152/jn.00043.2023 10.1007/s00421-018-3868-1 10.1113/jphysiol.1985.sp015577 10.1007/s10974-009-9185-x 10.1016/0006-8993(95)01432-2 10.1113/jphysiol.2010.201806 10.1007/978-88-470-2463-2 10.1016/j.jelekin.2009.08.005 10.1038/s41598-021-00671-2 10.1016/j.jelekin.2022.102721 10.1007/s00421-023-05198-0 10.1007/BF00230904 10.1002/(SICI)1097-4598(199610)19:10<1252::AID-MUS2>3.0.CO;2-D 10.1007/s00221-019-05524-z 10.1007/s00421-014-2928-4 10.1007/s00421-011-2162-2 10.18637/jss.v082.i13 10.3390/s21051781 10.1016/j.jelekin.2023.102772 10.1002/mus.880130403 10.1093/geronj/35.5.672 10.1038/s41598-017-13369-1 10.1016/j.jelekin.2020.102438 10.1016/j.jelekin.2013.07.008 10.1016/j.jelekin.2021.102565 10.1007/s00421-021-04829-8 10.1007/s00421-009-1113-7 10.1152/japplphysiol.00807.2009 10.1016/j.jelekin.2019.102363 10.1016/j.jneumeth.2010.10.018 10.1109/TBME.2010.2068298 10.1523/JNEUROSCI.6641-10.2011 10.1016/S0021-9290(98)00042-6 10.1152/jn.00345.2013 10.1152/jn.1989.61.1.208 10.1016/j.jelekin.2010.03.005 10.1016/j.jelekin.2020.102440 10.1113/jphysiol.1982.sp014293 10.1113/jphysiol.2008.160747 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Author(s) – notice: The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jelekin.2023.102851 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-5711 |
EndPage | 102851 |
ExternalDocumentID | 38048656 10_1016_j_jelekin_2023_102851 1_s2_0_S1050641123001104 S1050641123001104 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TWZ UPT WUQ YQT Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c413t-876d3a63eb20b2c01a1522803d816e2b5e015382b598fcc6f9b1a5f48e74f1c03 |
ISSN | 1050-6411 1873-5711 |
IngestDate | Fri Jul 11 10:29:57 EDT 2025 Mon Jul 21 05:31:57 EDT 2025 Tue Jul 01 04:30:36 EDT 2025 Tue Feb 25 19:56:57 EST 2025 Tue Aug 26 19:57:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural feedback Force feedback Motor control Electromechanical coupling efficiency |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-876d3a63eb20b2c01a1522803d816e2b5e015382b598fcc6f9b1a5f48e74f1c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2534-2296 |
OpenAccessLink | https://www.clinicalkey.es/playcontent/1-s2.0-S1050641123001104 |
PMID | 38048656 |
PQID | 2898314247 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2898314247 pubmed_primary_38048656 crossref_primary_10_1016_j_jelekin_2023_102851 elsevier_clinicalkeyesjournals_1_s2_0_S1050641123001104 elsevier_clinicalkey_doi_10_1016_j_jelekin_2023_102851 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of electromyography and kinesiology |
PublicationTitleAlternate | J Electromyogr Kinesiol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | dos Anjos, Pinto, Cerone, Gazzoni, Vieira (b0105) 2022; 67 Andrzejewska, Jaskólski, Jaskólska, Gobbo, Orizio (b0015) 2014; 114 Vieira, Cerone, Botter, Watanabe, Vigotsky (b0260) 2023; PP Duchateau, Enoka (b0110) 2008; 586 Ekblom, Eriksson (b0115) 2012; 112 Merletti, Cerone (b0185) 2020; 54 Staudenmann, Roeleveld, Stegeman, van Dieen (b0245) 2010; 20 DeVries (b0100) 1968; 47 Clamann, Schelhorn (b0065) 1988; 11 Orizio, Esposito, Sansone, Parrinello, Meola, Veicsteinas (b0215) 1997; 37 Orizio, Celichowski, Toscani, Calabretto, Bissolotti, Gobbo (b0225) 2013; 23 Besomi, Hodges, Clancy, Van Dieën, Hug, Lowery, Merletti, Søgaard, Wrigley, Besier, Carson, Disselhorst-Klug, Enoka, Falla, Farina, Gandevia, Holobar, Kiernan, McGill, Perreault, Rothwell, Tucker (b0045) 2020; 53 McManus, Lowery, Merletti, Søgaard, Besomi, Clancy, van Dieën, Hug, Wrigley, Besier, Carson, Disselhorst-Klug, Enoka, Falla, Farina, Gandevia, Holobar, Kiernan, McGill, Perreault, Rothwell, Tucker, Hodges (b0180) 2021; 59 Onushko, Baweja, Christou (b0210) 2013; 110 Cogliati, Cudicio, Benedini, Cabral, Negro, Reggiani, Orizio (b0075) 2023; 123 Frigon, Thompson, Johnson, Manuel, Hornby, Heckman (b0120) 2011; 31 Lozano-García, Estrada-Petrocelli, Torres, Rafferty, Moxham, Jolley, Jané (b0170) 2021; 21 Nielsen, Holmgaard, Ning Jiang, Englehart, Farina, Parker (b0205) 2011; 58 Binder-Macleod, Clamann (b0050) 1989; 61 Denier van der Gon, ter Haar Romeny, van Zuylen (b0095) 1985; 359 Łochyński, Celichowski (b0165) 2009; 30 Barry, Gordon, Hinton (b0030) 1990; 13 Kirnap, Calis, Turgut, Halici, Tuncel (b0155) 2005; 118 Orizio, Baruzzi, Gaffurini, Diemont, Gobbo (b0220) 2010; 20 Baratta, Zhou, Solomonow, D’Ambrosia (b0020) 1998; 31 Fukuhara, Kawashima, Oka (b0125) 2021; 11 Besomi, Hodges, Van Dieën, Carson, Clancy, Disselhorst-Klug, Holobar, Hug, Kiernan, Lowery, McGill, Merletti, Perreault, Søgaard, Tucker, Besier, Enoka, Falla, Farina, Gandevia, Rothwell, Vicenzino, Wrigley (b0040) 2019; 48 Afsharipour, Manzur, Duchcherer, Fenrich, Thompson, Negro, Quinlan, Bennett, Gorassini (b0005) 2020; 124 Seki, Narusawa (b0240) 1996; 719 Kuznetsova, Brockhoff, Christensen (b0160) 2017; 82 Jesunathadas, Marmon, Gibb, Enoka (b0140) 2010; 108 Merletti, Muceli (b0190) 2019; 49 Cogliati, Cudicio, Negro, Gaffurini, Bissolotti, Orizio (b0070) 2019; 237 Schieppati, Crenna (b0230) 1985; 59 Milner-Brown, Stein, Yemm (b0195) 1973; 230 Jenz, Beauchamp, Gomes, Negro, Heckman, Pearcey (b0135) 2023; 129 Moritani, DeVries (b0200) 1980; 35 Schieppati, Nardone, Musazzi (b0235) 1986; 5 de Luca, LeFever, McCue, Xenakis (b0085) 1982; 329 Grosprêtre, Gimenez, Martin (b0130) 2018; 118 Del Vecchio, Negro, Felici, Farina (b0090) 2018; 222 Basmajian, De Luca (b0035) 1985; 65–100 Torricelli, D., De Marchis, C., D’Avella, A., Nemati Tobaruela, D., Oliveira Barroso, F., Pons, J.L., 2020. Reorganization of Muscle Coordination Underlying Motor Learning in Cycling Tasks. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2020.00800. Kimura, Yamanaka, Nozaki, Nakazawa, Miyoshi, Akai, Ohtsuki (b0150) 2003; 152 Barbero, M., Merletti, R., Rainoldi, A., Barbero, M., Merletti, R., Rainoldi, A., 2012. Introduction and Applications of Surface EMG, in: Atlas of Muscle Innervation Zones. https://doi.org/10.1007/978-88-470-2463-2_1. Cudicio, Martinez-Valdes, Cogliati, Orizio, Negro (b0080) 2022; 122 Vieira, Botter, Muceli, Farina (b0255) 2017; 7 Christie, A., Greig Inglis, · J, Kamen, G., Gabriel, D.A., 2009. Relationships between surface EMG variables and motor unit Wring rates. Eur J Appl Physiol 107, 177–185. https://doi.org/10.1007/s00421-009-1113-7. Vieira, Loram, Muceli, Merletti, Farina (b0265) 2011; 589 Keenan, Collins, Massey, Walters, Gruszka (b0145) 2011; 195 Mackay, Robey, Suprak, Buddhadev, San Juan (b0175) 2023; 70 Akataki, Mita, Itoh, Suzuki, Watakabe (b0010) 1996; 19 Cavalcanti Garcia, Vieira (b0055) 2011; 4 Besomi (10.1016/j.jelekin.2023.102851_b0040) 2019; 48 10.1016/j.jelekin.2023.102851_b0250 Jenz (10.1016/j.jelekin.2023.102851_b0135) 2023; 129 Merletti (10.1016/j.jelekin.2023.102851_b0185) 2020; 54 Staudenmann (10.1016/j.jelekin.2023.102851_b0245) 2010; 20 Vieira (10.1016/j.jelekin.2023.102851_b0265) 2011; 589 Clamann (10.1016/j.jelekin.2023.102851_b0065) 1988; 11 Keenan (10.1016/j.jelekin.2023.102851_b0145) 2011; 195 McManus (10.1016/j.jelekin.2023.102851_b0180) 2021; 59 Cogliati (10.1016/j.jelekin.2023.102851_b0070) 2019; 237 Baratta (10.1016/j.jelekin.2023.102851_b0020) 1998; 31 Orizio (10.1016/j.jelekin.2023.102851_b0225) 2013; 23 Merletti (10.1016/j.jelekin.2023.102851_b0190) 2019; 49 Nielsen (10.1016/j.jelekin.2023.102851_b0205) 2011; 58 Barry (10.1016/j.jelekin.2023.102851_b0030) 1990; 13 de Luca (10.1016/j.jelekin.2023.102851_b0085) 1982; 329 Cavalcanti Garcia (10.1016/j.jelekin.2023.102851_b0055) 2011; 4 Ekblom (10.1016/j.jelekin.2023.102851_b0115) 2012; 112 Kimura (10.1016/j.jelekin.2023.102851_b0150) 2003; 152 Milner-Brown (10.1016/j.jelekin.2023.102851_b0195) 1973; 230 10.1016/j.jelekin.2023.102851_b0060 Vieira (10.1016/j.jelekin.2023.102851_b0260) 2023; PP DeVries (10.1016/j.jelekin.2023.102851_b0100) 1968; 47 Del Vecchio (10.1016/j.jelekin.2023.102851_b0090) 2018; 222 Lozano-García (10.1016/j.jelekin.2023.102851_b0170) 2021; 21 Andrzejewska (10.1016/j.jelekin.2023.102851_b0015) 2014; 114 Akataki (10.1016/j.jelekin.2023.102851_b0010) 1996; 19 Kirnap (10.1016/j.jelekin.2023.102851_b0155) 2005; 118 Frigon (10.1016/j.jelekin.2023.102851_b0120) 2011; 31 Denier van der Gon (10.1016/j.jelekin.2023.102851_b0095) 1985; 359 Grosprêtre (10.1016/j.jelekin.2023.102851_b0130) 2018; 118 Vieira (10.1016/j.jelekin.2023.102851_b0255) 2017; 7 Moritani (10.1016/j.jelekin.2023.102851_b0200) 1980; 35 Orizio (10.1016/j.jelekin.2023.102851_b0220) 2010; 20 Kuznetsova (10.1016/j.jelekin.2023.102851_b0160) 2017; 82 Besomi (10.1016/j.jelekin.2023.102851_b0045) 2020; 53 Jesunathadas (10.1016/j.jelekin.2023.102851_b0140) 2010; 108 Cogliati (10.1016/j.jelekin.2023.102851_b0075) 2023; 123 Mackay (10.1016/j.jelekin.2023.102851_b0175) 2023; 70 dos Anjos (10.1016/j.jelekin.2023.102851_b0105) 2022; 67 Afsharipour (10.1016/j.jelekin.2023.102851_b0005) 2020; 124 Orizio (10.1016/j.jelekin.2023.102851_b0215) 1997; 37 Cudicio (10.1016/j.jelekin.2023.102851_b0080) 2022; 122 Onushko (10.1016/j.jelekin.2023.102851_b0210) 2013; 110 Fukuhara (10.1016/j.jelekin.2023.102851_b0125) 2021; 11 Binder-Macleod (10.1016/j.jelekin.2023.102851_b0050) 1989; 61 10.1016/j.jelekin.2023.102851_b0025 Duchateau (10.1016/j.jelekin.2023.102851_b0110) 2008; 586 Basmajian (10.1016/j.jelekin.2023.102851_b0035) 1985; 65–100 Łochyński (10.1016/j.jelekin.2023.102851_b0165) 2009; 30 Seki (10.1016/j.jelekin.2023.102851_b0240) 1996; 719 Schieppati (10.1016/j.jelekin.2023.102851_b0235) 1986; 5 Schieppati (10.1016/j.jelekin.2023.102851_b0230) 1985; 59 |
References_xml | – volume: 118 start-page: 1 year: 2005 end-page: 9 ident: b0155 article-title: The efficacy of EMG-biofeedback training on quadriceps muscle strength in patients after arthroscopic meniscectomy publication-title: N. z. Med. J. – volume: 230 start-page: 371 year: 1973 end-page: 390 ident: b0195 article-title: Changes in firing rate of human motor units during linearly changing voluntary contractions publication-title: J. Physiol. – volume: PP start-page: 1 year: 2023 ident: b0260 article-title: The sensitivity of bipolar electromyograms to muscle excitation scales with the inter-electrode distance publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 124 start-page: 63 year: 2020 end-page: 85 ident: b0005 article-title: Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans publication-title: J. Neurophysiol. – volume: 65–100 year: 1985 ident: b0035 article-title: Muscles alive : their functions revealed by electromyography publication-title: Muscles Alive Their Funct. Reveal. by Electromyogr. – volume: 118 start-page: 1361 year: 2018 end-page: 1371 ident: b0130 article-title: Neuromuscular and electromechanical properties of ultra-power athletes: the traceurs publication-title: Eur. J. Appl. Physiol. – volume: 20 start-page: 375 year: 2010 end-page: 387 ident: b0245 article-title: Methodological aspects of SEMG recordings for force estimation - A tutorial and review publication-title: J. Electromyogr. Kinesiol. – volume: 82 start-page: 1 year: 2017 end-page: 26 ident: b0160 article-title: lmerTest Package: Tests in Linear Mixed Effects Models publication-title: J. Stat. Softw. – volume: 123 start-page: 1825 year: 2023 end-page: 1836 ident: b0075 article-title: Influence of age on force and re-lengthening dynamics after tetanic stimulation withdrawal in the tibialis anterior muscle publication-title: Eur. J. Appl. Physiol. – volume: 23 start-page: 1375 year: 2013 end-page: 1383 ident: b0225 article-title: Extra-torque of human tibialis anterior during electrical stimulation with linearly varying frequency and amplitude trains publication-title: J. Electromyogr. Kinesiol. – volume: 222 year: 2018 ident: b0090 article-title: Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle publication-title: Acta Physiol. – volume: 359 start-page: 107 year: 1985 end-page: 118 ident: b0095 article-title: Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation publication-title: J. Physiol. – volume: 329 start-page: 113 year: 1982 end-page: 128 ident: b0085 article-title: Behaviour of human motor units in different muscles during linearly varying contractions publication-title: J. Physiol. – volume: 108 start-page: 1659 year: 2010 end-page: 1667 ident: b0140 article-title: Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults publication-title: J. Appl. Physiol. – volume: 58 start-page: 681 year: 2011 end-page: 688 ident: b0205 article-title: Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training publication-title: IEEE Trans. Biomed. Eng. – volume: 5 start-page: 59 year: 1986 end-page: 66 ident: b0235 article-title: Modulation of the Hoffmann reflex by rapid muscle contraction or release publication-title: Hum. Neurobiol. – volume: 37 start-page: 231 year: 1997 end-page: 239 ident: b0215 article-title: Muscle surface mechanical and electrical activities in myotonic dystrophy publication-title: Electromyogr. Clin. Neurophysiol. – volume: 53 year: 2020 ident: b0045 article-title: Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix publication-title: J. Electromyogr. Kinesiol. – volume: 122 start-page: 317 year: 2022 end-page: 330 ident: b0080 article-title: The force-generation capacity of the tibialis anterior muscle at different muscle-tendon lengths depends on its motor unit contractile properties publication-title: Eur. J. Appl. Physiol. – volume: 35 start-page: 672 year: 1980 end-page: 682 ident: b0200 article-title: Potential for gross muscle hypertrophy in older men publication-title: Journals Gerontol. – volume: 19 start-page: 1252 year: 1996 end-page: 1257 ident: b0010 article-title: Acoustic and electrical activities during voluntary isometric contraction of biceps brachii muscles in patients with spastic cerebral palsy publication-title: Muscle Nerve – volume: 589 start-page: 431 year: 2011 end-page: 443 ident: b0265 article-title: Postural activation of the human medial gastrocnemius muscle: Are the muscle units spatially localised? publication-title: J. Physiol. – volume: 719 start-page: 1 year: 1996 end-page: 7 ident: b0240 article-title: Firing rate modulation of human motor units in different muscles during isometric contraction with various forces publication-title: Brain Res. – volume: 4 start-page: 17 year: 2011 end-page: 28 ident: b0055 article-title: Surface electromyography: Why, when and how to use it. R e v i s t a A n d a l u z a d e Med publication-title: Del Deport. – volume: 112 start-page: 1899 year: 2012 end-page: 1905 ident: b0115 article-title: Concurrent EMG feedback acutely improves strength and muscle activation publication-title: Eur. J. Appl. Physiol. – volume: 31 start-page: 5579 year: 2011 end-page: 5588 ident: b0120 article-title: Extra Forces Evoked during Electrical Stimulation of the Muscle or Its Nerve Are Generated and Modulated by a Length-Dependent Intrinsic Property of Muscle in Humans and Cats publication-title: J. Neurosci. – volume: 67 start-page: 102721 year: 2022 ident: b0105 article-title: Is the attenuation effect on the ankle muscles activity from the EMG biofeedback generalized to – or compensated by – other lower limb muscles during standing? publication-title: J. Electromyogr. Kinesiol. – volume: 195 start-page: 10 year: 2011 end-page: 14 ident: b0145 article-title: Coherence between surface electromyograms is influenced by electrode placement in hand muscles publication-title: J. Neurosci. Methods – volume: 31 start-page: 469 year: 1998 end-page: 478 ident: b0020 article-title: Force feedback control of motor unit recruitment in isometric muscle publication-title: J. Biomech. – volume: 11 start-page: 1079 year: 1988 end-page: 1089 ident: b0065 article-title: Nonlinear force addition of newly recruited motor units in the cat hindlimb publication-title: Muscle Nerve – volume: 13 start-page: 286 year: 1990 end-page: 290 ident: b0030 article-title: Acoustic and surface EMG diagnosis of pediatric muscle disease publication-title: Muscle Nerve – volume: 21 start-page: 1 year: 2021 end-page: 15 ident: b0170 article-title: Noninvasive assessment of neuromechanical coupling and mechanical efficiency of parasternal intercostal muscle during inspiratory threshold loading publication-title: Sensors – volume: 114 start-page: 2105 year: 2014 end-page: 2117 ident: b0015 article-title: Electromyogram features during linear torque decrement and their changes with fatigue publication-title: Eur. J. Appl. Physiol. – volume: 237 start-page: 1889 year: 2019 end-page: 1897 ident: b0070 article-title: Influence of age on motor control accuracy during static ramp contractions publication-title: Exp. Brain Res. – volume: 129 start-page: 1322 year: 2023 end-page: 1333 ident: b0135 article-title: Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males publication-title: J. Neurophysiol. – reference: Torricelli, D., De Marchis, C., D’Avella, A., Nemati Tobaruela, D., Oliveira Barroso, F., Pons, J.L., 2020. Reorganization of Muscle Coordination Underlying Motor Learning in Cycling Tasks. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2020.00800. – volume: 59 start-page: 102565 year: 2021 ident: b0180 article-title: Consensus for experimental design in electromyography (CEDE) project: Terminology matrix publication-title: J. Electromyogr. Kinesiol. – volume: 11 start-page: 1 year: 2021 end-page: 9 ident: b0125 article-title: Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach publication-title: Sci. Rep. – reference: Christie, A., Greig Inglis, · J, Kamen, G., Gabriel, D.A., 2009. Relationships between surface EMG variables and motor unit Wring rates. Eur J Appl Physiol 107, 177–185. https://doi.org/10.1007/s00421-009-1113-7. – volume: 61 start-page: 208 year: 1989 end-page: 217 ident: b0050 article-title: Force output of cat motor units stimulated with trains of linearly varying frequency publication-title: J. Neurophysiol. – volume: 47 start-page: 10 year: 1968 end-page: 22 ident: b0100 article-title: EFFICIENCY OF ELECTRICAL ACTIVITY” AS A PHYSIOLOGICAL MEASURE OF THE FUNCTIONAL STATE OF MUSCLE TISSUE publication-title: Am. J. Phys. Med. – volume: 110 start-page: 2393 year: 2013 end-page: 2401 ident: b0210 article-title: Practice improves motor control in older adults by increasing the motor unit modulation from 13 to 30 Hz publication-title: J. Neurophysiol. – volume: 59 start-page: 249 year: 1985 end-page: 256 ident: b0230 article-title: Excitability of reciprocal and recurrent inhibitory pathways after voluntary muscle relaxation in man publication-title: Exp. Brain Res. – volume: 49 year: 2019 ident: b0190 article-title: Tutorial. Surface EMG detection in space and time: Best practices publication-title: J. Electromyogr. Kinesiol. – reference: Barbero, M., Merletti, R., Rainoldi, A., Barbero, M., Merletti, R., Rainoldi, A., 2012. Introduction and Applications of Surface EMG, in: Atlas of Muscle Innervation Zones. https://doi.org/10.1007/978-88-470-2463-2_1. – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: b0255 article-title: Specificity of surface EMG recordings for gastrocnemius during upright standing publication-title: Sci. Rep. – volume: 48 start-page: 128 year: 2019 end-page: 144 ident: b0040 article-title: Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix publication-title: J. Electromyogr. Kinesiol. – volume: 70 year: 2023 ident: b0175 article-title: The effect of EMG biofeedback training on muscle activation in an impingement population publication-title: J. Electromyogr. Kinesiol. – volume: 30 start-page: 153 year: 2009 end-page: 160 ident: b0165 article-title: Tetanic depression and catch-like effect in fast motor units of the rat medial gastrocnemius at linearly increasing and decreasing stimulation frequencies publication-title: J. Muscle Res. Cell Motil. – volume: 20 start-page: 732 year: 2010 end-page: 741 ident: b0220 article-title: Electromyogram and force fluctuation during different linearly varying isometric motor tasks publication-title: J. Electromyogr. Kinesiol. – volume: 586 start-page: 5853 year: 2008 end-page: 5864 ident: b0110 article-title: Neural control of shortening and lengthening contractions: influence of task constraints publication-title: J. Physiol. – volume: 54 year: 2020 ident: b0185 article-title: Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices publication-title: J. Electromyogr. Kinesiol. – volume: 152 start-page: 123 year: 2003 end-page: 132 ident: b0150 article-title: Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans publication-title: Exp. Brain Res. – volume: 222 year: 2018 ident: 10.1016/j.jelekin.2023.102851_b0090 article-title: Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle publication-title: Acta Physiol. doi: 10.1111/apha.12930 – volume: 230 start-page: 371 year: 1973 ident: 10.1016/j.jelekin.2023.102851_b0195 article-title: Changes in firing rate of human motor units during linearly changing voluntary contractions publication-title: J. Physiol. doi: 10.1113/jphysiol.1973.sp010193 – ident: 10.1016/j.jelekin.2023.102851_b0250 doi: 10.3389/fbioe.2020.00800 – volume: 152 start-page: 123 year: 2003 ident: 10.1016/j.jelekin.2023.102851_b0150 article-title: Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans publication-title: Exp. Brain Res. doi: 10.1007/s00221-003-1518-1 – volume: 47 start-page: 10 year: 1968 ident: 10.1016/j.jelekin.2023.102851_b0100 article-title: EFFICIENCY OF ELECTRICAL ACTIVITY” AS A PHYSIOLOGICAL MEASURE OF THE FUNCTIONAL STATE OF MUSCLE TISSUE publication-title: Am. J. Phys. Med. – volume: 48 start-page: 128 year: 2019 ident: 10.1016/j.jelekin.2023.102851_b0040 article-title: Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.07.008 – volume: 65–100 year: 1985 ident: 10.1016/j.jelekin.2023.102851_b0035 article-title: Muscles alive : their functions revealed by electromyography publication-title: Muscles Alive Their Funct. Reveal. by Electromyogr. – volume: 124 start-page: 63 year: 2020 ident: 10.1016/j.jelekin.2023.102851_b0005 article-title: Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans publication-title: J. Neurophysiol. doi: 10.1152/jn.00194.2020 – volume: 11 start-page: 1079 year: 1988 ident: 10.1016/j.jelekin.2023.102851_b0065 article-title: Nonlinear force addition of newly recruited motor units in the cat hindlimb publication-title: Muscle Nerve doi: 10.1002/mus.880111012 – volume: 129 start-page: 1322 year: 2023 ident: 10.1016/j.jelekin.2023.102851_b0135 article-title: Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males publication-title: J. Neurophysiol. doi: 10.1152/jn.00043.2023 – volume: 37 start-page: 231 year: 1997 ident: 10.1016/j.jelekin.2023.102851_b0215 article-title: Muscle surface mechanical and electrical activities in myotonic dystrophy publication-title: Electromyogr. Clin. Neurophysiol. – volume: 118 start-page: 1361 year: 2018 ident: 10.1016/j.jelekin.2023.102851_b0130 article-title: Neuromuscular and electromechanical properties of ultra-power athletes: the traceurs publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-018-3868-1 – volume: 359 start-page: 107 year: 1985 ident: 10.1016/j.jelekin.2023.102851_b0095 article-title: Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation publication-title: J. Physiol. doi: 10.1113/jphysiol.1985.sp015577 – volume: 30 start-page: 153 year: 2009 ident: 10.1016/j.jelekin.2023.102851_b0165 article-title: Tetanic depression and catch-like effect in fast motor units of the rat medial gastrocnemius at linearly increasing and decreasing stimulation frequencies publication-title: J. Muscle Res. Cell Motil. doi: 10.1007/s10974-009-9185-x – volume: 719 start-page: 1 year: 1996 ident: 10.1016/j.jelekin.2023.102851_b0240 article-title: Firing rate modulation of human motor units in different muscles during isometric contraction with various forces publication-title: Brain Res. doi: 10.1016/0006-8993(95)01432-2 – volume: 589 start-page: 431 year: 2011 ident: 10.1016/j.jelekin.2023.102851_b0265 article-title: Postural activation of the human medial gastrocnemius muscle: Are the muscle units spatially localised? publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.201806 – ident: 10.1016/j.jelekin.2023.102851_b0025 doi: 10.1007/978-88-470-2463-2 – volume: 20 start-page: 375 year: 2010 ident: 10.1016/j.jelekin.2023.102851_b0245 article-title: Methodological aspects of SEMG recordings for force estimation - A tutorial and review publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2009.08.005 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.jelekin.2023.102851_b0125 article-title: Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach publication-title: Sci. Rep. doi: 10.1038/s41598-021-00671-2 – volume: 67 start-page: 102721 year: 2022 ident: 10.1016/j.jelekin.2023.102851_b0105 article-title: Is the attenuation effect on the ankle muscles activity from the EMG biofeedback generalized to – or compensated by – other lower limb muscles during standing? publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2022.102721 – volume: 4 start-page: 17 year: 2011 ident: 10.1016/j.jelekin.2023.102851_b0055 article-title: Surface electromyography: Why, when and how to use it. R e v i s t a A n d a l u z a d e Med publication-title: Del Deport. – volume: 123 start-page: 1825 issue: 8 year: 2023 ident: 10.1016/j.jelekin.2023.102851_b0075 article-title: Influence of age on force and re-lengthening dynamics after tetanic stimulation withdrawal in the tibialis anterior muscle publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-023-05198-0 – volume: 59 start-page: 249 year: 1985 ident: 10.1016/j.jelekin.2023.102851_b0230 article-title: Excitability of reciprocal and recurrent inhibitory pathways after voluntary muscle relaxation in man publication-title: Exp. Brain Res. doi: 10.1007/BF00230904 – volume: 5 start-page: 59 year: 1986 ident: 10.1016/j.jelekin.2023.102851_b0235 article-title: Modulation of the Hoffmann reflex by rapid muscle contraction or release publication-title: Hum. Neurobiol. – volume: 19 start-page: 1252 year: 1996 ident: 10.1016/j.jelekin.2023.102851_b0010 article-title: Acoustic and electrical activities during voluntary isometric contraction of biceps brachii muscles in patients with spastic cerebral palsy publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(199610)19:10<1252::AID-MUS2>3.0.CO;2-D – volume: 237 start-page: 1889 issue: 8 year: 2019 ident: 10.1016/j.jelekin.2023.102851_b0070 article-title: Influence of age on motor control accuracy during static ramp contractions publication-title: Exp. Brain Res. doi: 10.1007/s00221-019-05524-z – volume: 114 start-page: 2105 year: 2014 ident: 10.1016/j.jelekin.2023.102851_b0015 article-title: Electromyogram features during linear torque decrement and their changes with fatigue publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-014-2928-4 – volume: 112 start-page: 1899 year: 2012 ident: 10.1016/j.jelekin.2023.102851_b0115 article-title: Concurrent EMG feedback acutely improves strength and muscle activation publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-2162-2 – volume: 82 start-page: 1 year: 2017 ident: 10.1016/j.jelekin.2023.102851_b0160 article-title: lmerTest Package: Tests in Linear Mixed Effects Models publication-title: J. Stat. Softw. doi: 10.18637/jss.v082.i13 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.jelekin.2023.102851_b0170 article-title: Noninvasive assessment of neuromechanical coupling and mechanical efficiency of parasternal intercostal muscle during inspiratory threshold loading publication-title: Sensors doi: 10.3390/s21051781 – volume: 70 year: 2023 ident: 10.1016/j.jelekin.2023.102851_b0175 article-title: The effect of EMG biofeedback training on muscle activation in an impingement population publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2023.102772 – volume: 13 start-page: 286 year: 1990 ident: 10.1016/j.jelekin.2023.102851_b0030 article-title: Acoustic and surface EMG diagnosis of pediatric muscle disease publication-title: Muscle Nerve doi: 10.1002/mus.880130403 – volume: PP start-page: 1 year: 2023 ident: 10.1016/j.jelekin.2023.102851_b0260 article-title: The sensitivity of bipolar electromyograms to muscle excitation scales with the inter-electrode distance publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 35 start-page: 672 year: 1980 ident: 10.1016/j.jelekin.2023.102851_b0200 article-title: Potential for gross muscle hypertrophy in older men publication-title: Journals Gerontol. doi: 10.1093/geronj/35.5.672 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.jelekin.2023.102851_b0255 article-title: Specificity of surface EMG recordings for gastrocnemius during upright standing publication-title: Sci. Rep. doi: 10.1038/s41598-017-13369-1 – volume: 53 year: 2020 ident: 10.1016/j.jelekin.2023.102851_b0045 article-title: Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2020.102438 – volume: 23 start-page: 1375 year: 2013 ident: 10.1016/j.jelekin.2023.102851_b0225 article-title: Extra-torque of human tibialis anterior during electrical stimulation with linearly varying frequency and amplitude trains publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2013.07.008 – volume: 59 start-page: 102565 year: 2021 ident: 10.1016/j.jelekin.2023.102851_b0180 article-title: Consensus for experimental design in electromyography (CEDE) project: Terminology matrix publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2021.102565 – volume: 122 start-page: 317 year: 2022 ident: 10.1016/j.jelekin.2023.102851_b0080 article-title: The force-generation capacity of the tibialis anterior muscle at different muscle-tendon lengths depends on its motor unit contractile properties publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-021-04829-8 – ident: 10.1016/j.jelekin.2023.102851_b0060 doi: 10.1007/s00421-009-1113-7 – volume: 118 start-page: 1 year: 2005 ident: 10.1016/j.jelekin.2023.102851_b0155 article-title: The efficacy of EMG-biofeedback training on quadriceps muscle strength in patients after arthroscopic meniscectomy publication-title: N. z. Med. J. – volume: 108 start-page: 1659 year: 2010 ident: 10.1016/j.jelekin.2023.102851_b0140 article-title: Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00807.2009 – volume: 49 year: 2019 ident: 10.1016/j.jelekin.2023.102851_b0190 article-title: Tutorial. Surface EMG detection in space and time: Best practices publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.102363 – volume: 195 start-page: 10 year: 2011 ident: 10.1016/j.jelekin.2023.102851_b0145 article-title: Coherence between surface electromyograms is influenced by electrode placement in hand muscles publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.10.018 – volume: 58 start-page: 681 issue: 3 year: 2011 ident: 10.1016/j.jelekin.2023.102851_b0205 article-title: Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068298 – volume: 31 start-page: 5579 issue: 15 year: 2011 ident: 10.1016/j.jelekin.2023.102851_b0120 article-title: Extra Forces Evoked during Electrical Stimulation of the Muscle or Its Nerve Are Generated and Modulated by a Length-Dependent Intrinsic Property of Muscle in Humans and Cats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6641-10.2011 – volume: 31 start-page: 469 year: 1998 ident: 10.1016/j.jelekin.2023.102851_b0020 article-title: Force feedback control of motor unit recruitment in isometric muscle publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00042-6 – volume: 110 start-page: 2393 year: 2013 ident: 10.1016/j.jelekin.2023.102851_b0210 article-title: Practice improves motor control in older adults by increasing the motor unit modulation from 13 to 30 Hz publication-title: J. Neurophysiol. doi: 10.1152/jn.00345.2013 – volume: 61 start-page: 208 year: 1989 ident: 10.1016/j.jelekin.2023.102851_b0050 article-title: Force output of cat motor units stimulated with trains of linearly varying frequency publication-title: J. Neurophysiol. doi: 10.1152/jn.1989.61.1.208 – volume: 20 start-page: 732 year: 2010 ident: 10.1016/j.jelekin.2023.102851_b0220 article-title: Electromyogram and force fluctuation during different linearly varying isometric motor tasks publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2010.03.005 – volume: 54 year: 2020 ident: 10.1016/j.jelekin.2023.102851_b0185 article-title: Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2020.102440 – volume: 329 start-page: 113 year: 1982 ident: 10.1016/j.jelekin.2023.102851_b0085 article-title: Behaviour of human motor units in different muscles during linearly varying contractions publication-title: J. Physiol. doi: 10.1113/jphysiol.1982.sp014293 – volume: 586 start-page: 5853 year: 2008 ident: 10.1016/j.jelekin.2023.102851_b0110 article-title: Neural control of shortening and lengthening contractions: influence of task constraints publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.160747 |
SSID | ssj0017080 |
Score | 2.3902717 |
Snippet | This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). Aim: to evaluate during the modulation of muscular... AbstractPurposeThis work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). Aim: to evaluate during the... This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). to evaluate during the modulation of muscular action... This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR).PURPOSEThis work studied muscle neuro-mechanics... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 102851 |
SubjectTerms | Electromechanical coupling efficiency Force feedback Motor control Neural feedback Physical Medicine and Rehabilitation |
Title | Using force or EMG envelope as feedback signal for motor control system |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1050641123001104 https://www.clinicalkey.es/playcontent/1-s2.0-S1050641123001104 https://www.ncbi.nlm.nih.gov/pubmed/38048656 https://www.proquest.com/docview/2898314247 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBC8ujvGQkxKVKSGwnTo6rqrsrtI8DrdSbZbsOahca1Mdh98BvZ8ZO2q1oxcLFiqK4jf19GY_H8yDkYy7HthRJFWkrTCSYkFGpuY6Y1EIyYYTzJVkuLvOzofgyykabwoU-umRpYnu7M67kf1CFe4ArRsn-A7LrH4UbcA34QgsIQ3svjMN5P6idFsszdfsXpxi4hk5ADuvHVLAyGW2vu-ikEQIVu4AMtK2DesjjvEdBbSrk_Lhpslr7c4ZrdJOfbNnie_W37wjwlm21t8Iz-3rLWno1n9xO7phmG2MDE61_8lo-FpJHmWzko9txrxGqUtyRiqjEhLSyfwjsYDuYxlMYE4wgxmru8eb57QTZl1fqZHh-rgb90eAhecRgZ4BFK-Jfa6-eVCa-WN76nTZBW593_sk-dWTfdsOrHYND8qSBgx4H8J-SB272jBwdz_QSgKGfqPfg9XAckVPPB-r5QOs5BT7Qlg9UL2jLBxr4gA9Szwfa8IEGPjwnw5P-oHcWNYUyIgs6yBJXtDHXOXeGJYbZJNWglWHZsXGR5o6ZzCW4sMFFWVTW5lVpUp1VonBSVKlN-AtyMKtn7hWhKbdoMXAJN7koTGlkoY2ETo6NWcZdh8TtfKmfIR-Kah0Fp6qZYIUTrMIEd0jezqpqg31heVJAgL91lLs6ukXzAS5UqhZMJeorbBFAsYaNA_cZEEWHfGjRUyAs8QRMz1y9WihWlAXH2E7ZIS8DrOtR8AKzT2b563v0fkMeb76Ot-RgOV-5d6CcLs17T8ffOXWOBQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+force+or+EMG+envelope+as+feedback+signal+for+motor+control+system&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Cogliati%2C+M&rft.au=Cudicio%2C+A&rft.au=Orizio%2C+C&rft.date=2024-02-01&rft.issn=1873-5711&rft.eissn=1873-5711&rft.volume=74&rft.spage=102851&rft_id=info:doi/10.1016%2Fj.jelekin.2023.102851&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6411&client=summon |