Emergence of Stable Functional Networks in Long-Term Human Electroencephalography
Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static an...
Saved in:
Published in | The Journal of neuroscience Vol. 32; no. 8; pp. 2703 - 2713 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
22.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network “core.” Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner. |
---|---|
AbstractList | Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network “core.” Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner. Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network "core." Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner.Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous system physiology. Functional networks reflect activity-based coupling between brain regions that may be constrained by relatively static anatomical connections, yet these networks appear to support tremendously dynamic behaviors. Within this growing field, the stability and temporal characteristics of functional connectivity brain networks have not been well characterized. We evaluated the temporal stability of spontaneous functional connectivity networks derived from multi-day scalp encephalogram (EEG) recordings in five healthy human subjects. Topological stability and graph characteristics of networks derived from averaged data epochs ranging from 1 s to multiple hours across different states of consciousness were compared. We show that, although functional networks are highly variable on the order of seconds, stable network templates emerge after as little as ∼100 s of recording and persist across different states and frequency bands (albeit with slightly different characteristics in different states and frequencies). Within these network templates, the most common edges are markedly consistent, constituting a network "core." Although average network topologies persist across time, measures of global network connectivity, density and clustering coefficient, are state and frequency specific, with sparsest but most highly clustered networks seen during sleep and in the gamma frequency band. These findings support the notion that a core functional organization underlies spontaneous cortical processing and may provide a reference template on which unstable, transient, and rapidly adaptive long-range assemblies are overlaid in a frequency-dependent manner. |
Author | Bianchi, Matt T. Cash, Sydney S. Westover, M. Brandon Kramer, Mark A. Chu, Catherine J. Wizon, Lauren Pathmanathan, Jay |
Author_xml | – sequence: 1 givenname: Catherine J. surname: Chu fullname: Chu, Catherine J. – sequence: 2 givenname: Mark A. surname: Kramer fullname: Kramer, Mark A. – sequence: 3 givenname: Jay surname: Pathmanathan fullname: Pathmanathan, Jay – sequence: 4 givenname: Matt T. surname: Bianchi fullname: Bianchi, Matt T. – sequence: 5 givenname: M. Brandon surname: Westover fullname: Westover, M. Brandon – sequence: 6 givenname: Lauren surname: Wizon fullname: Wizon, Lauren – sequence: 7 givenname: Sydney S. surname: Cash fullname: Cash, Sydney S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22357854$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUdtq3DAQFSWh2aT9heC3PnmrkSzJhlIIy-bGkpDbs9Bqx7tuZWkj2Qn5-9okWdq-5GkY5lyGcw7Jng8eCTkGOgXB-PfLq_nD7fXd7GIqpKxygCmjwD6RyXCtclZQ2CMTyhTNZaGKA3KY0i9KqaKgPpMDxrhQpSgm5GbeYlyjt5iFOrvrzNJhdtp72zXBG5ddYfcc4u-UNT5bBL_O7zG22XnfGp_NHdouhpG83RgX1tFsNy9fyH5tXMKvb_OIPJzO72fn-eL67GJ2sshtAbzLBasprpaVKcoCh4UJBmDqlTWS26owFrBEJYS1JSvBoLK14EaWlpbABaf8iPx81d32yxZXFn0XjdPb2LQmvuhgGv3vxTcbvQ5PmnMJCtQg8O1NIIbHHlOn2yZZdM54DH3S1RiSpJIPyOO_rXYe7zEOAPkKsDGkFLHeQYDqsS-960uPfWkAPfY1EH_8R7RNZ8bsh5cb9xH9D7gUnkU |
CitedBy_id | crossref_primary_10_1038_s41467_024_52744_1 crossref_primary_10_1016_j_clinph_2014_11_018 crossref_primary_10_1371_journal_pone_0116522 crossref_primary_10_1109_TNSRE_2020_3005950 crossref_primary_10_1016_j_clinph_2019_05_027 crossref_primary_10_1162_netn_a_00046 crossref_primary_10_1371_journal_pcbi_1003171 crossref_primary_10_3389_fneur_2022_960454 crossref_primary_10_1016_j_nic_2020_09_004 crossref_primary_10_1097_j_pain_0000000000002565 crossref_primary_10_1007_s10548_020_00777_2 crossref_primary_10_1162_jocn_a_02136 crossref_primary_10_3389_fneur_2017_00456 crossref_primary_10_1016_j_conb_2013_10_007 crossref_primary_10_1007_s00221_016_4737_y crossref_primary_10_1177_1550059413506001 crossref_primary_10_1016_j_neuroimage_2014_12_033 crossref_primary_10_1016_j_neuroimage_2017_06_029 crossref_primary_10_1371_journal_pone_0084612 crossref_primary_10_1016_j_cub_2019_07_014 crossref_primary_10_1088_1741_2560_13_3_036015 crossref_primary_10_1089_brain_2013_0192 crossref_primary_10_1103_PhysRevE_96_062410 crossref_primary_10_3389_fnhum_2022_848026 crossref_primary_10_1038_ncomms14896 crossref_primary_10_1016_j_neuroimage_2021_118094 crossref_primary_10_1111_psyp_12600 crossref_primary_10_1016_j_neuropharm_2014_08_015 crossref_primary_10_1162_netn_a_00267 crossref_primary_10_1186_s12883_015_0355_8 crossref_primary_10_1038_s41467_020_16285_7 crossref_primary_10_1093_brain_awy187 crossref_primary_10_3389_fnhum_2017_00441 crossref_primary_10_1016_j_neuroimage_2021_118497 crossref_primary_10_1016_j_neuroimage_2017_02_031 crossref_primary_10_1016_j_bpsc_2021_10_017 crossref_primary_10_1093_braincomms_fcae165 crossref_primary_10_1007_s10867_020_09543_8 crossref_primary_10_1016_j_eplepsyres_2021_106704 crossref_primary_10_3389_fnhum_2015_00478 crossref_primary_10_1016_j_neuroimage_2014_01_004 crossref_primary_10_1016_j_neuroscience_2017_12_004 crossref_primary_10_1016_j_clinph_2013_11_028 crossref_primary_10_1089_brain_2018_0596 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_1098_rstb_2014_0173 crossref_primary_10_1016_j_nicl_2019_101908 crossref_primary_10_1093_brain_awy214 crossref_primary_10_3389_fncom_2020_00045 crossref_primary_10_1016_j_jneumeth_2013_01_007 crossref_primary_10_1016_j_clinph_2021_06_001 crossref_primary_10_1002_hbm_24784 crossref_primary_10_1109_TCDS_2023_3285771 crossref_primary_10_3389_fneur_2020_00218 crossref_primary_10_3389_fnhum_2014_01008 crossref_primary_10_1038_s41598_021_81884_3 crossref_primary_10_1002_brb3_1237 crossref_primary_10_1038_s41598_018_21764_5 crossref_primary_10_3389_fneur_2020_563847 crossref_primary_10_1007_s10548_020_00753_w crossref_primary_10_1089_neu_2017_5574 crossref_primary_10_1186_s13229_018_0214_8 crossref_primary_10_1016_j_conb_2014_11_005 crossref_primary_10_1038_s41551_019_0404_5 crossref_primary_10_1016_j_neubiorev_2014_12_010 crossref_primary_10_1016_j_neuroimage_2018_08_001 crossref_primary_10_1016_j_neubiorev_2014_12_014 crossref_primary_10_1002_hbm_25462 crossref_primary_10_1364_BOE_6_002337 crossref_primary_10_1002_hbm_24530 crossref_primary_10_1162_netn_a_00114 crossref_primary_10_1371_journal_pone_0085900 crossref_primary_10_1016_j_neulet_2018_06_034 crossref_primary_10_1162_netn_a_00352 crossref_primary_10_3390_brainsci11101266 crossref_primary_10_3390_s150819181 crossref_primary_10_1016_j_nicl_2024_103703 crossref_primary_10_1097_j_pain_0000000000001666 crossref_primary_10_1016_j_conb_2012_11_015 crossref_primary_10_1089_brain_2021_0190 crossref_primary_10_1093_brain_aww337 crossref_primary_10_1038_srep22074 crossref_primary_10_3389_fnsys_2024_1426986 crossref_primary_10_1016_j_eplepsyres_2019_106255 crossref_primary_10_1016_j_neuroimage_2015_12_001 crossref_primary_10_1002_aur_2219 crossref_primary_10_1016_j_neuroscience_2021_11_045 crossref_primary_10_1038_s41467_018_06346_3 crossref_primary_10_3389_fnetp_2023_1237004 crossref_primary_10_1371_journal_pone_0212754 crossref_primary_10_3389_fnhum_2017_00490 crossref_primary_10_1016_j_clinph_2018_07_017 crossref_primary_10_1016_j_clinph_2024_12_028 crossref_primary_10_1016_j_physd_2013_06_009 crossref_primary_10_1007_s10548_020_00772_7 crossref_primary_10_1162_imag_a_00026 crossref_primary_10_1371_journal_pcbi_1009252 crossref_primary_10_1152_jn_00513_2016 crossref_primary_10_1016_j_jneumeth_2018_06_010 crossref_primary_10_3389_fnhum_2025_1481760 crossref_primary_10_1111_epi_16686 crossref_primary_10_1111_epi_16284 crossref_primary_10_1038_s41562_023_01529_5 crossref_primary_10_1038_s42003_021_01700_6 crossref_primary_10_3389_fncom_2016_00108 crossref_primary_10_1088_1741_2552_ab7ad3 crossref_primary_10_31887_DCNS_2013_15_3_osporns crossref_primary_10_1016_j_neuron_2014_08_016 crossref_primary_10_3389_fnhum_2020_576241 crossref_primary_10_3389_fnins_2017_00392 crossref_primary_10_1523_JNEUROSCI_2155_20_2020 crossref_primary_10_1007_s11571_021_09689_8 crossref_primary_10_1016_j_jad_2021_01_047 crossref_primary_10_1016_j_neuroimage_2021_118466 crossref_primary_10_1038_s41583_018_0038_8 crossref_primary_10_1093_brain_awaa069 crossref_primary_10_1371_journal_pone_0072425 crossref_primary_10_1093_nc_niab023 crossref_primary_10_1016_j_neubiorev_2025_106017 crossref_primary_10_1212_WNL_0000000000200386 crossref_primary_10_3390_electronics10101158 crossref_primary_10_1016_j_neubiorev_2021_07_027 crossref_primary_10_3389_fnins_2024_1421010 |
Cites_doi | 10.1073/pnas.97.26.14748 10.1111/j.1749-6632.2010.05947.x 10.1080/00207450490450046 10.1016/j.tins.2008.06.004 10.1007/s00234-009-0580-1 10.1016/S0013-4694(97)00066-7 10.1523/JNEUROSCI.6309-09.2010 10.1038/nrn2575 10.1016/S0167-8760(96)00057-8 10.1016/B978-0-12-385940-2.00009-7 10.5664/jcsm.26814 10.1073/pnas.0811168106 10.1523/JNEUROSCI.5618-09.2010 10.1002/hbm.20600 10.1002/hbm.20662 10.1016/j.neuroimage.2010.02.052 10.1016/j.neuropsychologia.2006.06.017 10.1103/PhysRevE.79.061916 10.1523/JNEUROSCI.2287-11.2011 10.1016/S0306-4522(99)00343-7 10.1016/S0896-6273(00)80821-1 10.1148/radiol.11101708 10.1002/mrm.1910340409 10.1016/j.clinph.2010.08.009 10.1016/S1388-2457(98)00043-1 10.1111/j.1467-9531.2007.00179.x 10.1046/j.1365-2869.7.s1.6.x 10.1038/nrn2979 10.1093/brain/awn262 10.1016/j.neuron.2010.04.020 10.1523/JNEUROSCI.3886-06.2007 10.1038/nrn2961 10.1006/exnr.2000.7509 10.1126/science.272.5269.1791 10.1152/jn.00739.2010 10.1016/j.neuroimage.2010.06.002 10.1073/pnas.0601417103 10.1186/1471-2202-10-55 10.1097/WCO.0b013e32832d93dd 10.1016/j.clinph.2010.05.004 10.1016/j.neuroimage.2009.10.003 10.1073/pnas.98.2.676 10.1196/annals.1440.011 10.1016/j.clinph.2004.04.029 10.1038/35094500 10.1523/JNEUROSCI.5730-10.2011 10.1111/j.2517-6161.1995.tb02031.x 10.1093/acprof:oso/9780195050387.001.0001 10.1002/hbm.20346 10.1186/1471-2202-10-101 10.1111/j.1528-1167.2010.02938.x 10.1016/j.neuron.2009.08.037 10.1103/PhysRevE.74.031916 10.2741/3246 10.1002/hbm.21030 10.1006/nimg.1997.0260 10.1093/acprof:oso/9780199206650.003.0001 10.1016/j.neuroimage.2011.07.049 10.1016/j.neuroimage.2009.10.049 10.1007/s10548-008-0062-5 10.1146/annurev.neuro.21.1.149 10.1016/0306-4522(94)90592-4 10.1038/35067550 10.1371/journal.pone.0010839 10.1038/nrn2201 10.1523/JNEUROSCI.1296-11.2011 10.1016/j.clinph.2006.10.021 10.1016/j.tics.2009.04.004 10.1016/S0306-4522(97)00692-1 10.1073/pnas.0135058100 10.1142/S0129065707001019 10.1016/j.neuron.2010.08.017 |
ContentType | Journal Article |
Copyright | Copyright © 2012 the authors 0270-6474/12/322703-11$15.00/0 2012 |
Copyright_xml | – notice: Copyright © 2012 the authors 0270-6474/12/322703-11$15.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.5669-11.2012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 2713 |
ExternalDocumentID | PMC3361717 22357854 10_1523_JNEUROSCI_5669_11_2012 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R56 NS062092 – fundername: NINDS NIH HHS grantid: R01 NS062092 – fundername: NINDS NIH HHS grantid: NS062092 – fundername: NINDS NIH HHS grantid: K12 NS066225 – fundername: NINDS NIH HHS grantid: R01 NS072023 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c413t-52f0edb9a484e52f25211afdca63c94ac1e8e755cc8281ae7cf53a68c08135303 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:29:20 EDT 2025 Fri Jul 11 09:12:20 EDT 2025 Sat May 31 02:13:52 EDT 2025 Tue Jul 01 03:46:48 EDT 2025 Thu Apr 24 22:50:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-52f0edb9a484e52f25211afdca63c94ac1e8e755cc8281ae7cf53a68c08135303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: C.J.C., M.A.K., and S.S.C. designed research; C.J.C., M.T.B., and L.W. performed research; C.J.C., M.A.K., J.P., M.B.W., and S.S.C. contributed unpublished reagents/analytic tools; C.J.C. analyzed data; C.J.C., M.A.K., and S.S.C. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/32/8/2703.full.pdf |
PMID | 22357854 |
PQID | 923576063 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3361717 proquest_miscellaneous_923576063 pubmed_primary_22357854 crossref_primary_10_1523_JNEUROSCI_5669_11_2012 crossref_citationtrail_10_1523_JNEUROSCI_5669_11_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-22 2012-Feb-22 20120222 |
PublicationDateYYYYMMDD | 2012-02-22 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2012 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041303550689000_32.8.2703.1 2023041303550689000_32.8.2703.2 2023041303550689000_32.8.2703.3 2023041303550689000_32.8.2703.4 2023041303550689000_32.8.2703.5 2023041303550689000_32.8.2703.6 Silber (2023041303550689000_32.8.2703.63) 2007; 3 2023041303550689000_32.8.2703.62 2023041303550689000_32.8.2703.8 2023041303550689000_32.8.2703.61 2023041303550689000_32.8.2703.9 2023041303550689000_32.8.2703.60 Benjamini (2023041303550689000_32.8.2703.7) 1995; 57 2023041303550689000_32.8.2703.22 2023041303550689000_32.8.2703.66 2023041303550689000_32.8.2703.21 2023041303550689000_32.8.2703.65 2023041303550689000_32.8.2703.20 2023041303550689000_32.8.2703.64 2023041303550689000_32.8.2703.15 2023041303550689000_32.8.2703.59 2023041303550689000_32.8.2703.14 2023041303550689000_32.8.2703.58 2023041303550689000_32.8.2703.13 2023041303550689000_32.8.2703.57 2023041303550689000_32.8.2703.12 2023041303550689000_32.8.2703.56 2023041303550689000_32.8.2703.19 2023041303550689000_32.8.2703.18 2023041303550689000_32.8.2703.17 2023041303550689000_32.8.2703.16 Tallon-Baudry (2023041303550689000_32.8.2703.67) 2009; 14 2023041303550689000_32.8.2703.72 2023041303550689000_32.8.2703.71 2023041303550689000_32.8.2703.70 2023041303550689000_32.8.2703.33 2023041303550689000_32.8.2703.32 2023041303550689000_32.8.2703.31 2023041303550689000_32.8.2703.30 2023041303550689000_32.8.2703.26 2023041303550689000_32.8.2703.25 2023041303550689000_32.8.2703.69 2023041303550689000_32.8.2703.24 2023041303550689000_32.8.2703.68 2023041303550689000_32.8.2703.23 2023041303550689000_32.8.2703.29 2023041303550689000_32.8.2703.28 2023041303550689000_32.8.2703.27 2023041303550689000_32.8.2703.40 2023041303550689000_32.8.2703.43 2023041303550689000_32.8.2703.42 2023041303550689000_32.8.2703.41 2023041303550689000_32.8.2703.37 Lefta (2023041303550689000_32.8.2703.44) 2011; 96 2023041303550689000_32.8.2703.36 2023041303550689000_32.8.2703.35 2023041303550689000_32.8.2703.34 2023041303550689000_32.8.2703.39 2023041303550689000_32.8.2703.38 2023041303550689000_32.8.2703.51 2023041303550689000_32.8.2703.50 2023041303550689000_32.8.2703.11 2023041303550689000_32.8.2703.55 2023041303550689000_32.8.2703.10 2023041303550689000_32.8.2703.54 2023041303550689000_32.8.2703.53 2023041303550689000_32.8.2703.52 2023041303550689000_32.8.2703.48 2023041303550689000_32.8.2703.47 2023041303550689000_32.8.2703.46 2023041303550689000_32.8.2703.45 2023041303550689000_32.8.2703.49 |
References_xml | – ident: 2023041303550689000_32.8.2703.69 doi: 10.1073/pnas.97.26.14748 – ident: 2023041303550689000_32.8.2703.71 doi: 10.1111/j.1749-6632.2010.05947.x – ident: 2023041303550689000_32.8.2703.22 doi: 10.1080/00207450490450046 – ident: 2023041303550689000_32.8.2703.5 doi: 10.1016/j.tins.2008.06.004 – ident: 2023041303550689000_32.8.2703.72 doi: 10.1007/s00234-009-0580-1 – ident: 2023041303550689000_32.8.2703.53 doi: 10.1016/S0013-4694(97)00066-7 – ident: 2023041303550689000_32.8.2703.41 doi: 10.1523/JNEUROSCI.6309-09.2010 – ident: 2023041303550689000_32.8.2703.12 doi: 10.1038/nrn2575 – ident: 2023041303550689000_32.8.2703.38 doi: 10.1016/S0167-8760(96)00057-8 – volume: 96 start-page: 231 year: 2011 ident: 2023041303550689000_32.8.2703.44 article-title: Circadian rhythms, the molecular clock, and skeletal muscle publication-title: Curr Top Dev Biol doi: 10.1016/B978-0-12-385940-2.00009-7 – volume: 3 start-page: 121 year: 2007 ident: 2023041303550689000_32.8.2703.63 article-title: The visual scoring of sleep in adults publication-title: J Clin Sleep Med doi: 10.5664/jcsm.26814 – ident: 2023041303550689000_32.8.2703.35 doi: 10.1073/pnas.0811168106 – ident: 2023041303550689000_32.8.2703.34 doi: 10.1523/JNEUROSCI.5618-09.2010 – ident: 2023041303550689000_32.8.2703.43 doi: 10.1002/hbm.20600 – ident: 2023041303550689000_32.8.2703.45 doi: 10.1002/hbm.20662 – ident: 2023041303550689000_32.8.2703.10 doi: 10.1016/j.neuroimage.2010.02.052 – ident: 2023041303550689000_32.8.2703.24 doi: 10.1016/j.neuropsychologia.2006.06.017 – ident: 2023041303550689000_32.8.2703.40 doi: 10.1103/PhysRevE.79.061916 – ident: 2023041303550689000_32.8.2703.42 doi: 10.1523/JNEUROSCI.2287-11.2011 – ident: 2023041303550689000_32.8.2703.29 doi: 10.1016/S0306-4522(99)00343-7 – ident: 2023041303550689000_32.8.2703.64 doi: 10.1016/S0896-6273(00)80821-1 – ident: 2023041303550689000_32.8.2703.70 doi: 10.1148/radiol.11101708 – ident: 2023041303550689000_32.8.2703.8 doi: 10.1002/mrm.1910340409 – ident: 2023041303550689000_32.8.2703.37 doi: 10.1016/j.clinph.2010.08.009 – ident: 2023041303550689000_32.8.2703.54 doi: 10.1016/S1388-2457(98)00043-1 – ident: 2023041303550689000_32.8.2703.19 doi: 10.1111/j.1467-9531.2007.00179.x – ident: 2023041303550689000_32.8.2703.1 doi: 10.1046/j.1365-2869.7.s1.6.x – ident: 2023041303550689000_32.8.2703.20 doi: 10.1038/nrn2979 – ident: 2023041303550689000_32.8.2703.66 doi: 10.1093/brain/awn262 – ident: 2023041303550689000_32.8.2703.32 doi: 10.1016/j.neuron.2010.04.020 – ident: 2023041303550689000_32.8.2703.46 doi: 10.1523/JNEUROSCI.3886-06.2007 – ident: 2023041303550689000_32.8.2703.16 doi: 10.1038/nrn2961 – ident: 2023041303550689000_32.8.2703.14 doi: 10.1006/exnr.2000.7509 – ident: 2023041303550689000_32.8.2703.51 doi: 10.1126/science.272.5269.1791 – ident: 2023041303550689000_32.8.2703.27 doi: 10.1152/jn.00739.2010 – ident: 2023041303550689000_32.8.2703.33 doi: 10.1016/j.neuroimage.2010.06.002 – ident: 2023041303550689000_32.8.2703.15 doi: 10.1073/pnas.0601417103 – ident: 2023041303550689000_32.8.2703.62 doi: 10.1186/1471-2202-10-55 – ident: 2023041303550689000_32.8.2703.6 doi: 10.1097/WCO.0b013e32832d93dd – ident: 2023041303550689000_32.8.2703.36 doi: 10.1016/j.clinph.2010.05.004 – ident: 2023041303550689000_32.8.2703.61 doi: 10.1016/j.neuroimage.2009.10.003 – ident: 2023041303550689000_32.8.2703.60 doi: 10.1073/pnas.98.2.676 – ident: 2023041303550689000_32.8.2703.11 doi: 10.1196/annals.1440.011 – ident: 2023041303550689000_32.8.2703.50 doi: 10.1016/j.clinph.2004.04.029 – ident: 2023041303550689000_32.8.2703.30 doi: 10.1038/35094500 – ident: 2023041303550689000_32.8.2703.39 doi: 10.1523/JNEUROSCI.5730-10.2011 – volume: 57 start-page: 289 year: 1995 ident: 2023041303550689000_32.8.2703.7 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Series B Stat Methods doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 2023041303550689000_32.8.2703.52 doi: 10.1093/acprof:oso/9780195050387.001.0001 – ident: 2023041303550689000_32.8.2703.65 doi: 10.1002/hbm.20346 – ident: 2023041303550689000_32.8.2703.17 doi: 10.1186/1471-2202-10-101 – ident: 2023041303550689000_32.8.2703.48 doi: 10.1111/j.1528-1167.2010.02938.x – ident: 2023041303550689000_32.8.2703.47 doi: 10.1016/j.neuron.2009.08.037 – ident: 2023041303550689000_32.8.2703.3 doi: 10.1103/PhysRevE.74.031916 – volume: 14 start-page: 321 year: 2009 ident: 2023041303550689000_32.8.2703.67 article-title: The roles of gamma-band oscillatory synchrony in human visual cognition publication-title: Front Biosci doi: 10.2741/3246 – ident: 2023041303550689000_32.8.2703.9 doi: 10.1002/hbm.21030 – ident: 2023041303550689000_32.8.2703.25 doi: 10.1006/nimg.1997.0260 – ident: 2023041303550689000_32.8.2703.49 doi: 10.1093/acprof:oso/9780199206650.003.0001 – ident: 2023041303550689000_32.8.2703.57 doi: 10.1016/j.neuroimage.2011.07.049 – ident: 2023041303550689000_32.8.2703.58 doi: 10.1016/j.neuroimage.2009.10.049 – ident: 2023041303550689000_32.8.2703.56 doi: 10.1007/s10548-008-0062-5 – ident: 2023041303550689000_32.8.2703.13 doi: 10.1146/annurev.neuro.21.1.149 – ident: 2023041303550689000_32.8.2703.26 doi: 10.1016/0306-4522(94)90592-4 – ident: 2023041303550689000_32.8.2703.68 doi: 10.1038/35067550 – ident: 2023041303550689000_32.8.2703.18 doi: 10.1371/journal.pone.0010839 – ident: 2023041303550689000_32.8.2703.23 doi: 10.1038/nrn2201 – ident: 2023041303550689000_32.8.2703.4 doi: 10.1523/JNEUROSCI.1296-11.2011 – ident: 2023041303550689000_32.8.2703.21 doi: 10.1016/j.clinph.2006.10.021 – ident: 2023041303550689000_32.8.2703.31 doi: 10.1016/j.tics.2009.04.004 – ident: 2023041303550689000_32.8.2703.2 doi: 10.1016/S0306-4522(97)00692-1 – ident: 2023041303550689000_32.8.2703.28 doi: 10.1073/pnas.0135058100 – ident: 2023041303550689000_32.8.2703.55 doi: 10.1142/S0129065707001019 – ident: 2023041303550689000_32.8.2703.59 doi: 10.1016/j.neuron.2010.08.017 |
SSID | ssj0007017 |
Score | 2.4385877 |
Snippet | Functional connectivity networks have become a central focus in neuroscience because they reveal key higher-dimensional features of normal and abnormal nervous... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2703 |
SubjectTerms | Adult Analysis of Variance Brain - physiology Brain Mapping Brain Waves - physiology Computer Simulation Consciousness Electroencephalography Electrooculography Female Humans Longitudinal Studies Male Models, Neurological Nerve Net - physiology Neural Pathways - physiology Numerical Analysis, Computer-Assisted Photic Stimulation |
Title | Emergence of Stable Functional Networks in Long-Term Human Electroencephalography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22357854 https://www.proquest.com/docview/923576063 https://pubmed.ncbi.nlm.nih.gov/PMC3361717 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFDcZH-ZIfEC_IW-LEcfI4VZ3GNgoTrdS34LgOHRrJtDUP8Ndz5zhfrNKAl6h1k7j1_XK9O__ujpC3gNskUzGypwRnIZeaxZEwTGarVZjFufZtUtjHWXS8CE-WYjkafe2xlqpNtq9_bc0r-R-pwhjIFbNk_0Gy7U1hAF6DfOEIEobjX8l46nInrd8PZh5mQeEflYvvFTXF2zJeL8viG0M17LryufY3ePHVWg0KV3_vANQzV3uFL1ssTNbVIIuw22M6Rc7XdZMM1AVMP8OpSJjFgH1N0u0SKjC8YlsMv8cm5I697QISyOzgjPO-DuV206aGjNky5hRvF9isGuKu06LS1j24rd6FLTNxMkOW45fJh32wRRPmo5vvuNiDetqzT-nR4uwsnU-X83vkPgdHAjXh6XlXT156tidz-_VcDjnMc7B9lqH5cssn-ZNa27NV5rvkoZMaPawR84iMTPGY7B3Cspc_ftJ31NJ-7X7KHjlvQUTLnNYgoh2IaAMielHQFkTUgohuB9ETsjiazifHzPXZYBpMmA0TPPfMKktUGIcG3nAw6XyVr7SKAp2ESvsmNlIIrcE995WROheBimIN5mQgwAZ6SnaKsjDPCYXfbfI8MmAFqtCDB93kUossyLLEk9IzYyKa5Uu1K0KPvVAuU3RGYdnTdtlTXHZwUFNc9jE5aK-7qsuw3HkFbaSTgsbEbTBVmLK6SROs8AR-ezAmz2phtbfkdfGncEzkQIztCViMffhJcbG2RdmDAHwBX764e9qX5EH32LwiO5vryrwGy3aTvbHg_A2N2aY6 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+stable+functional+networks+in+long-term+human+electroencephalography&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chu%2C+Catherine+J&rft.au=Kramer%2C+Mark+A&rft.au=Pathmanathan%2C+Jay&rft.au=Bianchi%2C+Matt+T&rft.date=2012-02-22&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=32&rft.issue=8&rft.spage=2703&rft_id=info:doi/10.1523%2FJNEUROSCI.5669-11.2012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |