RhythmNet: End-to-End Heart Rate Estimation From Face via Spatial-Temporal Representation

Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face v...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 29; pp. 2409 - 2423
Main Authors Niu, Xuesong, Shan, Shiguang, Han, Hu, Chen, Xilin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face videos; however, most of them focus on well-controlled scenarios, their generalization ability into less-constrained scenarios (e.g., with head movement, and bad illumination) are not known. At the same time, lacking large-scale HR databases has limited the use of deep models for remote HR estimation. In this paper, we propose an end-to-end RhythmNet for remote HR estimation from the face. In RyhthmNet, we use a spatial-temporal representation encoding the HR signals from multiple ROI volumes as its input. Then the spatial-temporal representations are fed into a convolutional network for HR estimation. We also take into account the relationship of adjacent HR measurements from a video sequence via Gated Recurrent Unit (GRU) and achieves efficient HR measurement. In addition, we build a large-scale multi-modal HR database (named as VIPL-HR 1 ), which contains 2,378 visible light videos (VIS) and 752 near-infrared (NIR) videos of 107 subjects. Our VIPL-HR database contains various variations such as head movements, illumination variations, and acquisition device changes, replicating a less-constrained scenario for HR estimation. The proposed approach outperforms the state-of-the-art methods on both the public-domain and our VIPL-HR databases. 1 VIPL-HR is available at: http://vipl.ict.ac.cn/view_database.php?id=15.
AbstractList Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face videos; however, most of them focus on well-controlled scenarios, their generalization ability into less-constrained scenarios (e.g., with head movement, and bad illumination) are not known. At the same time, lacking large-scale HR databases has limited the use of deep models for remote HR estimation. In this paper, we propose an end-to-end RhythmNet for remote HR estimation from the face. In RyhthmNet, we use a spatial-temporal representation encoding the HR signals from multiple ROI volumes as its input. Then the spatial-temporal representations are fed into a convolutional network for HR estimation. We also take into account the relationship of adjacent HR measurements from a video sequence via Gated Recurrent Unit (GRU) and achieves efficient HR measurement. In addition, we build a large-scale multi-modal HR database (named as VIPL-HR 1 ), which contains 2,378 visible light videos (VIS) and 752 near-infrared (NIR) videos of 107 subjects. Our VIPL-HR database contains various variations such as head movements, illumination variations, and acquisition device changes, replicating a less-constrained scenario for HR estimation. The proposed approach outperforms the state-of-the-art methods on both the public-domain and our VIPL-HR databases. 1 VIPL-HR is available at: http://vipl.ict.ac.cn/view_database.php?id=15
Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face videos; however, most of them focus on well-controlled scenarios, their generalization ability into less-constrained scenarios (e.g., with head movement, and bad illumination) are not known. At the same time, lacking large-scale HR databases has limited the use of deep models for remote HR estimation. In this paper, we propose an end-to-end RhythmNet for remote HR estimation from the face. In RyhthmNet, we use a spatial-temporal representation encoding the HR signals from multiple ROI volumes as its input. Then the spatial-temporal representations are fed into a convolutional network for HR estimation. We also take into account the relationship of adjacent HR measurements from a video sequence via Gated Recurrent Unit (GRU) and achieves efficient HR measurement. In addition, we build a large-scale multi-modal HR database (named as VIPL-HR 1 ), which contains 2,378 visible light videos (VIS) and 752 near-infrared (NIR) videos of 107 subjects. Our VIPL-HR database contains various variations such as head movements, illumination variations, and acquisition device changes, replicating a less-constrained scenario for HR estimation. The proposed approach outperforms the state-of-the-art methods on both the public-domain and our VIPL-HR databases. 1 VIPL-HR is available at: http://vipl.ict.ac.cn/view_database.php?id=15.
Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face videos; however, most of them focus on well-controlled scenarios, their generalization ability into less-constrained scenarios (e.g., with head movement, and bad illumination) are not known. At the same time, lacking large-scale HR databases has limited the use of deep models for remote HR estimation. In this paper, we propose an end-to-end RhythmNet for remote HR estimation from the face. In RyhthmNet, we use a spatial-temporal representation encoding the HR signals from multiple ROI volumes as its input. Then the spatial-temporal representations are fed into a convolutional network for HR estimation. We also take into account the relationship of adjacent HR measurements from a video sequence via Gated Recurrent Unit (GRU) and achieves efficient HR measurement. In addition, we build a large-scale multi-modal HR database (named as VIPL-HRVIPL-HR is available at: ), which contains 2,378 visible light videos (VIS) and 752 near-infrared (NIR) videos of 107 subjects. Our VIPL-HR database contains various variations such as head movements, illumination variations, and acquisition device changes, replicating a less-constrained scenario for HR estimation. The proposed approach outperforms the state-of-the-art methods on both the public-domain and our VIPL-HR databases.
Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face videos; however, most of them focus on well-controlled scenarios, their generalization ability into less-constrained scenarios (e.g., with head movement, and bad illumination) are not known. At the same time, lacking large-scale HR databases has limited the use of deep models for remote HR estimation. In this paper, we propose an end-to-end RhythmNet for remote HR estimation from the face. In RyhthmNet, we use a spatial-temporal representation encoding the HR signals from multiple ROI volumes as its input. Then the spatial-temporal representations are fed into a convolutional network for HR estimation. We also take into account the relationship of adjacent HR measurements from a video sequence via Gated Recurrent Unit (GRU) and achieves efficient HR measurement. In addition, we build a large-scale multi-modal HR database (named as VIPL-HRVIPL-HR is available at: ), which contains 2,378 visible light videos (VIS) and 752 near-infrared (NIR) videos of 107 subjects. Our VIPL-HR database contains various variations such as head movements, illumination variations, and acquisition device changes, replicating a less-constrained scenario for HR estimation. The proposed approach outperforms the state-of-the-art methods on both the public-domain and our VIPL-HR databases.Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on contact monitors, which may cause inconvenience and discomfort. Recently, some methods have been proposed for remote HR estimation from face videos; however, most of them focus on well-controlled scenarios, their generalization ability into less-constrained scenarios (e.g., with head movement, and bad illumination) are not known. At the same time, lacking large-scale HR databases has limited the use of deep models for remote HR estimation. In this paper, we propose an end-to-end RhythmNet for remote HR estimation from the face. In RyhthmNet, we use a spatial-temporal representation encoding the HR signals from multiple ROI volumes as its input. Then the spatial-temporal representations are fed into a convolutional network for HR estimation. We also take into account the relationship of adjacent HR measurements from a video sequence via Gated Recurrent Unit (GRU) and achieves efficient HR measurement. In addition, we build a large-scale multi-modal HR database (named as VIPL-HRVIPL-HR is available at: ), which contains 2,378 visible light videos (VIS) and 752 near-infrared (NIR) videos of 107 subjects. Our VIPL-HR database contains various variations such as head movements, illumination variations, and acquisition device changes, replicating a less-constrained scenario for HR estimation. The proposed approach outperforms the state-of-the-art methods on both the public-domain and our VIPL-HR databases.
Author Niu, Xuesong
Shan, Shiguang
Chen, Xilin
Han, Hu
Author_xml – sequence: 1
  givenname: Xuesong
  orcidid: 0000-0001-7737-4287
  surname: Niu
  fullname: Niu, Xuesong
  email: xuesong.niu@vipl.ict.ac.cn
  organization: Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Shiguang
  orcidid: 0000-0002-8348-392X
  surname: Shan
  fullname: Shan, Shiguang
  email: sgshan@ict.ac.cn
  organization: School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Hu
  orcidid: 0000-0001-6010-1792
  surname: Han
  fullname: Han, Hu
  email: hanhu@ict.ac.cn
  organization: Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 4
  givenname: Xilin
  orcidid: 0000-0003-3024-4404
  surname: Chen
  fullname: Chen, Xilin
  email: xlchen@ict.ac.cn
  organization: Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31647433$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrGzEQxkVJaBK390IgCHrpZV29H70VY9eBkBTXOeS0yNox2bC72kpyIP99lNrNIYecZhh-37y-M3Q0hAEQ-kLJlFJiv68vf08ZoXbKrNCMiA_olFpBK0IEOyo5kbrSVNgTdJbSAyFUSKo-ohNOldCC81N0t7p_yvf9NeQfeD40VQ5VCXgJLma8chnwPOW2d7kNA17E0OOF84AfW4f_jKXqumoN_Rii6_AKxggJhvyP_oSOt65L8PkQJ-h2MV_PltXVza_L2c-rygvKc6WUNQq8kdxLCpZ4phvYACinBGw2ZusluAasYBocEU5qANpophx30myBT9C3fd8xhr87SLnu2-Sh69wAYZdqxomRjAqjCvr1DfoQdnEo2xWKF0BoSwt1caB2mx6aeozl_vhU_39aAcge8DGkFGH7ilBSv_hSF1_qF1_qgy9Fot5IfLt_U46u7d4Tnu-FLQC8zjFGWyUNfwZnuJkT
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_dsp_2023_104288
crossref_primary_10_1016_j_patcog_2023_109421
crossref_primary_10_1109_TCSVT_2023_3332408
crossref_primary_10_1109_TIFS_2023_3293949
crossref_primary_10_1186_s12938_022_01037_z
crossref_primary_10_1016_j_engappai_2023_106642
crossref_primary_10_1109_JBHI_2022_3220967
crossref_primary_10_1109_TMM_2024_3363660
crossref_primary_10_1109_TIP_2023_3330108
crossref_primary_10_1145_3706062
crossref_primary_10_1109_LSP_2021_3089908
crossref_primary_10_1109_TIM_2021_3109398
crossref_primary_10_1109_TIM_2024_3476556
crossref_primary_10_1007_s13246_024_01401_4
crossref_primary_10_1016_j_compbiomed_2021_105146
crossref_primary_10_1109_JBHI_2023_3273557
crossref_primary_10_1109_JBHI_2023_3307942
crossref_primary_10_1109_JSEN_2024_3483629
crossref_primary_10_3233_THC_220322
crossref_primary_10_1109_TIM_2023_3256470
crossref_primary_10_1109_TIM_2023_3329095
crossref_primary_10_1109_TIM_2024_3428631
crossref_primary_10_1016_j_compbiomed_2023_106592
crossref_primary_10_1109_LSP_2020_3007086
crossref_primary_10_1109_JBHI_2024_3433461
crossref_primary_10_3390_s20247021
crossref_primary_10_1007_s00371_022_02624_w
crossref_primary_10_1109_LSP_2022_3185964
crossref_primary_10_1016_j_cviu_2021_103327
crossref_primary_10_1016_j_vrih_2020_10_002
crossref_primary_10_1109_JBHI_2023_3345486
crossref_primary_10_1007_s11042_024_19697_5
crossref_primary_10_1016_j_jfranklin_2023_10_013
crossref_primary_10_1007_s11042_023_16794_9
crossref_primary_10_1109_JBHI_2023_3346057
crossref_primary_10_1109_MSP_2021_3106285
crossref_primary_10_1016_j_compind_2024_104227
crossref_primary_10_1109_JBHI_2022_3172705
crossref_primary_10_1109_TPAMI_2024_3415112
crossref_primary_10_1016_j_vrih_2022_07_001
crossref_primary_10_1016_j_bspc_2024_106736
crossref_primary_10_3390_bioengineering9110638
crossref_primary_10_1016_j_eswa_2024_126310
crossref_primary_10_1016_j_iot_2024_101117
crossref_primary_10_1109_TCSVT_2023_3301962
crossref_primary_10_3390_s22020688
crossref_primary_10_3390_electronics11091473
crossref_primary_10_1109_TIM_2022_3205679
crossref_primary_10_1109_TPAMI_2023_3298650
crossref_primary_10_1109_JBHI_2021_3124967
crossref_primary_10_1016_j_knosys_2024_112262
crossref_primary_10_1109_TIM_2022_3209750
crossref_primary_10_1109_TIM_2020_3041083
crossref_primary_10_1007_s11760_024_03809_7
crossref_primary_10_1109_THMS_2022_3207755
crossref_primary_10_32604_cmc_2022_027985
crossref_primary_10_7717_peerj_cs_929
crossref_primary_10_1145_3699771
crossref_primary_10_1109_TCSVT_2023_3307700
crossref_primary_10_1016_j_patcog_2025_111511
crossref_primary_10_1109_TIM_2022_3170976
crossref_primary_10_1109_JBHI_2022_3220656
crossref_primary_10_1088_1742_6596_2366_1_012043
crossref_primary_10_1109_TIFS_2024_3380848
crossref_primary_10_3390_bioengineering11030251
crossref_primary_10_3390_informatics9030057
crossref_primary_10_3390_s21186296
crossref_primary_10_1016_j_bspc_2025_107677
crossref_primary_10_1016_j_eswa_2021_115596
crossref_primary_10_1145_3517225
crossref_primary_10_1007_s11263_025_02388_5
crossref_primary_10_1016_j_bspc_2023_105608
crossref_primary_10_1016_j_compeleceng_2023_109022
crossref_primary_10_1109_TIM_2022_3212524
crossref_primary_10_1109_TCE_2023_3333321
crossref_primary_10_3389_fphys_2024_1428351
crossref_primary_10_1002_jbio_202400119
crossref_primary_10_3934_mbe_2022241
crossref_primary_10_1088_1361_6579_ac98f1
crossref_primary_10_3390_computers12020043
crossref_primary_10_1007_s11063_022_11097_w
crossref_primary_10_1109_JBHI_2024_3363006
crossref_primary_10_1109_TCSVT_2024_3422849
crossref_primary_10_1109_TIM_2022_3229704
crossref_primary_10_1109_TII_2024_3485749
crossref_primary_10_1109_TIM_2023_3331414
crossref_primary_10_1016_j_dsp_2024_104525
crossref_primary_10_3390_app10238630
crossref_primary_10_1109_JIOT_2023_3302159
crossref_primary_10_1016_j_bspc_2023_105687
crossref_primary_10_1016_j_cmpb_2022_106771
crossref_primary_10_1016_j_bspc_2024_107105
crossref_primary_10_1007_s42486_024_00158_9
crossref_primary_10_3390_s24247937
crossref_primary_10_1109_JIOT_2021_3131742
crossref_primary_10_1016_j_displa_2024_102852
crossref_primary_10_1109_ACCESS_2025_3552585
crossref_primary_10_3233_THC_241104
crossref_primary_10_1109_TIM_2024_3497058
crossref_primary_10_3390_app14209551
crossref_primary_10_1109_ACCESS_2020_3045387
crossref_primary_10_1109_TCSS_2024_3356713
crossref_primary_10_1109_TCSVT_2022_3227348
crossref_primary_10_1109_TIM_2024_3375409
crossref_primary_10_1088_1361_6579_ad2f5d
crossref_primary_10_1016_j_cviu_2021_103246
crossref_primary_10_1016_j_compbiomed_2024_108873
crossref_primary_10_3390_electronics13071334
crossref_primary_10_3390_s23062963
crossref_primary_10_3390_s25010100
crossref_primary_10_1016_j_compbiomed_2022_106307
crossref_primary_10_1016_j_knosys_2023_110608
crossref_primary_10_1016_j_bspc_2022_104002
crossref_primary_10_31590_ejosat_1221945
crossref_primary_10_1016_j_bspc_2022_104487
crossref_primary_10_1109_TIM_2021_3129498
crossref_primary_10_3390_bioengineering10121428
crossref_primary_10_1007_s11517_023_02884_1
crossref_primary_10_1145_3528223_3530161
crossref_primary_10_1109_JSEN_2024_3407816
crossref_primary_10_1007_s11263_023_01758_1
crossref_primary_10_1109_ACCESS_2023_3284465
crossref_primary_10_1109_TIM_2020_3021222
crossref_primary_10_1109_TIM_2021_3060572
crossref_primary_10_1109_TIM_2022_3141149
crossref_primary_10_3390_technologies12010002
crossref_primary_10_1109_JBHI_2023_3236631
crossref_primary_10_1109_JIOT_2023_3308477
crossref_primary_10_1109_TMM_2024_3405720
crossref_primary_10_1016_j_engappai_2021_104447
crossref_primary_10_1016_j_bspc_2024_106598
crossref_primary_10_1109_TIM_2025_3545182
crossref_primary_10_1109_TIM_2022_3217867
crossref_primary_10_1364_BOE_457774
crossref_primary_10_1109_JSEN_2024_3496115
crossref_primary_10_1109_JSEN_2024_3429163
crossref_primary_10_1088_1361_6579_ad1458
crossref_primary_10_1109_JBHI_2024_3400869
crossref_primary_10_1134_S0030400X22080057
crossref_primary_10_1016_j_knosys_2021_108048
crossref_primary_10_1109_TIM_2024_3432140
crossref_primary_10_1109_TIP_2021_3094739
crossref_primary_10_1155_2021_6626974
crossref_primary_10_1109_JBHI_2023_3252091
crossref_primary_10_1117_1_JEI_32_4_043037
crossref_primary_10_1109_TCDS_2021_3062370
crossref_primary_10_1016_j_engappai_2023_107772
crossref_primary_10_3390_bioengineering11080743
crossref_primary_10_1016_j_bspc_2022_103609
crossref_primary_10_1109_TPAMI_2024_3367910
crossref_primary_10_1109_ACCESS_2023_3281898
crossref_primary_10_1109_JBHI_2021_3051176
crossref_primary_10_1109_TCDS_2021_3131197
crossref_primary_10_3390_s23167297
Cites_doi 10.1109/TCSVT.2014.2364415
10.1109/TMM.2017.2672198
10.1109/CVPR.2017.502
10.1109/TBME.2014.2323695
10.1109/BTAS.2017.8272752
10.1109/FG.2017.30
10.1109/ICASSP.2014.6854440
10.1109/TBME.2013.2266196
10.1109/TBME.2015.2390261
10.1109/IPTA.2016.7820970
10.1088/0967-3334/35/9/1913
10.1364/OE.18.010762
10.1109/CVPR.2016.90
10.1109/FG.2018.00043
10.1109/CVPR.2016.263
10.1109/ICCV.2015.415
10.1109/CVPR.2013.440
10.3115/v1/D14-1179
10.1117/1.JBO.21.11.117001
10.1109/T-AFFC.2011.25
10.1109/ROMAN.2014.6926392
10.1364/OE.16.021434
10.1109/TBME.2010.2086456
10.1117/1.JBO.20.4.048002
10.1364/BOE.6.001565
10.1109/CVPR.2014.543
10.1109/TBME.2015.2508602
10.1109/TBME.2014.2356291
10.1109/TBME.2016.2609282
10.1117/1.JBO.17.7.077011
10.1109/BTAS.2017.8272721
10.1364/BOE.8.001965
10.1145/3242969.3264982
10.1109/FG.2017.17
10.1145/2185520.2335416
10.1109/CVPR.2018.00554
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2019.2947204
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2423
ExternalDocumentID 31647433
10_1109_TIP_2019_2947204
8879658
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672496; 61702486
  funderid: 10.13039/501100001809
– fundername: Chinese Academy of Sciences
  grantid: GJHZ1843
  funderid: 10.13039/501100002367
– fundername: National Key R&D Program of China
  grantid: 2017YFA0700800
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-66986ec853c51e90c27debee6a64ebb8fc5eade9427ea04a57ee1d726a3a58fe3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 07:16:21 EDT 2025
Mon Jun 30 10:14:55 EDT 2025
Wed Feb 19 02:09:35 EST 2025
Tue Jul 01 02:03:21 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Wed Aug 27 02:40:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-66986ec853c51e90c27debee6a64ebb8fc5eade9427ea04a57ee1d726a3a58fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8348-392X
0000-0001-6010-1792
0000-0003-3024-4404
0000-0001-7737-4287
PMID 31647433
PQID 2338634791
PQPubID 85429
PageCount 15
ParticipantIDs ieee_primary_8879658
crossref_primary_10_1109_TIP_2019_2947204
crossref_citationtrail_10_1109_TIP_2019_2947204
proquest_miscellaneous_2308521486
pubmed_primary_31647433
proquest_journals_2338634791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
niu (ref13) 2018
ref32
ref10
ref2
irani (ref11) 2014; 3
ref1
ref17
ref38
ref19
ref18
kingma (ref37) 2014
chen (ref26) 2018
ref24
ref23
cui (ref43) 2018
ref25
ref20
ref42
ref41
ref22
ref21
yu (ref39) 2019
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
lewandowska (ref16) 2011
References_xml – ident: ref19
  doi: 10.1109/TCSVT.2014.2364415
– ident: ref31
  doi: 10.1109/TMM.2017.2672198
– ident: ref38
  doi: 10.1109/CVPR.2017.502
– start-page: 1
  year: 2019
  ident: ref39
  article-title: Remote photoplethysmograph signal measurement from facial videos using Spatio-temporal networks
  publication-title: Proc BMVC
– ident: ref14
  doi: 10.1109/TBME.2014.2323695
– ident: ref23
  doi: 10.1109/BTAS.2017.8272752
– ident: ref42
  doi: 10.1109/FG.2017.30
– ident: ref25
  doi: 10.1109/ICASSP.2014.6854440
– start-page: 405
  year: 2011
  ident: ref16
  article-title: Measuring pulse rate with a webcam-A non-contact method for evaluating cardiac activity
  publication-title: Proc FedCSIS
– ident: ref4
  doi: 10.1109/TBME.2013.2266196
– ident: ref27
  doi: 10.1109/TBME.2015.2390261
– ident: ref28
  doi: 10.1109/IPTA.2016.7820970
– start-page: 140
  year: 2018
  ident: ref43
  article-title: Improving 2D face recognition via discriminative face depth estimation
  publication-title: Proc IEEE ICB
– ident: ref20
  doi: 10.1088/0967-3334/35/9/1913
– ident: ref1
  doi: 10.1364/OE.18.010762
– start-page: 349
  year: 2018
  ident: ref26
  article-title: DeepPhys: Video-based physiological measurement using convolutional attention networks
  publication-title: Proc ECCV
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1109/FG.2018.00043
– ident: ref6
  doi: 10.1109/CVPR.2016.263
– ident: ref15
  doi: 10.1109/ICCV.2015.415
– ident: ref3
  doi: 10.1109/CVPR.2013.440
– ident: ref35
  doi: 10.3115/v1/D14-1179
– ident: ref40
  doi: 10.1117/1.JBO.21.11.117001
– start-page: 562
  year: 2018
  ident: ref13
  article-title: VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video
  publication-title: Proc ACCV
– ident: ref8
  doi: 10.1109/T-AFFC.2011.25
– ident: ref10
  doi: 10.1109/ROMAN.2014.6926392
– ident: ref30
  doi: 10.1364/OE.16.021434
– ident: ref2
  doi: 10.1109/TBME.2010.2086456
– ident: ref33
  doi: 10.1117/1.JBO.20.4.048002
– ident: ref21
  doi: 10.1364/BOE.6.001565
– year: 2014
  ident: ref37
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref5
  doi: 10.1109/CVPR.2014.543
– ident: ref24
  doi: 10.1109/TBME.2015.2508602
– ident: ref18
  doi: 10.1109/TBME.2014.2356291
– ident: ref7
  doi: 10.1109/TBME.2016.2609282
– ident: ref17
  doi: 10.1117/1.JBO.17.7.077011
– volume: 3
  start-page: 118
  year: 2014
  ident: ref11
  article-title: Improved pulse detection from head motions using DCT
  publication-title: Proc VISAPP
– ident: ref9
  doi: 10.1109/BTAS.2017.8272721
– ident: ref22
  doi: 10.1364/BOE.8.001965
– ident: ref36
  doi: 10.1145/3242969.3264982
– ident: ref32
  doi: 10.1109/FG.2017.17
– ident: ref29
  doi: 10.1145/2185520.2335416
– ident: ref41
  doi: 10.1109/CVPR.2018.00554
SSID ssj0014516
Score 2.6908493
Snippet Heart rate (HR) is an important physiological signal that reflects the physical and emotional status of a person. Traditional HR measurements usually rely on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2409
SubjectTerms end-to-end learning
Estimation
Head
Head movement
Heart rate
Illumination
Image color analysis
Remote heart rate estimation
Replicating
Representations
rPPG
Skin
spatial-temporal representation
Webcams
Title RhythmNet: End-to-End Heart Rate Estimation From Face via Spatial-Temporal Representation
URI https://ieeexplore.ieee.org/document/8879658
https://www.ncbi.nlm.nih.gov/pubmed/31647433
https://www.proquest.com/docview/2338634791
https://www.proquest.com/docview/2308521486
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPumDra0fsVVW8EVw73LZZPfWN5E7TsEixxXqU9jdTGixTaTNFdq_vrObvaCi4lMC2dwl_GYyv9n5AnhTWSFsnSIvVD3leaUtt9IJUjyB0jpppA0JssdycZJ_Pi1Ot-DdUAuDiCH5DEf-NMTyq9at_VbZmBTC9yrZhm1y3PparSFi4AfOhshmobgi2r8JSaZ6vPr01edw6VGmcz-T5RcTFGaq_J1eBjMz34Uvmwfss0u-j9adHbm733o3_u8b7MGjyDfZh15AHsMWNvuwG7kni5p9vQ8Pf2pMeADflme33dnlMXbv2aypeNdyOrAFqUXHlkRP2Yw-DX3VI5tftZdsbhyym3PD_Ixjkmm-6nteXbBlyLWNJU7NEziZz1YfFzwOYeCO7FvHpdRTiY6suismqFOXqYqAR0IxR2untSt8zrXOM4UmzU2hECeVyqQRppjWKJ7CTtM2-BwYkUtnlfN7KC7XqI3CakIWVNXEKTJTJDDe4FK62KHcD8q4KIOnkuqSkCw9kmVEMoG3wx0_-u4c_1h74PEY1kUoEjjaQF9G9b0uM3Lcpa-xnSTwerhMiuejKabBdu3XEFvNyJuUCTzrRWb4beG7tOVCvPjzfx7Cg8y77WEn5wh2uqs1viRu09lXQajvAbyl9OE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QB7YLABCwwwEi9IuE3jxK73NqFWHWwVqjppPEW2c9EQW4K2dNL46zk7aQQIEE-JFKdN9N3lvvP9AnhTWCFsGSPPVDnmaaEtt9IJUjyB0jpppA0JsnM5O00_nGVnG_Cur4VBxJB8hgN_GmL5Re1WfqtsSArhe5Xcgbtk97OkrdbqYwZ-5GyIbWaKKyL-66BkrIfLo08-i0sPEp36qSy_GKEwVeXvBDMYmuk2nKwfsc0v-TpYNXbgvv_WvfF_3-EhPOgYJztsReQRbGC1A9sd-2Sdbl_vwNZPrQl34fPi_LY5v5xjc8AmVcGbmtOBzUgxGrYggsom9HFo6x7Z9Kq-ZFPjkN18McxPOSap5su269UFW4Rs267IqXoMp9PJ8v2Md2MYuCML13Ap9ViiI7vushHq2CWqIOiRcEzR2nHpMp91rdNEoYlTkynEUaESaYTJxiWKJ7BZ1RXuASN66axyfhfFpRq1UViMyIaqklhFYrIIhmtcctf1KPejMi7y4KvEOickc49k3iEZwdv-jm9tf45_rN31ePTrOigi2F9Dn3cKfJ0n5LpLX2U7iuB1f5lUz8dTTIX1yq8hvpqQPykjeNqKTP_bwvdpS4V49uf_fAX3ZsuT4_z4aP7xOdxPvBMf9nX2YbO5WuELYjqNfRkE_AerAfgr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RhythmNet%3A+End-to-end+Heart+Rate+Estimation+from+Face+via+Spatial-temporal+Representation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Niu%2C+Xuesong&rft.au=Shan%2C+Shiguang&rft.au=Han%2C+Hu&rft.au=Chen%2C+Xilin&rft.date=2020-01-01&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2019.2947204&rft_id=info%3Apmid%2F31647433&rft.externalDocID=31647433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon