Emergence of Stable Functional Networks in Long-Term Human Electroencephalography

Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static an...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 32; no. 8; pp. 2703 - 2713
Main Authors Chu, Catherine J., Kramer, Mark A., Pathmanathan, Jay, Bianchi, Matt T., Westover, M. Brandon, Wizon, Lauren, Cash, Sydney S.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 22.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network “core.” Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner.
AbstractList Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network “core.” Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner.
Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network "core." Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner.Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network "core." Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner.
Author Bianchi, Matt T.
Cash, Sydney S.
Westover, M. Brandon
Kramer, Mark A.
Chu, Catherine J.
Wizon, Lauren
Pathmanathan, Jay
Author_xml – sequence: 1
  givenname: Catherine J.
  surname: Chu
  fullname: Chu, Catherine J.
– sequence: 2
  givenname: Mark A.
  surname: Kramer
  fullname: Kramer, Mark A.
– sequence: 3
  givenname: Jay
  surname: Pathmanathan
  fullname: Pathmanathan, Jay
– sequence: 4
  givenname: Matt T.
  surname: Bianchi
  fullname: Bianchi, Matt T.
– sequence: 5
  givenname: M. Brandon
  surname: Westover
  fullname: Westover, M. Brandon
– sequence: 6
  givenname: Lauren
  surname: Wizon
  fullname: Wizon, Lauren
– sequence: 7
  givenname: Sydney S.
  surname: Cash
  fullname: Cash, Sydney S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22357854$$D View this record in MEDLINE/PubMed
BookMark eNqFUdtq3DAQFSWh2aT9heC3PnmrkSzJhlIIy-bGkpDbs9Bqx7tuZWkj2Qn5-9okWdq-5GkY5lyGcw7Jng8eCTkGOgXB-PfLq_nD7fXd7GIqpKxygCmjwD6RyXCtclZQ2CMTyhTNZaGKA3KY0i9KqaKgPpMDxrhQpSgm5GbeYlyjt5iFOrvrzNJhdtp72zXBG5ddYfcc4u-UNT5bBL_O7zG22XnfGp_NHdouhpG83RgX1tFsNy9fyH5tXMKvb_OIPJzO72fn-eL67GJ2sshtAbzLBasprpaVKcoCh4UJBmDqlTWS26owFrBEJYS1JSvBoLK14EaWlpbABaf8iPx81d32yxZXFn0XjdPb2LQmvuhgGv3vxTcbvQ5PmnMJCtQg8O1NIIbHHlOn2yZZdM54DH3S1RiSpJIPyOO_rXYe7zEOAPkKsDGkFLHeQYDqsS-960uPfWkAPfY1EH_8R7RNZ8bsh5cb9xH9D7gUnkU
CitedBy_id crossref_primary_10_1038_s41467_024_52744_1
crossref_primary_10_1016_j_clinph_2014_11_018
crossref_primary_10_1371_journal_pone_0116522
crossref_primary_10_1109_TNSRE_2020_3005950
crossref_primary_10_1016_j_clinph_2019_05_027
crossref_primary_10_1162_netn_a_00046
crossref_primary_10_1371_journal_pcbi_1003171
crossref_primary_10_3389_fneur_2022_960454
crossref_primary_10_1016_j_nic_2020_09_004
crossref_primary_10_1097_j_pain_0000000000002565
crossref_primary_10_1007_s10548_020_00777_2
crossref_primary_10_1162_jocn_a_02136
crossref_primary_10_3389_fneur_2017_00456
crossref_primary_10_1016_j_conb_2013_10_007
crossref_primary_10_1007_s00221_016_4737_y
crossref_primary_10_1177_1550059413506001
crossref_primary_10_1016_j_neuroimage_2014_12_033
crossref_primary_10_1016_j_neuroimage_2017_06_029
crossref_primary_10_1371_journal_pone_0084612
crossref_primary_10_1016_j_cub_2019_07_014
crossref_primary_10_1088_1741_2560_13_3_036015
crossref_primary_10_1089_brain_2013_0192
crossref_primary_10_1103_PhysRevE_96_062410
crossref_primary_10_3389_fnhum_2022_848026
crossref_primary_10_1038_ncomms14896
crossref_primary_10_1016_j_neuroimage_2021_118094
crossref_primary_10_1111_psyp_12600
crossref_primary_10_1016_j_neuropharm_2014_08_015
crossref_primary_10_1162_netn_a_00267
crossref_primary_10_1186_s12883_015_0355_8
crossref_primary_10_1038_s41467_020_16285_7
crossref_primary_10_1093_brain_awy187
crossref_primary_10_3389_fnhum_2017_00441
crossref_primary_10_1016_j_neuroimage_2021_118497
crossref_primary_10_1016_j_neuroimage_2017_02_031
crossref_primary_10_1016_j_bpsc_2021_10_017
crossref_primary_10_1093_braincomms_fcae165
crossref_primary_10_1007_s10867_020_09543_8
crossref_primary_10_1016_j_eplepsyres_2021_106704
crossref_primary_10_3389_fnhum_2015_00478
crossref_primary_10_1016_j_neuroimage_2014_01_004
crossref_primary_10_1016_j_neuroscience_2017_12_004
crossref_primary_10_1016_j_clinph_2013_11_028
crossref_primary_10_1089_brain_2018_0596
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_1098_rstb_2014_0173
crossref_primary_10_1016_j_nicl_2019_101908
crossref_primary_10_1093_brain_awy214
crossref_primary_10_3389_fncom_2020_00045
crossref_primary_10_1016_j_jneumeth_2013_01_007
crossref_primary_10_1016_j_clinph_2021_06_001
crossref_primary_10_1002_hbm_24784
crossref_primary_10_1109_TCDS_2023_3285771
crossref_primary_10_3389_fneur_2020_00218
crossref_primary_10_3389_fnhum_2014_01008
crossref_primary_10_1038_s41598_021_81884_3
crossref_primary_10_1002_brb3_1237
crossref_primary_10_1038_s41598_018_21764_5
crossref_primary_10_3389_fneur_2020_563847
crossref_primary_10_1007_s10548_020_00753_w
crossref_primary_10_1089_neu_2017_5574
crossref_primary_10_1186_s13229_018_0214_8
crossref_primary_10_1016_j_conb_2014_11_005
crossref_primary_10_1038_s41551_019_0404_5
crossref_primary_10_1016_j_neubiorev_2014_12_010
crossref_primary_10_1016_j_neuroimage_2018_08_001
crossref_primary_10_1016_j_neubiorev_2014_12_014
crossref_primary_10_1002_hbm_25462
crossref_primary_10_1364_BOE_6_002337
crossref_primary_10_1002_hbm_24530
crossref_primary_10_1162_netn_a_00114
crossref_primary_10_1371_journal_pone_0085900
crossref_primary_10_1016_j_neulet_2018_06_034
crossref_primary_10_1162_netn_a_00352
crossref_primary_10_3390_brainsci11101266
crossref_primary_10_3390_s150819181
crossref_primary_10_1016_j_nicl_2024_103703
crossref_primary_10_1097_j_pain_0000000000001666
crossref_primary_10_1016_j_conb_2012_11_015
crossref_primary_10_1089_brain_2021_0190
crossref_primary_10_1093_brain_aww337
crossref_primary_10_1038_srep22074
crossref_primary_10_3389_fnsys_2024_1426986
crossref_primary_10_1016_j_eplepsyres_2019_106255
crossref_primary_10_1016_j_neuroimage_2015_12_001
crossref_primary_10_1002_aur_2219
crossref_primary_10_1016_j_neuroscience_2021_11_045
crossref_primary_10_1038_s41467_018_06346_3
crossref_primary_10_3389_fnetp_2023_1237004
crossref_primary_10_1371_journal_pone_0212754
crossref_primary_10_3389_fnhum_2017_00490
crossref_primary_10_1016_j_clinph_2018_07_017
crossref_primary_10_1016_j_clinph_2024_12_028
crossref_primary_10_1016_j_physd_2013_06_009
crossref_primary_10_1007_s10548_020_00772_7
crossref_primary_10_1162_imag_a_00026
crossref_primary_10_1371_journal_pcbi_1009252
crossref_primary_10_1152_jn_00513_2016
crossref_primary_10_1016_j_jneumeth_2018_06_010
crossref_primary_10_3389_fnhum_2025_1481760
crossref_primary_10_1111_epi_16686
crossref_primary_10_1111_epi_16284
crossref_primary_10_1038_s41562_023_01529_5
crossref_primary_10_1038_s42003_021_01700_6
crossref_primary_10_3389_fncom_2016_00108
crossref_primary_10_1088_1741_2552_ab7ad3
crossref_primary_10_31887_DCNS_2013_15_3_osporns
crossref_primary_10_1016_j_neuron_2014_08_016
crossref_primary_10_3389_fnhum_2020_576241
crossref_primary_10_3389_fnins_2017_00392
crossref_primary_10_1523_JNEUROSCI_2155_20_2020
crossref_primary_10_1007_s11571_021_09689_8
crossref_primary_10_1016_j_jad_2021_01_047
crossref_primary_10_1016_j_neuroimage_2021_118466
crossref_primary_10_1038_s41583_018_0038_8
crossref_primary_10_1093_brain_awaa069
crossref_primary_10_1371_journal_pone_0072425
crossref_primary_10_1093_nc_niab023
crossref_primary_10_1016_j_neubiorev_2025_106017
crossref_primary_10_1212_WNL_0000000000200386
crossref_primary_10_3390_electronics10101158
crossref_primary_10_1016_j_neubiorev_2021_07_027
crossref_primary_10_3389_fnins_2024_1421010
Cites_doi 10.1073/pnas.97.26.14748
10.1111/j.1749-6632.2010.05947.x
10.1080/00207450490450046
10.1016/j.tins.2008.06.004
10.1007/s00234-009-0580-1
10.1016/S0013-4694(97)00066-7
10.1523/JNEUROSCI.6309-09.2010
10.1038/nrn2575
10.1016/S0167-8760(96)00057-8
10.1016/B978-0-12-385940-2.00009-7
10.5664/jcsm.26814
10.1073/pnas.0811168106
10.1523/JNEUROSCI.5618-09.2010
10.1002/hbm.20600
10.1002/hbm.20662
10.1016/j.neuroimage.2010.02.052
10.1016/j.neuropsychologia.2006.06.017
10.1103/PhysRevE.79.061916
10.1523/JNEUROSCI.2287-11.2011
10.1016/S0306-4522(99)00343-7
10.1016/S0896-6273(00)80821-1
10.1148/radiol.11101708
10.1002/mrm.1910340409
10.1016/j.clinph.2010.08.009
10.1016/S1388-2457(98)00043-1
10.1111/j.1467-9531.2007.00179.x
10.1046/j.1365-2869.7.s1.6.x
10.1038/nrn2979
10.1093/brain/awn262
10.1016/j.neuron.2010.04.020
10.1523/JNEUROSCI.3886-06.2007
10.1038/nrn2961
10.1006/exnr.2000.7509
10.1126/science.272.5269.1791
10.1152/jn.00739.2010
10.1016/j.neuroimage.2010.06.002
10.1073/pnas.0601417103
10.1186/1471-2202-10-55
10.1097/WCO.0b013e32832d93dd
10.1016/j.clinph.2010.05.004
10.1016/j.neuroimage.2009.10.003
10.1073/pnas.98.2.676
10.1196/annals.1440.011
10.1016/j.clinph.2004.04.029
10.1038/35094500
10.1523/JNEUROSCI.5730-10.2011
10.1111/j.2517-6161.1995.tb02031.x
10.1093/acprof:oso/9780195050387.001.0001
10.1002/hbm.20346
10.1186/1471-2202-10-101
10.1111/j.1528-1167.2010.02938.x
10.1016/j.neuron.2009.08.037
10.1103/PhysRevE.74.031916
10.2741/3246
10.1002/hbm.21030
10.1006/nimg.1997.0260
10.1093/acprof:oso/9780199206650.003.0001
10.1016/j.neuroimage.2011.07.049
10.1016/j.neuroimage.2009.10.049
10.1007/s10548-008-0062-5
10.1146/annurev.neuro.21.1.149
10.1016/0306-4522(94)90592-4
10.1038/35067550
10.1371/journal.pone.0010839
10.1038/nrn2201
10.1523/JNEUROSCI.1296-11.2011
10.1016/j.clinph.2006.10.021
10.1016/j.tics.2009.04.004
10.1016/S0306-4522(97)00692-1
10.1073/pnas.0135058100
10.1142/S0129065707001019
10.1016/j.neuron.2010.08.017
ContentType Journal Article
Copyright Copyright © 2012 the authors 0270-6474/12/322703-11$15.00/0 2012
Copyright_xml – notice: Copyright © 2012 the authors 0270-6474/12/322703-11$15.00/0 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.5669-11.2012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 2713
ExternalDocumentID PMC3361717
22357854
10_1523_JNEUROSCI_5669_11_2012
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R56 NS062092
– fundername: NINDS NIH HHS
  grantid: R01 NS062092
– fundername: NINDS NIH HHS
  grantid: NS062092
– fundername: NINDS NIH HHS
  grantid: K12 NS066225
– fundername: NINDS NIH HHS
  grantid: R01 NS072023
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c413t-52f0edb9a484e52f25211afdca63c94ac1e8e755cc8281ae7cf53a68c08135303
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:29:20 EDT 2025
Fri Jul 11 09:12:20 EDT 2025
Sat May 31 02:13:52 EDT 2025
Tue Jul 01 03:46:48 EDT 2025
Thu Apr 24 22:50:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-52f0edb9a484e52f25211afdca63c94ac1e8e755cc8281ae7cf53a68c08135303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: C.J.C., M.A.K., and S.S.C. designed research; C.J.C., M.T.B., and L.W. performed research; C.J.C., M.A.K., J.P., M.B.W., and S.S.C. contributed unpublished reagents/analytic tools; C.J.C. analyzed data; C.J.C., M.A.K., and S.S.C. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/32/8/2703.full.pdf
PMID 22357854
PQID 923576063
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3361717
proquest_miscellaneous_923576063
pubmed_primary_22357854
crossref_primary_10_1523_JNEUROSCI_5669_11_2012
crossref_citationtrail_10_1523_JNEUROSCI_5669_11_2012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-22
2012-Feb-22
20120222
PublicationDateYYYYMMDD 2012-02-22
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2012
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041303550689000_32.8.2703.1
2023041303550689000_32.8.2703.2
2023041303550689000_32.8.2703.3
2023041303550689000_32.8.2703.4
2023041303550689000_32.8.2703.5
2023041303550689000_32.8.2703.6
Silber (2023041303550689000_32.8.2703.63) 2007; 3
2023041303550689000_32.8.2703.62
2023041303550689000_32.8.2703.8
2023041303550689000_32.8.2703.61
2023041303550689000_32.8.2703.9
2023041303550689000_32.8.2703.60
Benjamini (2023041303550689000_32.8.2703.7) 1995; 57
2023041303550689000_32.8.2703.22
2023041303550689000_32.8.2703.66
2023041303550689000_32.8.2703.21
2023041303550689000_32.8.2703.65
2023041303550689000_32.8.2703.20
2023041303550689000_32.8.2703.64
2023041303550689000_32.8.2703.15
2023041303550689000_32.8.2703.59
2023041303550689000_32.8.2703.14
2023041303550689000_32.8.2703.58
2023041303550689000_32.8.2703.13
2023041303550689000_32.8.2703.57
2023041303550689000_32.8.2703.12
2023041303550689000_32.8.2703.56
2023041303550689000_32.8.2703.19
2023041303550689000_32.8.2703.18
2023041303550689000_32.8.2703.17
2023041303550689000_32.8.2703.16
Tallon-Baudry (2023041303550689000_32.8.2703.67) 2009; 14
2023041303550689000_32.8.2703.72
2023041303550689000_32.8.2703.71
2023041303550689000_32.8.2703.70
2023041303550689000_32.8.2703.33
2023041303550689000_32.8.2703.32
2023041303550689000_32.8.2703.31
2023041303550689000_32.8.2703.30
2023041303550689000_32.8.2703.26
2023041303550689000_32.8.2703.25
2023041303550689000_32.8.2703.69
2023041303550689000_32.8.2703.24
2023041303550689000_32.8.2703.68
2023041303550689000_32.8.2703.23
2023041303550689000_32.8.2703.29
2023041303550689000_32.8.2703.28
2023041303550689000_32.8.2703.27
2023041303550689000_32.8.2703.40
2023041303550689000_32.8.2703.43
2023041303550689000_32.8.2703.42
2023041303550689000_32.8.2703.41
2023041303550689000_32.8.2703.37
Lefta (2023041303550689000_32.8.2703.44) 2011; 96
2023041303550689000_32.8.2703.36
2023041303550689000_32.8.2703.35
2023041303550689000_32.8.2703.34
2023041303550689000_32.8.2703.39
2023041303550689000_32.8.2703.38
2023041303550689000_32.8.2703.51
2023041303550689000_32.8.2703.50
2023041303550689000_32.8.2703.11
2023041303550689000_32.8.2703.55
2023041303550689000_32.8.2703.10
2023041303550689000_32.8.2703.54
2023041303550689000_32.8.2703.53
2023041303550689000_32.8.2703.52
2023041303550689000_32.8.2703.48
2023041303550689000_32.8.2703.47
2023041303550689000_32.8.2703.46
2023041303550689000_32.8.2703.45
2023041303550689000_32.8.2703.49
References_xml – ident: 2023041303550689000_32.8.2703.69
  doi: 10.1073/pnas.97.26.14748
– ident: 2023041303550689000_32.8.2703.71
  doi: 10.1111/j.1749-6632.2010.05947.x
– ident: 2023041303550689000_32.8.2703.22
  doi: 10.1080/00207450490450046
– ident: 2023041303550689000_32.8.2703.5
  doi: 10.1016/j.tins.2008.06.004
– ident: 2023041303550689000_32.8.2703.72
  doi: 10.1007/s00234-009-0580-1
– ident: 2023041303550689000_32.8.2703.53
  doi: 10.1016/S0013-4694(97)00066-7
– ident: 2023041303550689000_32.8.2703.41
  doi: 10.1523/JNEUROSCI.6309-09.2010
– ident: 2023041303550689000_32.8.2703.12
  doi: 10.1038/nrn2575
– ident: 2023041303550689000_32.8.2703.38
  doi: 10.1016/S0167-8760(96)00057-8
– volume: 96
  start-page: 231
  year: 2011
  ident: 2023041303550689000_32.8.2703.44
  article-title: Circadian rhythms, the molecular clock, and skeletal muscle
  publication-title: Curr Top Dev Biol
  doi: 10.1016/B978-0-12-385940-2.00009-7
– volume: 3
  start-page: 121
  year: 2007
  ident: 2023041303550689000_32.8.2703.63
  article-title: The visual scoring of sleep in adults
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.26814
– ident: 2023041303550689000_32.8.2703.35
  doi: 10.1073/pnas.0811168106
– ident: 2023041303550689000_32.8.2703.34
  doi: 10.1523/JNEUROSCI.5618-09.2010
– ident: 2023041303550689000_32.8.2703.43
  doi: 10.1002/hbm.20600
– ident: 2023041303550689000_32.8.2703.45
  doi: 10.1002/hbm.20662
– ident: 2023041303550689000_32.8.2703.10
  doi: 10.1016/j.neuroimage.2010.02.052
– ident: 2023041303550689000_32.8.2703.24
  doi: 10.1016/j.neuropsychologia.2006.06.017
– ident: 2023041303550689000_32.8.2703.40
  doi: 10.1103/PhysRevE.79.061916
– ident: 2023041303550689000_32.8.2703.42
  doi: 10.1523/JNEUROSCI.2287-11.2011
– ident: 2023041303550689000_32.8.2703.29
  doi: 10.1016/S0306-4522(99)00343-7
– ident: 2023041303550689000_32.8.2703.64
  doi: 10.1016/S0896-6273(00)80821-1
– ident: 2023041303550689000_32.8.2703.70
  doi: 10.1148/radiol.11101708
– ident: 2023041303550689000_32.8.2703.8
  doi: 10.1002/mrm.1910340409
– ident: 2023041303550689000_32.8.2703.37
  doi: 10.1016/j.clinph.2010.08.009
– ident: 2023041303550689000_32.8.2703.54
  doi: 10.1016/S1388-2457(98)00043-1
– ident: 2023041303550689000_32.8.2703.19
  doi: 10.1111/j.1467-9531.2007.00179.x
– ident: 2023041303550689000_32.8.2703.1
  doi: 10.1046/j.1365-2869.7.s1.6.x
– ident: 2023041303550689000_32.8.2703.20
  doi: 10.1038/nrn2979
– ident: 2023041303550689000_32.8.2703.66
  doi: 10.1093/brain/awn262
– ident: 2023041303550689000_32.8.2703.32
  doi: 10.1016/j.neuron.2010.04.020
– ident: 2023041303550689000_32.8.2703.46
  doi: 10.1523/JNEUROSCI.3886-06.2007
– ident: 2023041303550689000_32.8.2703.16
  doi: 10.1038/nrn2961
– ident: 2023041303550689000_32.8.2703.14
  doi: 10.1006/exnr.2000.7509
– ident: 2023041303550689000_32.8.2703.51
  doi: 10.1126/science.272.5269.1791
– ident: 2023041303550689000_32.8.2703.27
  doi: 10.1152/jn.00739.2010
– ident: 2023041303550689000_32.8.2703.33
  doi: 10.1016/j.neuroimage.2010.06.002
– ident: 2023041303550689000_32.8.2703.15
  doi: 10.1073/pnas.0601417103
– ident: 2023041303550689000_32.8.2703.62
  doi: 10.1186/1471-2202-10-55
– ident: 2023041303550689000_32.8.2703.6
  doi: 10.1097/WCO.0b013e32832d93dd
– ident: 2023041303550689000_32.8.2703.36
  doi: 10.1016/j.clinph.2010.05.004
– ident: 2023041303550689000_32.8.2703.61
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: 2023041303550689000_32.8.2703.60
  doi: 10.1073/pnas.98.2.676
– ident: 2023041303550689000_32.8.2703.11
  doi: 10.1196/annals.1440.011
– ident: 2023041303550689000_32.8.2703.50
  doi: 10.1016/j.clinph.2004.04.029
– ident: 2023041303550689000_32.8.2703.30
  doi: 10.1038/35094500
– ident: 2023041303550689000_32.8.2703.39
  doi: 10.1523/JNEUROSCI.5730-10.2011
– volume: 57
  start-page: 289
  year: 1995
  ident: 2023041303550689000_32.8.2703.7
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Series B Stat Methods
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2023041303550689000_32.8.2703.52
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– ident: 2023041303550689000_32.8.2703.65
  doi: 10.1002/hbm.20346
– ident: 2023041303550689000_32.8.2703.17
  doi: 10.1186/1471-2202-10-101
– ident: 2023041303550689000_32.8.2703.48
  doi: 10.1111/j.1528-1167.2010.02938.x
– ident: 2023041303550689000_32.8.2703.47
  doi: 10.1016/j.neuron.2009.08.037
– ident: 2023041303550689000_32.8.2703.3
  doi: 10.1103/PhysRevE.74.031916
– volume: 14
  start-page: 321
  year: 2009
  ident: 2023041303550689000_32.8.2703.67
  article-title: The roles of gamma-band oscillatory synchrony in human visual cognition
  publication-title: Front Biosci
  doi: 10.2741/3246
– ident: 2023041303550689000_32.8.2703.9
  doi: 10.1002/hbm.21030
– ident: 2023041303550689000_32.8.2703.25
  doi: 10.1006/nimg.1997.0260
– ident: 2023041303550689000_32.8.2703.49
  doi: 10.1093/acprof:oso/9780199206650.003.0001
– ident: 2023041303550689000_32.8.2703.57
  doi: 10.1016/j.neuroimage.2011.07.049
– ident: 2023041303550689000_32.8.2703.58
  doi: 10.1016/j.neuroimage.2009.10.049
– ident: 2023041303550689000_32.8.2703.56
  doi: 10.1007/s10548-008-0062-5
– ident: 2023041303550689000_32.8.2703.13
  doi: 10.1146/annurev.neuro.21.1.149
– ident: 2023041303550689000_32.8.2703.26
  doi: 10.1016/0306-4522(94)90592-4
– ident: 2023041303550689000_32.8.2703.68
  doi: 10.1038/35067550
– ident: 2023041303550689000_32.8.2703.18
  doi: 10.1371/journal.pone.0010839
– ident: 2023041303550689000_32.8.2703.23
  doi: 10.1038/nrn2201
– ident: 2023041303550689000_32.8.2703.4
  doi: 10.1523/JNEUROSCI.1296-11.2011
– ident: 2023041303550689000_32.8.2703.21
  doi: 10.1016/j.clinph.2006.10.021
– ident: 2023041303550689000_32.8.2703.31
  doi: 10.1016/j.tics.2009.04.004
– ident: 2023041303550689000_32.8.2703.2
  doi: 10.1016/S0306-4522(97)00692-1
– ident: 2023041303550689000_32.8.2703.28
  doi: 10.1073/pnas.0135058100
– ident: 2023041303550689000_32.8.2703.55
  doi: 10.1142/S0129065707001019
– ident: 2023041303550689000_32.8.2703.59
  doi: 10.1016/j.neuron.2010.08.017
SSID ssj0007017
Score 2.4385877
Snippet Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2703
SubjectTerms Adult
Analysis of Variance
Brain - physiology
Brain Mapping
Brain Waves - physiology
Computer Simulation
Consciousness
Electroencephalography
Electrooculography
Female
Humans
Longitudinal Studies
Male
Models, Neurological
Nerve Net - physiology
Neural Pathways - physiology
Numerical Analysis, Computer-Assisted
Photic Stimulation
Title Emergence of Stable Functional Networks in Long-Term Human Electroencephalography
URI https://www.ncbi.nlm.nih.gov/pubmed/22357854
https://www.proquest.com/docview/923576063
https://pubmed.ncbi.nlm.nih.gov/PMC3361717
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFDcZH-ZIfEC_IW-LEcfI4VZ3GNgoTrdS34LgOHRrJtDUP8Ndz5zhfrNKAl6h1k7j1_XK9O__ujpC3gNskUzGypwRnIZeaxZEwTGarVZjFufZtUtjHWXS8CE-WYjkafe2xlqpNtq9_bc0r-R-pwhjIFbNk_0Gy7U1hAF6DfOEIEobjX8l46nInrd8PZh5mQeEflYvvFTXF2zJeL8viG0M17LryufY3ePHVWg0KV3_vANQzV3uFL1ssTNbVIIuw22M6Rc7XdZMM1AVMP8OpSJjFgH1N0u0SKjC8YlsMv8cm5I697QISyOzgjPO-DuV206aGjNky5hRvF9isGuKu06LS1j24rd6FLTNxMkOW45fJh32wRRPmo5vvuNiDetqzT-nR4uwsnU-X83vkPgdHAjXh6XlXT156tidz-_VcDjnMc7B9lqH5cssn-ZNa27NV5rvkoZMaPawR84iMTPGY7B3Cspc_ftJ31NJ-7X7KHjlvQUTLnNYgoh2IaAMielHQFkTUgohuB9ETsjiazifHzPXZYBpMmA0TPPfMKktUGIcG3nAw6XyVr7SKAp2ESvsmNlIIrcE995WROheBimIN5mQgwAZ6SnaKsjDPCYXfbfI8MmAFqtCDB93kUossyLLEk9IzYyKa5Uu1K0KPvVAuU3RGYdnTdtlTXHZwUFNc9jE5aK-7qsuw3HkFbaSTgsbEbTBVmLK6SROs8AR-ezAmz2phtbfkdfGncEzkQIztCViMffhJcbG2RdmDAHwBX764e9qX5EH32LwiO5vryrwGy3aTvbHg_A2N2aY6
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+stable+functional+networks+in+long-term+human+electroencephalography&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chu%2C+Catherine+J&rft.au=Kramer%2C+Mark+A&rft.au=Pathmanathan%2C+Jay&rft.au=Bianchi%2C+Matt+T&rft.date=2012-02-22&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=32&rft.issue=8&rft.spage=2703&rft_id=info:doi/10.1523%2FJNEUROSCI.5669-11.2012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon