Deep LAC: Deep localization, alignment and classification for fine-grained recognition

We propose a fine-grained recognition system that incorporates part localization, alignment, and classification in one deep neural network. This is a nontrivial process, as the input to the classification module should be functions that enable back-propagation in constructing the solver. Our major c...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1666 - 1674
Main Authors Di Lin, Xiaoyong Shen, Cewu Lu, Jiaya Jia
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a fine-grained recognition system that incorporates part localization, alignment, and classification in one deep neural network. This is a nontrivial process, as the input to the classification module should be functions that enable back-propagation in constructing the solver. Our major contribution is to propose a valve linkage function (VLF) for back-propagation chaining and form our deep localization, alignment and classification (LAC) system. The VLF can adaptively compromise the errors of classification and alignment when training the LAC model. It in turn helps update localization. The performance on fine-grained object data bears out the effectiveness of our LAC system.
AbstractList We propose a fine-grained recognition system that incorporates part localization, alignment, and classification in one deep neural network. This is a nontrivial process, as the input to the classification module should be functions that enable back-propagation in constructing the solver. Our major contribution is to propose a valve linkage function (VLF) for back-propagation chaining and form our deep localization, alignment and classification (LAC) system. The VLF can adaptively compromise the errors of classification and alignment when training the LAC model. It in turn helps update localization. The performance on fine-grained object data bears out the effectiveness of our LAC system.
Author Cewu Lu
Xiaoyong Shen
Jiaya Jia
Di Lin
Author_xml – sequence: 1
  surname: Di Lin
  fullname: Di Lin
  organization: Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  surname: Xiaoyong Shen
  fullname: Xiaoyong Shen
  organization: Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  surname: Cewu Lu
  fullname: Cewu Lu
  organization: Hong Kong Univ. of Sci. & Technol., Hong Kong, China
– sequence: 4
  surname: Jiaya Jia
  fullname: Jiaya Jia
  organization: Chinese Univ. of Hong Kong, Hong Kong, China
BookMark eNotkMtOwzAURI1UJNrSD0Bs_AEkXNvxi10VykOKBELQbeU415Gl1KmSbuDrCaWrGc3RzGIWZJb6hITcMMgZA3tfbt8_cg5M5ppbo7W8IAtWKC2UVQXMyJyBEpmyzF6R1TjGGgSAsZbDnGwfEQ-0WpcP9OS63rsu_rhj7NMdnWyb9piO1KWG-s5N7RD9idLQDzTEhFk7uEkaOqDv2xT_4DW5DK4bcXXWJfl62nyWL1n19vxarqvMF0wcs0IKWTMBPEBR64YZa5hqQs00R-n5lEhh6loaY6XUUlgtDXjnNTZc2QBiSW7_dyMi7g5D3Lvhe3e-QfwCMJBSNw
CitedBy_id crossref_primary_10_1007_s00521_022_07777_2
crossref_primary_10_1145_3231742
crossref_primary_10_1109_ACCESS_2019_2918274
crossref_primary_10_1109_ACCESS_2020_3039345
crossref_primary_10_1016_j_cviu_2019_102865
crossref_primary_10_1109_ACCESS_2020_3040857
crossref_primary_10_3390_s23083970
crossref_primary_10_1109_TPAMI_2017_2724029
crossref_primary_10_3390_app131810493
crossref_primary_10_1109_TIP_2017_2688133
crossref_primary_10_1109_TPAMI_2019_2933510
crossref_primary_10_1007_s11263_017_1048_0
crossref_primary_10_1109_ACCESS_2019_2947717
crossref_primary_10_1007_s11263_023_01760_7
crossref_primary_10_3390_sym10100479
crossref_primary_10_1007_s11063_020_10246_3
crossref_primary_10_1109_TVT_2019_2899972
crossref_primary_10_1109_TIP_2016_2599102
crossref_primary_10_1109_TMM_2017_2710803
crossref_primary_10_1016_j_procs_2018_05_144
crossref_primary_10_1016_j_cosrev_2021_100374
crossref_primary_10_1186_s41074_017_0033_4
crossref_primary_10_1007_s00371_024_03366_7
crossref_primary_10_1016_j_knosys_2021_106840
crossref_primary_10_1109_TCSVT_2021_3065693
crossref_primary_10_1117_1_JEI_33_3_033013
crossref_primary_10_3390_s24134127
crossref_primary_10_1109_LRA_2017_2667039
crossref_primary_10_1016_j_imavis_2023_104753
crossref_primary_10_1145_3446208
crossref_primary_10_1007_s11432_022_3586_y
crossref_primary_10_3390_app9020301
crossref_primary_10_1109_ACCESS_2021_3072623
crossref_primary_10_1109_ACCESS_2020_3030249
crossref_primary_10_1109_TCSVT_2023_3248791
crossref_primary_10_1002_int_22775
crossref_primary_10_1109_TCSVT_2020_2978115
crossref_primary_10_1088_1361_665X_aba540
crossref_primary_10_1109_TIP_2019_2921876
crossref_primary_10_1109_ACCESS_2019_2933169
crossref_primary_10_1109_TNNLS_2021_3126046
crossref_primary_10_3390_e20050341
crossref_primary_10_1007_s00371_020_02052_8
crossref_primary_10_1007_s00138_023_01378_2
crossref_primary_10_1109_ACCESS_2022_3179358
crossref_primary_10_1109_TIP_2020_2977457
crossref_primary_10_1109_TIP_2017_2695883
crossref_primary_10_3390_app13074453
crossref_primary_10_1109_ACCESS_2018_2884695
crossref_primary_10_1109_TMM_2018_2796240
crossref_primary_10_1109_TMM_2021_3134156
crossref_primary_10_1109_TMM_2020_3028482
crossref_primary_10_1145_3615659
crossref_primary_10_3390_app10134652
crossref_primary_10_1162_neco_a_01302
crossref_primary_10_1007_s11042_018_7047_5
crossref_primary_10_1109_TNNLS_2020_3027603
crossref_primary_10_3390_s23187920
crossref_primary_10_1007_s11042_022_12921_0
crossref_primary_10_1109_TMM_2023_3291819
crossref_primary_10_1007_s00521_021_06368_x
crossref_primary_10_3390_app10093280
crossref_primary_10_1109_TMM_2016_2631122
crossref_primary_10_1007_s11263_018_1109_z
crossref_primary_10_1007_s10489_022_03355_0
crossref_primary_10_1049_ipr2_12238
crossref_primary_10_1007_s11042_018_5957_x
crossref_primary_10_1016_j_cviu_2023_103658
crossref_primary_10_1007_s00371_023_03226_w
crossref_primary_10_1007_s10489_022_03232_w
crossref_primary_10_1016_j_patcog_2023_110216
crossref_primary_10_1109_TMM_2016_2602060
crossref_primary_10_1007_s11042_022_13811_1
crossref_primary_10_1109_TMM_2021_3061284
crossref_primary_10_1109_TPAMI_2023_3274593
crossref_primary_10_1109_TIP_2021_3055627
crossref_primary_10_1109_TMM_2019_2954747
crossref_primary_10_1587_transinf_2021EDP7166
crossref_primary_10_3390_electronics12234805
crossref_primary_10_3390_e25040601
crossref_primary_10_1109_TGRS_2023_3311093
crossref_primary_10_1109_TMM_2021_3130414
crossref_primary_10_1587_transinf_2017EDL8076
crossref_primary_10_1007_s00138_021_01180_y
crossref_primary_10_1109_TIP_2022_3145159
crossref_primary_10_3390_electronics12183817
crossref_primary_10_1109_TCSVT_2022_3227737
crossref_primary_10_3389_fnbot_2024_1391791
crossref_primary_10_1109_TCYB_2018_2885062
crossref_primary_10_1109_TNNLS_2022_3202534
crossref_primary_10_1109_TNNLS_2017_2728060
crossref_primary_10_1109_ACCESS_2019_2936118
crossref_primary_10_1007_s11431_020_1777_4
crossref_primary_10_1109_TIP_2017_2751960
crossref_primary_10_1109_TIP_2022_3181492
crossref_primary_10_1109_TPAMI_2020_2993147
crossref_primary_10_1587_transinf_2022DLP0006
crossref_primary_10_1007_s11042_018_5875_y
crossref_primary_10_1016_j_procs_2019_08_227
crossref_primary_10_1109_ACCESS_2020_2999722
crossref_primary_10_1007_s11042_024_18598_x
crossref_primary_10_1111_coin_12638
crossref_primary_10_1109_TCSVT_2018_2834480
crossref_primary_10_1007_s10278_024_01082_1
crossref_primary_10_1007_s12539_021_00479_8
crossref_primary_10_1109_TMM_2020_2993960
crossref_primary_10_1016_j_jvcir_2022_103632
crossref_primary_10_1109_JSTARS_2022_3212680
crossref_primary_10_1007_s11263_019_01176_2
crossref_primary_10_1145_3605892
crossref_primary_10_1007_s41095_020_0184_6
crossref_primary_10_1007_s00138_020_01125_x
crossref_primary_10_1007_s11263_021_01498_0
crossref_primary_10_1016_j_neucom_2016_05_089
crossref_primary_10_1109_TNNLS_2021_3100928
crossref_primary_10_1109_TMM_2022_3158001
crossref_primary_10_3390_electronics9122038
crossref_primary_10_1109_TNNLS_2017_2731775
crossref_primary_10_1109_TPAMI_2016_2640295
crossref_primary_10_1109_TIP_2019_2924811
crossref_primary_10_1016_j_cviu_2021_103184
crossref_primary_10_1109_TCYB_2018_2813971
crossref_primary_10_1109_TPAMI_2021_3126648
crossref_primary_10_1007_s11263_016_0970_x
crossref_primary_10_1016_j_knosys_2021_106815
crossref_primary_10_1109_TIP_2017_2774041
crossref_primary_10_1109_TITS_2018_2799228
crossref_primary_10_3390_app9091939
crossref_primary_10_1109_ACCESS_2019_2956172
crossref_primary_10_1109_TCSVT_2019_2892802
crossref_primary_10_1117_1_JEI_28_2_023024
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2015.7298775
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EndPage 1674
ExternalDocumentID 7298775
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
G8K
IPLJI
JC5
M43
RIE
RIG
RIO
RNS
ID FETCH-LOGICAL-c413t-4535b1302f04b7d189816dfb172e5c27d1538bb58895575397580cac7ed269f03
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Jun 26 19:24:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-4535b1302f04b7d189816dfb172e5c27d1538bb58895575397580cac7ed269f03
OpenAccessLink http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lin_Deep_LAC_Deep_2015_CVPR_paper.pdf
PageCount 9
ParticipantIDs ieee_primary_7298775
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
Score 2.51671
Snippet We propose a fine-grained recognition system that incorporates part localization, alignment, and classification in one deep neural network. This is a...
SourceID ieee
SourceType Publisher
StartPage 1666
SubjectTerms Birds
Couplings
Feature extraction
Head
Neural networks
Training
Valves
Title Deep LAC: Deep localization, alignment and classification for fine-grained recognition
URI https://ieeexplore.ieee.org/document/7298775
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhjrNC87NhsqVBWiqEK06lbFj3RASitIF349Z8cpAjGwnS5SYjn23Zfcd_4QutFRJPK8yAmLFSVpLAsiOcthx2saxjox3EmyTJ_ZZJ4-LumyhQb7XhhjjCOfmcCarpavN2pnf5UNAQjyLKNt1M4Eq3u1mrWThLZ-ZaGP_9iy6iuu0skSwkQkfEUzCsVwtJi9WFIXDfwNfyiruMQy7qJpM6SaT_IW7CoZqM9fpzX-d8yHqP_dwodn--R0hFqmPEZdjzmx39Ef4GpkHRpfDy3ujdnip7vRLXaWS3e-XXOAwVw7BgHOS42VBd-WbeSuYkDAuADcStZWeQIetOcnbco-mo8fXkcT4uUXiILMVpGUJlTaumYRpjLTERc8YrqQAHkMVTF4IFhKSTkXFEAfABvKQ5WrzOiYiSJMTlCn3JTmFGEIiyIXgI24zFItc8kjI5RMIeonAAjZGerZmVtt6xM2Vn7Szv92X6AD-_ZqwtYl6lTvO3MF0KCS125NfAEBnLVh
link.rule.ids 309,310,780,784,789,790,796,23930,23931,25140,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxIOeUMH42x48Utyvbq03gxJUIMQA4UbWH-NgMoiOi3-9r12H0Xjw1rwlW9O1fZ_tfV8fQjfK93maZimJA0lJFIiMCBansOIV9QIVamZLsgxHcX8aPc_pvIba21wYrbUVn-mOadpYvlrJjflVdgsgyJKE7qBdGgHnltla1ewJPRPBMvDjPrdM_RUb64xDEnOfu5im7_Hb7mz8amRdtONu-aO2inUtvQYaVp0qFSVvnU0hOvLz13mN_-31AWp9J_Hh8dY9HaKazo9Qw1Endmv6A0xVYYfK1kSzB63XeHDfvcO2ZR2eS9hsY2gurYYAp7nC0uC30RvZqxgYGGdArmRpak_Ag7YKpVXeQtPe46TbJ64AA5Hg2woS0ZAKE9nMvEgkymec-bHKBECPpjIAC2yXQlDGOAXsA7ShzJOpTLQKYp554TGq56tcnyAMGyNPOdARE0mkRCqYr7kUEez7ISBhfIqaZuQW6_KMjYUbtLO_zddorz8ZDhaDp9HLOdo3b7KUb12gevG-0ZcACoW4svPjC79QuLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Deep+LAC%3A+Deep+localization%2C+alignment+and+classification+for+fine-grained+recognition&rft.au=Di+Lin&rft.au=Xiaoyong+Shen&rft.au=Cewu+Lu&rft.au=Jiaya+Jia&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.spage=1666&rft.epage=1674&rft_id=info:doi/10.1109%2FCVPR.2015.7298775&rft.externalDocID=7298775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon