Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects
Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) f...
Saved in:
Published in | Free radical biology & medicine Vol. 150; pp. 30 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood.
The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system.
Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05).
The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ.
[Display omitted]
•Anthocyanins improve FBG & lipid profile by up-regulating PPRAG mRNA.•Anthocyanins significantly decrease NF-kB dependent gene activation.•Anthocyanins inhibit TNF-α and COX-2 expressions and IL-6 production.•Anthocyanins improved selected features of cardiometabolic risk factors. |
---|---|
AbstractList | Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system. Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05). The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ.Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system. Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05). The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ. Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system. Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05). The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ. [Display omitted] •Anthocyanins improve FBG & lipid profile by up-regulating PPRAG mRNA.•Anthocyanins significantly decrease NF-kB dependent gene activation.•Anthocyanins inhibit TNF-α and COX-2 expressions and IL-6 production.•Anthocyanins improved selected features of cardiometabolic risk factors. |
Author | Aboonabi, Arta Aboonabi, Anahita |
Author_xml | – sequence: 1 givenname: Anahita surname: Aboonabi fullname: Aboonabi, Anahita email: a.aboonabi@griffith.edu.au organization: School of Medical Science, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland, 4222, Australia – sequence: 2 givenname: Arta surname: Aboonabi fullname: Aboonabi, Arta email: abounabi.arta@gmail.com organization: West Center of Tehran, Payam Noor University, Shahid Bagheri Town, Tehran, Iran |
BookMark | eNqNkc2KFDEUhYOMYM_oOwTcuKkyqf_gqh3GHxhwEF2HVHKr-7ZVSZmkeuznmscY8JlMT4uoq1mFe_juueScc3JmnQVCXnKWc8ab17t88ABemR7dBCYvWMFyVuSMVU_IindtmVW1aM7IinWCZ3VXiWfkPIQdS0Rddityv7Zx6_RBWbSBejCLBop2GNU0qYjOUmUNxWn2bg90My7aBXjQRpzR0Ami6t2IYaIqBKdRRTD0FuM2uWyxx4h2Q-2iR1CeDkpH57Nvap7VW5oG3P91xGoPKhz5m5v15-znHd2ABQo_Zg8hHDG0fw5qGg7W-PRtGpZ-BzqG5-TpoMYAL36_F-Tru6svlx-y60_vP16urzNd8TJmjehaaOvWiJaXTPVD0zdVJ3RZaGW6NNei1qbQNRsEB2iAi0YklXdGl0ksL8irk28K5fsCIcoJg4ZxVBbcEmRR1k3DW1bzhL45odq7EDwMcvY4KX-QnMljhXIn_6lQHiuUrJCpoLS9_m9bY3wILHqF4yM9rk4ekBLZI3gZNILVYNCn0KRx-CifX2NQzJ8 |
CitedBy_id | crossref_primary_10_3390_molecules29081735 crossref_primary_10_3390_molecules26092632 crossref_primary_10_1016_j_bcp_2024_116020 crossref_primary_10_3390_cimb44100313 crossref_primary_10_1111_jfbc_14091 crossref_primary_10_1016_j_tifs_2024_104608 crossref_primary_10_1021_acs_jafc_3c05678 crossref_primary_10_3390_ijms24129824 crossref_primary_10_1111_ejn_15397 crossref_primary_10_1002_fsn3_3592 crossref_primary_10_2174_1389450124666230113150116 crossref_primary_10_3389_fcvm_2024_1372055 crossref_primary_10_3390_foods10112652 crossref_primary_10_1016_j_clnesp_2022_09_010 crossref_primary_10_1080_10408398_2024_2323093 crossref_primary_10_1016_j_gene_2024_148892 crossref_primary_10_1016_j_phrs_2021_105821 crossref_primary_10_3390_ijms222011076 crossref_primary_10_1007_s10787_023_01294_x crossref_primary_10_3389_fnut_2023_1255518 crossref_primary_10_1016_j_jff_2022_105154 crossref_primary_10_3390_fermentation11030145 crossref_primary_10_3390_nu14142836 crossref_primary_10_1007_s00210_024_03608_4 crossref_primary_10_3390_nu14235133 crossref_primary_10_3390_foods13244066 crossref_primary_10_29219_fnr_v65_4428 crossref_primary_10_3390_foods11111622 crossref_primary_10_3390_foods12213969 crossref_primary_10_4236_abb_2023_1412035 crossref_primary_10_1016_j_jchromb_2025_124528 crossref_primary_10_1016_j_jot_2021_03_005 crossref_primary_10_3390_ijms23010322 crossref_primary_10_1038_s41598_021_87139_5 crossref_primary_10_1016_j_ijbiomac_2021_04_131 crossref_primary_10_1016_j_intimp_2023_110840 crossref_primary_10_1016_j_scp_2023_101000 crossref_primary_10_3390_molecules26144380 crossref_primary_10_3390_app11041863 crossref_primary_10_3390_foods12091796 crossref_primary_10_1021_acs_jafc_3c02696 crossref_primary_10_3389_fnut_2023_1107637 crossref_primary_10_1007_s00438_023_01993_8 crossref_primary_10_3390_nu16081103 crossref_primary_10_1038_s41538_023_00233_y crossref_primary_10_3390_metabo13010019 crossref_primary_10_1021_acsomega_3c05662 crossref_primary_10_3390_ijms222111422 crossref_primary_10_3390_ani11082407 crossref_primary_10_1021_acs_jafc_3c07741 crossref_primary_10_1007_s00210_023_02410_y crossref_primary_10_3390_nu13082831 crossref_primary_10_3390_nu16111554 crossref_primary_10_1016_j_foodchem_2025_143007 crossref_primary_10_26724_2079_8334_2024_1_87_178_182 crossref_primary_10_3390_children11050584 crossref_primary_10_1002_fsn3_2554 crossref_primary_10_1016_j_cyto_2020_155224 crossref_primary_10_1016_j_nutres_2022_06_004 crossref_primary_10_1021_acsami_4c09902 crossref_primary_10_3390_ijms22116074 crossref_primary_10_1080_10408398_2020_1862048 crossref_primary_10_1016_j_jff_2024_106106 crossref_primary_10_1016_j_tifs_2023_104140 |
Cites_doi | 10.1016/j.freeradbiomed.2018.06.027 10.1073/pnas.0605298103 10.1038/clpt.2011.93 10.1155/2018/8450793 10.1101/cshperspect.a001651 10.1177/0033354917709542 10.3945/jn.114.205674 10.1016/j.mrfmmm.2009.09.007 10.1016/j.abb.2018.03.022 10.1073/pnas.0400282101 10.1111/j.1464-5491.2006.01858.x 10.1016/j.tcb.2016.01.002 10.1038/35104568 10.1038/34184 10.1016/S0021-9258(17)37586-5 10.1902/jop.2008.080249 10.1161/hc0902.104353 10.1089/10430340252792503 10.1096/fj.01-0260com 10.1056/NEJM199704103361506 10.1042/bj3020723 10.1021/acs.jafc.8b06737 10.1016/j.dsx.2014.09.015 10.4049/jimmunol.163.3.1457 10.1002/jcb.1176 10.1016/j.bcp.2010.01.008 10.1074/jbc.M208974200 10.3945/an.115.009233 10.1016/j.niox.2005.10.003 10.1093/abbs/gmz052 10.12998/wjcc.v3.i4.345 10.1007/s00125-016-3912-9 10.1002/path.2287 10.1016/j.jnutbio.2005.10.007 10.1002/jlb.66.6.876 10.1016/j.foodchem.2018.12.046 10.4049/jimmunol.167.3.1592 10.1172/JCI118074 10.1007/s10787-018-0549-y 10.1016/j.mrrev.2007.11.006 10.2337/diabetes.51.9.2796 10.1016/j.atherosclerosis.2019.01.012 10.1146/annurev.immunol.16.1.225 10.1172/JCI119562 10.1016/j.neuint.2010.11.008 10.1016/j.febslet.2006.01.062 10.1016/j.cbi.2020.108940 10.1074/jbc.M108600200 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.freeradbiomed.2020.02.004 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 39 |
ExternalDocumentID | 10_1016_j_freeradbiomed_2020_02_004 S0891584919324153 |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7X8 |
ID | FETCH-LOGICAL-c413t-6987e757d97130abf6b6489c32cad8abf595cd2c50f91ee6e1969bf518dc350f3 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Jul 11 15:03:56 EDT 2025 Tue Jul 01 01:11:24 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Fri Feb 23 02:48:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anthocyanin Metabolic syndrome Nrf2 PPAR-γ NF-kB |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-6987e757d97130abf6b6489c32cad8abf595cd2c50f91ee6e1969bf518dc350f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10072/395495 |
PQID | 2356617051 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2356617051 crossref_primary_10_1016_j_freeradbiomed_2020_02_004 crossref_citationtrail_10_1016_j_freeradbiomed_2020_02_004 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2020_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Free radical biology & medicine |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tang, Minemoto, Dibling, Purcell, Li, Karin (bib23) 2001; 414 Suh, Shenvi, Dixon, Liu, Jaiswal, Liu (bib20) 2004; 101 Wallace, Giusti (bib10) 2015; 6 Xiao, Bai (bib6) 2019 Janani, Kumari (bib29) 2015; 9 Lee, Lim, Gal, Kang, Kim, Kang (bib19) 2011; 58 Kim, Cha, Surh (bib39) 2010; 690 Aboonabi, Rose'Meyer, Singh (bib1) 2019 Elewaut, DiDonato, Kim, Truong, Eckmann, Kagnoff (bib27) 1999; 163 Ghosh, May, Kopp (bib26) 1998; 16 Roebuck, Finnegan (bib46) 1999; 66 Ilhan, Kalkanli (bib5) 2015; 3 Lawrence (bib40) 2009 Liuzzo, Pedicino, Flego, Crea (bib35) 2019 Kang, Tsai, Rosen (bib30) 2016; 26 Han, Lean (bib2) 2016; 5 Kim, Tsoy, Park, Chung, Shin, Chang (bib51) 2006; 580 Barnes, Karin (bib24) 1997; 336 Feng, Luo, Xu, Yang, Du, Zhang (bib34) 2016; 59 Estève, Chicoine, Robledo, Aoudjit, Descoteaux, Potworowski (bib48) 2002; 277 Pergola, Rossi, Dugo, Cuzzocrea, Sautebin (bib14) 2006; 15 Munoz-Espada, Watkins (bib15) 2006; 17 Alberti, Zimmet, Shaw (bib3) 2006; 23 Krga, Milenkovic (bib12) 2019; 67 Zhang, Yuan, Xie, Yuan, Wang (bib31) 2019; 51 Alcamo, Mizgerd, Horwitz, Bronson, Beg, Scott (bib25) 2001; 167 Appleby, Ristimäki, Neilson, Narko, Hla (bib44) 1994; 302 Aboonabi, Singh, Rose'Meyer (bib13) 2020 Cavaghan, Ehrmann, Byrne, Polonsky (bib33) 1997; 100 Jiang, Ting, Seed (bib28) 1998; 391 Buchanan, Xiang, Peters, Kjos, Marroquin, Goico (bib32) 2002; 51 Kim, Kwon, Seo, Son, Jung, Min (bib16) 2010; 79 Krga, Tamaian, Mercier, Boby, Monfoulet, Glibetic (bib42) 2018; 124 Minami, Abid, Zhang, King, Kodama, Aird (bib45) 2003; 278 Holvoet (bib4) 2008; 70 Herder, Karakas, Koenig (bib38) 2011; 90 Perez-Vizcaino, Fraga (bib7) 2018; 646 De Caterina, Libby, Peng, Thannickal, Rajavashisth, Gimbrone (bib41) 1995; 96 Chen, Lin, Ku, Shiao, Lin, Chen (bib53) 2001; 82 Taganov, Boldin, Chang, Baltimore (bib22) 2006; 103 Ridker, Silvertown (bib37) 2008; 79 Van de Stolpe, Caldenhoven, Stade, Koenderman, Raaijmakers, Johnson (bib47) 1994; 269 Bradley (bib50) 2008; 214 Zhang, Frei (bib52) 2001; 15 Bowen, Borgland, Lam, Libermann, Wong, Muruve (bib43) 2002; 13 Osburn, Kensler (bib21) 2008; 659 Li, Zhang, Liu, Sun, Xia (bib18) 2015; 145 Nandkeolyar, Naqvi, Fan, Sharma, Rana, Rozanski (bib36) 2019; 282 Libby, Ridker, Maseri (bib49) 2002; 105 Shah, Shah (bib17) 2018; 2018 Cásedas, Bennett, González-Burgos, Gómez-Serranillos, López, Smith (bib8) 2019; 27 Hoskin, Xiong, Esposito, Lila (bib9) 2019; 280 Richards, Iademarco, Atkinson, Pinner, Yoon, Mac Kenzie (bib11) 2017; 132 Osburn (10.1016/j.freeradbiomed.2020.02.004_bib21) 2008; 659 Zhang (10.1016/j.freeradbiomed.2020.02.004_bib52) 2001; 15 Perez-Vizcaino (10.1016/j.freeradbiomed.2020.02.004_bib7) 2018; 646 Han (10.1016/j.freeradbiomed.2020.02.004_bib2) 2016; 5 Ilhan (10.1016/j.freeradbiomed.2020.02.004_bib5) 2015; 3 Suh (10.1016/j.freeradbiomed.2020.02.004_bib20) 2004; 101 Bradley (10.1016/j.freeradbiomed.2020.02.004_bib50) 2008; 214 Richards (10.1016/j.freeradbiomed.2020.02.004_bib11) 2017; 132 Elewaut (10.1016/j.freeradbiomed.2020.02.004_bib27) 1999; 163 Kim (10.1016/j.freeradbiomed.2020.02.004_bib16) 2010; 79 Roebuck (10.1016/j.freeradbiomed.2020.02.004_bib46) 1999; 66 Jiang (10.1016/j.freeradbiomed.2020.02.004_bib28) 1998; 391 Wallace (10.1016/j.freeradbiomed.2020.02.004_bib10) 2015; 6 Feng (10.1016/j.freeradbiomed.2020.02.004_bib34) 2016; 59 De Caterina (10.1016/j.freeradbiomed.2020.02.004_bib41) 1995; 96 Cásedas (10.1016/j.freeradbiomed.2020.02.004_bib8) 2019; 27 Krga (10.1016/j.freeradbiomed.2020.02.004_bib12) 2019; 67 Alcamo (10.1016/j.freeradbiomed.2020.02.004_bib25) 2001; 167 Janani (10.1016/j.freeradbiomed.2020.02.004_bib29) 2015; 9 Estève (10.1016/j.freeradbiomed.2020.02.004_bib48) 2002; 277 Holvoet (10.1016/j.freeradbiomed.2020.02.004_bib4) 2008; 70 Tang (10.1016/j.freeradbiomed.2020.02.004_bib23) 2001; 414 Kim (10.1016/j.freeradbiomed.2020.02.004_bib39) 2010; 690 Aboonabi (10.1016/j.freeradbiomed.2020.02.004_bib13) 2020 Zhang (10.1016/j.freeradbiomed.2020.02.004_bib31) 2019; 51 Barnes (10.1016/j.freeradbiomed.2020.02.004_bib24) 1997; 336 Van de Stolpe (10.1016/j.freeradbiomed.2020.02.004_bib47) 1994; 269 Hoskin (10.1016/j.freeradbiomed.2020.02.004_bib9) 2019; 280 Lee (10.1016/j.freeradbiomed.2020.02.004_bib19) 2011; 58 Kim (10.1016/j.freeradbiomed.2020.02.004_bib51) 2006; 580 Aboonabi (10.1016/j.freeradbiomed.2020.02.004_bib1) 2019 Nandkeolyar (10.1016/j.freeradbiomed.2020.02.004_bib36) 2019; 282 Lawrence (10.1016/j.freeradbiomed.2020.02.004_bib40) 2009 Kang (10.1016/j.freeradbiomed.2020.02.004_bib30) 2016; 26 Chen (10.1016/j.freeradbiomed.2020.02.004_bib53) 2001; 82 Taganov (10.1016/j.freeradbiomed.2020.02.004_bib22) 2006; 103 Krga (10.1016/j.freeradbiomed.2020.02.004_bib42) 2018; 124 Cavaghan (10.1016/j.freeradbiomed.2020.02.004_bib33) 1997; 100 Appleby (10.1016/j.freeradbiomed.2020.02.004_bib44) 1994; 302 Alberti (10.1016/j.freeradbiomed.2020.02.004_bib3) 2006; 23 Ghosh (10.1016/j.freeradbiomed.2020.02.004_bib26) 1998; 16 Liuzzo (10.1016/j.freeradbiomed.2020.02.004_bib35) 2019 Minami (10.1016/j.freeradbiomed.2020.02.004_bib45) 2003; 278 Libby (10.1016/j.freeradbiomed.2020.02.004_bib49) 2002; 105 Xiao (10.1016/j.freeradbiomed.2020.02.004_bib6) 2019 Shah (10.1016/j.freeradbiomed.2020.02.004_bib17) 2018; 2018 Ridker (10.1016/j.freeradbiomed.2020.02.004_bib37) 2008; 79 Bowen (10.1016/j.freeradbiomed.2020.02.004_bib43) 2002; 13 Buchanan (10.1016/j.freeradbiomed.2020.02.004_bib32) 2002; 51 Munoz-Espada (10.1016/j.freeradbiomed.2020.02.004_bib15) 2006; 17 Herder (10.1016/j.freeradbiomed.2020.02.004_bib38) 2011; 90 Pergola (10.1016/j.freeradbiomed.2020.02.004_bib14) 2006; 15 Li (10.1016/j.freeradbiomed.2020.02.004_bib18) 2015; 145 |
References_xml | – volume: 278 start-page: 6976 year: 2003 end-page: 6984 ident: bib45 article-title: Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-δ-NF-κB and PKC-ζ-GATA signaling pathways publication-title: J. Biol. Chem. – volume: 17 start-page: 589 year: 2006 end-page: 596 ident: bib15 article-title: Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells publication-title: J. Nutr. Biochem. – volume: 646 start-page: 107 year: 2018 end-page: 112 ident: bib7 article-title: Research trends in flavonoids and health publication-title: Arch. Biochem. Biophys. – year: 2009 ident: bib40 article-title: The nuclear factor NF-κB pathway in inflammation publication-title: Cold Spring Harbor Perspect. Biol. – volume: 282 start-page: 80 year: 2019 end-page: 84 ident: bib36 article-title: Utility of novel serum biomarkers to predict subclinical atherosclerosis: a sub-analysis of the EISNER study publication-title: Atherosclerosis – volume: 5 year: 2016 ident: bib2 article-title: A clinical perspective of obesity, metabolic syndrome and cardiovascular disease publication-title: JRSM Cardiovas. Dis. – volume: 67 start-page: 1771 year: 2019 end-page: 1783 ident: bib12 article-title: Anthocyanins: from sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action publication-title: J. Agric. Food Chem. – volume: 167 start-page: 1592 year: 2001 end-page: 1600 ident: bib25 article-title: Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment publication-title: J. Immunol. – volume: 23 start-page: 469 year: 2006 end-page: 480 ident: bib3 article-title: Metabolic syndrome—a new world‐wide definition. A consensus statement from the international diabetes federation publication-title: Diabet. Med. – year: 2019 ident: bib6 article-title: Bioactive Phytochemicals – volume: 580 start-page: 1391 year: 2006 end-page: 1397 ident: bib51 article-title: Anthocyanins from soybean seed coat inhibit the expression of TNF‐α‐induced genes associated with ischemia/reperfusion in endothelial cell by NF‐κB‐dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo publication-title: FEBS Lett. – volume: 103 start-page: 12481 year: 2006 end-page: 12486 ident: bib22 article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 90 start-page: 52 year: 2011 end-page: 66 ident: bib38 article-title: Biomarkers for the prediction of type 2 diabetes and cardiovascular disease publication-title: Clin. Pharmacol. Therapeut. – volume: 277 start-page: 35150 year: 2002 end-page: 35155 ident: bib48 article-title: Protein kinase C-ζ regulates transcription of the matrix metalloproteinase-9 gene induced by IL-1 and TNF-α in glioma cells via NF-κB publication-title: J. Biol. Chem. – volume: 51 start-page: 715 year: 2019 end-page: 722 ident: bib31 article-title: PPAR-γ activation increases insulin secretion independent of CASK in INS-1 cells publication-title: Acta Biochim. Biophys. Sin. – volume: 2018 year: 2018 ident: bib17 article-title: Effect of anthocyanin supplementations on lipid profile and inflammatory markers: a systematic review and meta-analysis of randomized controlled trials publication-title: Cholesterol – volume: 163 start-page: 1457 year: 1999 end-page: 1466 ident: bib27 article-title: NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria publication-title: J. Immunol. – volume: 302 start-page: 723 year: 1994 end-page: 727 ident: bib44 article-title: Structure of the human cyclo-oxygenase-2 gene publication-title: Biochem. J. – volume: 280 start-page: 187 year: 2019 end-page: 194 ident: bib9 article-title: Blueberry polyphenol-protein food ingredients: the impact of spray drying on the in vitro antioxidant activity, anti-inflammatory markers, glucose metabolism and fibroblast migration publication-title: Food Chem. – volume: 79 start-page: 1544 year: 2008 end-page: 1551 ident: bib37 article-title: Inflammation, C-reactive protein, and atherothrombosis publication-title: J. Periodontol. – volume: 79 start-page: 1473 year: 2010 end-page: 1482 ident: bib16 article-title: Cyanidin suppresses ultraviolet B-induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1 publication-title: Biochem. Pharmacol. – volume: 100 start-page: 530 year: 1997 end-page: 537 ident: bib33 article-title: Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance publication-title: J. Clin. Invest. – volume: 58 start-page: 153 year: 2011 end-page: 160 ident: bib19 article-title: Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells publication-title: Neurochem. Int. – volume: 101 start-page: 3381 year: 2004 end-page: 3386 ident: bib20 article-title: Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 82 start-page: 512 year: 2001 end-page: 521 ident: bib53 article-title: Salvianolic acid B attenuates VCAM‐1 and ICAM‐1 expression in TNF‐α‐treated human aortic endothelial cells publication-title: J. Cell. Biochem. – start-page: 108940 year: 2020 ident: bib13 article-title: Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells publication-title: Chem. Biol. Interact. – volume: 145 start-page: 742 year: 2015 end-page: 748 ident: bib18 article-title: Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients publication-title: J. Nutr. – volume: 214 start-page: 149 year: 2008 end-page: 160 ident: bib50 article-title: TNF‐mediated inflammatory disease publication-title: J. Pathol.: J. Pathol. Soc. Great Britain Ireland – volume: 15 start-page: 2423 year: 2001 end-page: 2432 ident: bib52 article-title: α-Lipoic acid inhibits TNF-α-induced NF-κB activation and adhesion molecule expression in human aortic endothelial cells publication-title: Faseb. J. – volume: 70 start-page: 193 year: 2008 end-page: 219 ident: bib4 article-title: Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease publication-title: Verh. - K. Acad. Geneeskd. Belg. – start-page: 1 year: 2019 end-page: 12 ident: bib1 article-title: The association between metabolic syndrome components and the development of atherosclerosis publication-title: J. Hum. Hypertens. – volume: 51 start-page: 2796 year: 2002 end-page: 2803 ident: bib32 article-title: Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women publication-title: Diabetes – volume: 15 start-page: 30 year: 2006 end-page: 39 ident: bib14 article-title: Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract publication-title: Nitric Oxide – volume: 6 start-page: 620 year: 2015 end-page: 622 ident: bib10 article-title: Anthocyanins publication-title: Adv. Nutr. – volume: 659 start-page: 31 year: 2008 end-page: 39 ident: bib21 article-title: Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults publication-title: Mutat. Res. Rev. Mutat. Res. – volume: 27 start-page: 189 year: 2019 end-page: 197 ident: bib8 article-title: Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? publication-title: Inflammopharmacology – volume: 132 start-page: 403 year: 2017 end-page: 410 ident: bib11 article-title: Advances in public health surveillance and information dissemination at the centers for disease control and prevention publication-title: Publ. Health Rep. – volume: 336 start-page: 1066 year: 1997 end-page: 1071 ident: bib24 article-title: Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases publication-title: N. Engl. J. Med. – volume: 269 start-page: 6185 year: 1994 end-page: 6192 ident: bib47 article-title: 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter publication-title: J. Biol. Chem. – volume: 105 start-page: 1135 year: 2002 end-page: 1143 ident: bib49 article-title: Inflammation and atherosclerosis publication-title: Circulation – volume: 690 start-page: 12 year: 2010 end-page: 23 ident: bib39 article-title: A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders publication-title: Mutat. Res. Fund Mol. Mech. Mutagen – volume: 124 start-page: 364 year: 2018 end-page: 379 ident: bib42 article-title: Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability publication-title: Free Radic. Biol. Med. – volume: 26 start-page: 341 year: 2016 end-page: 351 ident: bib30 article-title: Nuclear mechanisms of insulin resistance publication-title: Trends Cell Biol. – volume: 66 start-page: 876 year: 1999 end-page: 888 ident: bib46 article-title: Regulation of intercellular adhesion molecule‐1 (CD54) gene expression publication-title: J. Leukoc. Biol. – volume: 59 start-page: 1276 year: 2016 end-page: 1286 ident: bib34 article-title: Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice publication-title: Diabetologia – volume: 96 start-page: 60 year: 1995 end-page: 68 ident: bib41 article-title: Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines publication-title: J. Clin. Invest. – volume: 3 start-page: 345 year: 2015 ident: bib5 article-title: Atherosclerosis and the role of immune cells publication-title: World J. Clin. Cases: WJCC – year: 2019 ident: bib35 article-title: Inflammation and Atherothrombosis. Clinical Immunology – volume: 9 start-page: 46 year: 2015 end-page: 50 ident: bib29 article-title: PPAR gamma gene–a review publication-title: Diabetes & Metabol. Syndrome: Clin. Res. Rev. – volume: 414 start-page: 313 year: 2001 ident: bib23 article-title: Inhibition of JNK activation through NF-κB target genes publication-title: Nature – volume: 13 start-page: 367 year: 2002 end-page: 379 ident: bib43 article-title: Adenovirus vector-induced inflammation: capsid-dependent induction of the CC chemokine RANTES requires NF-κ B publication-title: Hum. Gene Ther. – volume: 391 start-page: 82 year: 1998 ident: bib28 article-title: PPAR-γ agonists inhibit production of monocyte inflammatory cytokines publication-title: Nature – volume: 16 start-page: 225 year: 1998 end-page: 260 ident: bib26 article-title: NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses publication-title: Annu. Rev. Immunol. – volume: 124 start-page: 364 year: 2018 ident: 10.1016/j.freeradbiomed.2020.02.004_bib42 article-title: Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.06.027 – volume: 103 start-page: 12481 issue: 33 year: 2006 ident: 10.1016/j.freeradbiomed.2020.02.004_bib22 article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0605298103 – volume: 90 start-page: 52 issue: 1 year: 2011 ident: 10.1016/j.freeradbiomed.2020.02.004_bib38 article-title: Biomarkers for the prediction of type 2 diabetes and cardiovascular disease publication-title: Clin. Pharmacol. Therapeut. doi: 10.1038/clpt.2011.93 – volume: 2018 year: 2018 ident: 10.1016/j.freeradbiomed.2020.02.004_bib17 article-title: Effect of anthocyanin supplementations on lipid profile and inflammatory markers: a systematic review and meta-analysis of randomized controlled trials publication-title: Cholesterol doi: 10.1155/2018/8450793 – year: 2009 ident: 10.1016/j.freeradbiomed.2020.02.004_bib40 article-title: The nuclear factor NF-κB pathway in inflammation publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a001651 – volume: 132 start-page: 403 issue: 4 year: 2017 ident: 10.1016/j.freeradbiomed.2020.02.004_bib11 article-title: Advances in public health surveillance and information dissemination at the centers for disease control and prevention publication-title: Publ. Health Rep. doi: 10.1177/0033354917709542 – volume: 145 start-page: 742 issue: 4 year: 2015 ident: 10.1016/j.freeradbiomed.2020.02.004_bib18 article-title: Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients publication-title: J. Nutr. doi: 10.3945/jn.114.205674 – volume: 690 start-page: 12 issue: 1–2 year: 2010 ident: 10.1016/j.freeradbiomed.2020.02.004_bib39 article-title: A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders publication-title: Mutat. Res. Fund Mol. Mech. Mutagen doi: 10.1016/j.mrfmmm.2009.09.007 – volume: 646 start-page: 107 year: 2018 ident: 10.1016/j.freeradbiomed.2020.02.004_bib7 article-title: Research trends in flavonoids and health publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2018.03.022 – volume: 101 start-page: 3381 issue: 10 year: 2004 ident: 10.1016/j.freeradbiomed.2020.02.004_bib20 article-title: Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0400282101 – volume: 23 start-page: 469 issue: 5 year: 2006 ident: 10.1016/j.freeradbiomed.2020.02.004_bib3 article-title: Metabolic syndrome—a new world‐wide definition. A consensus statement from the international diabetes federation publication-title: Diabet. Med. doi: 10.1111/j.1464-5491.2006.01858.x – volume: 26 start-page: 341 issue: 5 year: 2016 ident: 10.1016/j.freeradbiomed.2020.02.004_bib30 article-title: Nuclear mechanisms of insulin resistance publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.01.002 – volume: 70 start-page: 193 issue: 3 year: 2008 ident: 10.1016/j.freeradbiomed.2020.02.004_bib4 article-title: Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease publication-title: Verh. - K. Acad. Geneeskd. Belg. – volume: 414 start-page: 313 issue: 6861 year: 2001 ident: 10.1016/j.freeradbiomed.2020.02.004_bib23 article-title: Inhibition of JNK activation through NF-κB target genes publication-title: Nature doi: 10.1038/35104568 – volume: 391 start-page: 82 issue: 6662 year: 1998 ident: 10.1016/j.freeradbiomed.2020.02.004_bib28 article-title: PPAR-γ agonists inhibit production of monocyte inflammatory cytokines publication-title: Nature doi: 10.1038/34184 – volume: 269 start-page: 6185 issue: 8 year: 1994 ident: 10.1016/j.freeradbiomed.2020.02.004_bib47 article-title: 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37586-5 – volume: 79 start-page: 1544 issue: 8S year: 2008 ident: 10.1016/j.freeradbiomed.2020.02.004_bib37 article-title: Inflammation, C-reactive protein, and atherothrombosis publication-title: J. Periodontol. doi: 10.1902/jop.2008.080249 – volume: 105 start-page: 1135 issue: 9 year: 2002 ident: 10.1016/j.freeradbiomed.2020.02.004_bib49 article-title: Inflammation and atherosclerosis publication-title: Circulation doi: 10.1161/hc0902.104353 – volume: 13 start-page: 367 issue: 3 year: 2002 ident: 10.1016/j.freeradbiomed.2020.02.004_bib43 article-title: Adenovirus vector-induced inflammation: capsid-dependent induction of the CC chemokine RANTES requires NF-κ B publication-title: Hum. Gene Ther. doi: 10.1089/10430340252792503 – volume: 15 start-page: 2423 issue: 13 year: 2001 ident: 10.1016/j.freeradbiomed.2020.02.004_bib52 article-title: α-Lipoic acid inhibits TNF-α-induced NF-κB activation and adhesion molecule expression in human aortic endothelial cells publication-title: Faseb. J. doi: 10.1096/fj.01-0260com – volume: 336 start-page: 1066 issue: 15 year: 1997 ident: 10.1016/j.freeradbiomed.2020.02.004_bib24 article-title: Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199704103361506 – year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib35 – volume: 302 start-page: 723 issue: 3 year: 1994 ident: 10.1016/j.freeradbiomed.2020.02.004_bib44 article-title: Structure of the human cyclo-oxygenase-2 gene publication-title: Biochem. J. doi: 10.1042/bj3020723 – volume: 67 start-page: 1771 issue: 7 year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib12 article-title: Anthocyanins: from sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b06737 – volume: 9 start-page: 46 issue: 1 year: 2015 ident: 10.1016/j.freeradbiomed.2020.02.004_bib29 article-title: PPAR gamma gene–a review publication-title: Diabetes & Metabol. Syndrome: Clin. Res. Rev. doi: 10.1016/j.dsx.2014.09.015 – volume: 163 start-page: 1457 issue: 3 year: 1999 ident: 10.1016/j.freeradbiomed.2020.02.004_bib27 article-title: NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria publication-title: J. Immunol. doi: 10.4049/jimmunol.163.3.1457 – volume: 82 start-page: 512 issue: 3 year: 2001 ident: 10.1016/j.freeradbiomed.2020.02.004_bib53 article-title: Salvianolic acid B attenuates VCAM‐1 and ICAM‐1 expression in TNF‐α‐treated human aortic endothelial cells publication-title: J. Cell. Biochem. doi: 10.1002/jcb.1176 – volume: 79 start-page: 1473 issue: 10 year: 2010 ident: 10.1016/j.freeradbiomed.2020.02.004_bib16 article-title: Cyanidin suppresses ultraviolet B-induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2010.01.008 – volume: 278 start-page: 6976 issue: 9 year: 2003 ident: 10.1016/j.freeradbiomed.2020.02.004_bib45 article-title: Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-δ-NF-κB and PKC-ζ-GATA signaling pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208974200 – start-page: 1 year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib1 article-title: The association between metabolic syndrome components and the development of atherosclerosis publication-title: J. Hum. Hypertens. – volume: 6 start-page: 620 issue: 5 year: 2015 ident: 10.1016/j.freeradbiomed.2020.02.004_bib10 article-title: Anthocyanins publication-title: Adv. Nutr. doi: 10.3945/an.115.009233 – volume: 15 start-page: 30 issue: 1 year: 2006 ident: 10.1016/j.freeradbiomed.2020.02.004_bib14 article-title: Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract publication-title: Nitric Oxide doi: 10.1016/j.niox.2005.10.003 – volume: 51 start-page: 715 issue: 7 year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib31 article-title: PPAR-γ activation increases insulin secretion independent of CASK in INS-1 cells publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmz052 – volume: 3 start-page: 345 issue: 4 year: 2015 ident: 10.1016/j.freeradbiomed.2020.02.004_bib5 article-title: Atherosclerosis and the role of immune cells publication-title: World J. Clin. Cases: WJCC doi: 10.12998/wjcc.v3.i4.345 – volume: 59 start-page: 1276 issue: 6 year: 2016 ident: 10.1016/j.freeradbiomed.2020.02.004_bib34 article-title: Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice publication-title: Diabetologia doi: 10.1007/s00125-016-3912-9 – volume: 214 start-page: 149 issue: 2 year: 2008 ident: 10.1016/j.freeradbiomed.2020.02.004_bib50 article-title: TNF‐mediated inflammatory disease publication-title: J. Pathol.: J. Pathol. Soc. Great Britain Ireland doi: 10.1002/path.2287 – volume: 17 start-page: 589 issue: 9 year: 2006 ident: 10.1016/j.freeradbiomed.2020.02.004_bib15 article-title: Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2005.10.007 – year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib6 – volume: 66 start-page: 876 issue: 6 year: 1999 ident: 10.1016/j.freeradbiomed.2020.02.004_bib46 article-title: Regulation of intercellular adhesion molecule‐1 (CD54) gene expression publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.66.6.876 – volume: 280 start-page: 187 year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib9 article-title: Blueberry polyphenol-protein food ingredients: the impact of spray drying on the in vitro antioxidant activity, anti-inflammatory markers, glucose metabolism and fibroblast migration publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.12.046 – volume: 167 start-page: 1592 issue: 3 year: 2001 ident: 10.1016/j.freeradbiomed.2020.02.004_bib25 article-title: Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment publication-title: J. Immunol. doi: 10.4049/jimmunol.167.3.1592 – volume: 96 start-page: 60 issue: 1 year: 1995 ident: 10.1016/j.freeradbiomed.2020.02.004_bib41 article-title: Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines publication-title: J. Clin. Invest. doi: 10.1172/JCI118074 – volume: 27 start-page: 189 issue: 1 year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib8 article-title: Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? publication-title: Inflammopharmacology doi: 10.1007/s10787-018-0549-y – volume: 659 start-page: 31 issue: 1–2 year: 2008 ident: 10.1016/j.freeradbiomed.2020.02.004_bib21 article-title: Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults publication-title: Mutat. Res. Rev. Mutat. Res. doi: 10.1016/j.mrrev.2007.11.006 – volume: 51 start-page: 2796 issue: 9 year: 2002 ident: 10.1016/j.freeradbiomed.2020.02.004_bib32 article-title: Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women publication-title: Diabetes doi: 10.2337/diabetes.51.9.2796 – volume: 282 start-page: 80 year: 2019 ident: 10.1016/j.freeradbiomed.2020.02.004_bib36 article-title: Utility of novel serum biomarkers to predict subclinical atherosclerosis: a sub-analysis of the EISNER study publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2019.01.012 – volume: 16 start-page: 225 issue: 1 year: 1998 ident: 10.1016/j.freeradbiomed.2020.02.004_bib26 article-title: NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.16.1.225 – volume: 100 start-page: 530 issue: 3 year: 1997 ident: 10.1016/j.freeradbiomed.2020.02.004_bib33 article-title: Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance publication-title: J. Clin. Invest. doi: 10.1172/JCI119562 – volume: 58 start-page: 153 issue: 2 year: 2011 ident: 10.1016/j.freeradbiomed.2020.02.004_bib19 article-title: Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2010.11.008 – volume: 580 start-page: 1391 issue: 5 year: 2006 ident: 10.1016/j.freeradbiomed.2020.02.004_bib51 article-title: Anthocyanins from soybean seed coat inhibit the expression of TNF‐α‐induced genes associated with ischemia/reperfusion in endothelial cell by NF‐κB‐dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.01.062 – start-page: 108940 year: 2020 ident: 10.1016/j.freeradbiomed.2020.02.004_bib13 article-title: Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2020.108940 – volume: 5 year: 2016 ident: 10.1016/j.freeradbiomed.2020.02.004_bib2 article-title: A clinical perspective of obesity, metabolic syndrome and cardiovascular disease publication-title: JRSM Cardiovas. Dis. – volume: 277 start-page: 35150 issue: 38 year: 2002 ident: 10.1016/j.freeradbiomed.2020.02.004_bib48 article-title: Protein kinase C-ζ regulates transcription of the matrix metalloproteinase-9 gene induced by IL-1 and TNF-α in glioma cells via NF-κB publication-title: J. Biol. Chem. doi: 10.1074/jbc.M108600200 |
SSID | ssj0004538 |
Score | 2.5600173 |
Snippet | Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30 |
SubjectTerms | Anthocyanin Metabolic syndrome NF-kB Nrf2 PPAR-γ |
Title | Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2020.02.004 https://www.proquest.com/docview/2356617051 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG5CRPESNFGM0VCieGt33jPtQViDYVUMQQ3k1vRrcXS3M-zsinvxT_kzBH-TVT0zMRGEgMcuerqHqZp6dfVXjD0pbZYmsat4pVXFUUtaroUpOAYjJZrjJLWWTnTfHRWTk-zNaX66wQ6GuzBUVtnr_k6nB23dU0b91xw1dT36EFUiRvMpyAVBM0SIn1lWkpQ_-x5fQAwP3axpMqfZN9jjPzVe04VzdGQdbrpjsJhEHYBn9i8r9Ze-Dkbo8Bbb6r1HGHcveJttOL_NdsYeI-f5Gp5CqOcMifJtdr1rM7neYT8DQoBZK1_7FhYE1uoAJQuFobu4CMpbqEN6wUFfxB5os7qpLczdEkVlVrdzUD03nQXK4OIqn2pdU-k0eEJGVgvoOvjwL6pp1EugexNfL2ziyUul_AQcH4_f818_ACXYgfvWF-R6nHK-oYEBUAHalaaMUXuHnRy--ngw4X0TB26Q80teiKp0ZV5ageFwpPS00EVWCZMmRtkKx7nIjU1MHk1F7FzhCK8HqXFlTYrE9C7b9Gfe3WOg80Jrk6DsVzqLValUidGQdalAkkrELns-ME2aHuGcGm3M5FDK9lle4rgkjssokcjxXZadP9x0QB9Xe-zFIB3yktxKNElXW-DRIFMS_2w6rlHena1amaToahPaUXz_fzfZYzdp1FUcPWCby8XKPURnaqn3w9-yz66NX7-dHP0Gcdwovg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxRBEG7iBjUvoonBeJYovjU790z7IKzBsDHJEjSBvDV9LY7udoY9gvu7_BmCv8mqOWIiCAEfp6Z7epiqqaurv2LsdW6TOApdwQutCo5a0nItTMYxGMnRHEextbSjezTKhqfJx7P0bI3tdmdhqKyy1f2NTq-1dUvpt1-zX5Vl_3NQiBDNpyAXBM1QfIutEzpV2mPrg_2D4egKaHjd0JrGc5pwh736U-Y1njlHu9b1YXeMF6OgwfBM_mWo_lLZtR3au8_utQ4kDJp3fMDWnN9kWwOPwfN0BW-gLumsc-Wb7HbTaXK1xX7WIAFmpXzp5zAjvFYHKFwoD83ZRVDeQllnGBy0dew1bVJWpYWpW6C0TMr5FFTLUGeBkrj4lC-lLql6GjyBI6sZNE18-DdVVeo90NGJiyuLeHJUKUUBx8eDT_zXD0AhduC-tzW5HodcLmigw1SA-VJT0mj-kJ3ufTjZHfK2jwM3yPwFz0SRuzzNrcCIOFB6nOksKYSJI6NsgdepSI2NTBqMRehc5giyB6lhYU2MxHib9fy5d48Y6DTT2kQo_oVOQpUrlWNAZF0skKQiscPedkyTpgU5p14bE9lVs32V1zguieMyiCRyfIcll5OrBuvjZtPeddIhr4muRKt0swe87GRK4s9NOzbKu_PlXEYxetsEeBQ-_t9FXrC7w5OjQ3m4Pzp4wjboTlOA9JT1FrOle4a-1UI_b_-d32vrK28 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthocyanins+reduce+inflammation+and+improve+glucose+and+lipid+metabolism+associated+with+inhibiting+nuclear+factor-kappaB+activation+and+increasing+PPAR-%CE%B3+gene+expression+in+metabolic+syndrome+subjects&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Aboonabi%2C+Anahita&rft.au=Aboonabi%2C+Arta&rft.date=2020-04-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=150&rft.spage=30&rft.epage=39&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2020.02.004&rft.externalDocID=S0891584919324153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |