Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and g...
Saved in:
Published in | Chemical Society reviews Vol. 51; no. 16; pp. 726 - 7237 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
15.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the C&z.dbd;C bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
This review covers the recent progress in electro-/photo-catalytic alkene-derived radical cation chemistry for organic synthesis, including synthetic strategies, plausible mechanisms and further research outlook. |
---|---|
AbstractList | Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling. Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the C&z.dbd;C bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling. This review covers the recent progress in electro-/photo-catalytic alkene-derived radical cation chemistry for organic synthesis, including synthetic strategies, plausible mechanisms and further research outlook. Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the C=C bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling. Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling. |
Author | Xiao, Qiang Li, Jin-Heng Luo, Mu-Jia |
AuthorAffiliation | State Key Laboratory of Applied Organic Chemistry Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Key Laboratory of Organic Chemistry of Jiangxi Province Jiangxi Science & Technology Normal University Lanzhou University Henan Normal University Nanchang Hangkong University School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering – name: Key Laboratory of Organic Chemistry of Jiangxi Province – name: State Key Laboratory of Applied Organic Chemistry – name: Nanchang Hangkong University – name: Lanzhou University – name: Jiangxi Science & Technology Normal University – name: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle – name: Henan Normal University |
Author_xml | – sequence: 1 givenname: Mu-Jia surname: Luo fullname: Luo, Mu-Jia – sequence: 2 givenname: Qiang surname: Xiao fullname: Xiao, Qiang – sequence: 3 givenname: Jin-Heng surname: Li fullname: Li, Jin-Heng |
BookMark | eNqFkV1LHDEUhoModLW96b0w4E0RpuZrkpneldV-IXihvR4yZ86w2cZkTLLC_nvjrliQQq9yIM_7cJL3mBz64JGQj4x-ZlR0FyOHRCllYn1AFkwqWkst5SFZUEFVXS74O3Kc0rpMTCu-IOsrh5BjqC_mVcgBTDZumy1Uxv1Bj_WI0T7iWEUzWjCuKoANvoIV3tuU4_ZLFRHQ58qMj8YDpsr6Km19XuHOMs_O7jPpPTmajEv44eU8Ib-_Xd0tf9TXN99_Lr9e1yCZyLWkTTM109CqsYWGdbyTutUaGagBB-imgQE0QNlkhNYCQBpWyFbIZkCFozghn_beOYaHDabcl1UBnTMewyb1XLNWNIoK8X9UdbJTrGt0Qc_eoOuwib48pAgpLwznz8LzPQUxpBRx6udo703c9oz2zw31l3x5u2voV4HpGxhs3v1Vjsa6f0dO95GY4FX9t3TxBJM8n_w |
CitedBy_id | crossref_primary_10_1021_acscatal_4c02638 crossref_primary_10_1021_acs_accounts_4c00638 crossref_primary_10_1021_acs_orglett_4c03707 crossref_primary_10_1039_D3QO00281K crossref_primary_10_1016_j_cclet_2023_108633 crossref_primary_10_1002_ejoc_202300528 crossref_primary_10_1002_cctc_202301572 crossref_primary_10_1055_a_2036_2074 crossref_primary_10_1039_D4OB02036G crossref_primary_10_1021_jacs_4c12925 crossref_primary_10_1039_D3GC02831C crossref_primary_10_1021_acs_orglett_3c03733 crossref_primary_10_1039_D2GC03829C crossref_primary_10_1039_D2GC04636A crossref_primary_10_1002_ejoc_202301060 crossref_primary_10_1021_jacs_2c12902 crossref_primary_10_1021_acs_orglett_2c03774 crossref_primary_10_1021_jacs_3c04879 crossref_primary_10_1002_cctc_202400760 crossref_primary_10_1039_D4CC06246A crossref_primary_10_1039_D3GC00728F crossref_primary_10_1055_a_2039_4825 crossref_primary_10_1016_j_cclet_2023_108902 crossref_primary_10_1039_D3GC00837A crossref_primary_10_1002_ejoc_202301065 crossref_primary_10_1002_smll_202304776 crossref_primary_10_1021_acs_orglett_4c00682 crossref_primary_10_1002_cjoc_202300174 crossref_primary_10_1039_D3QO01010D crossref_primary_10_1038_s41467_024_44746_w crossref_primary_10_1021_acscatal_4c02977 crossref_primary_10_1021_acs_orglett_4c00935 crossref_primary_10_1002_ajoc_202300101 crossref_primary_10_1021_acs_joc_4c02567 crossref_primary_10_1002_ange_202408177 crossref_primary_10_1016_j_tet_2024_134131 crossref_primary_10_1016_j_enmf_2025_01_001 crossref_primary_10_1021_acs_orglett_4c03922 crossref_primary_10_1021_acs_orglett_3c02989 crossref_primary_10_1039_D4GC04614E crossref_primary_10_1021_acs_orglett_3c02744 crossref_primary_10_1021_acs_orglett_3c03678 crossref_primary_10_1039_D4SC01905A crossref_primary_10_1093_chemle_upae103 crossref_primary_10_1039_D4OB01337A crossref_primary_10_1055_s_0040_1720135 crossref_primary_10_1039_D3QO01431B crossref_primary_10_1016_j_mcat_2024_113999 crossref_primary_10_1039_D4QO01740D crossref_primary_10_1002_anie_202408177 crossref_primary_10_1039_D4CC01335B crossref_primary_10_3390_ma16237409 crossref_primary_10_1039_D3GC04061E crossref_primary_10_1002_ange_202309859 crossref_primary_10_1021_acs_orglett_4c02163 crossref_primary_10_1002_ange_202311807 crossref_primary_10_1039_D3GC02701E crossref_primary_10_3390_catal13060919 crossref_primary_10_1002_hlca_202400017 crossref_primary_10_1021_jacs_3c04010 crossref_primary_10_1038_s41929_023_01032_0 crossref_primary_10_1002_ange_202312803 crossref_primary_10_1039_D4QO02280G crossref_primary_10_1039_D3QO00408B crossref_primary_10_1039_D3QO01040F crossref_primary_10_1039_D2QO01430K crossref_primary_10_1002_adsc_202401276 crossref_primary_10_1002_adsc_202401430 crossref_primary_10_1039_D2CC05570H crossref_primary_10_1021_acs_joc_3c01315 crossref_primary_10_1002_asia_202401093 crossref_primary_10_1021_acs_oprd_4c00186 crossref_primary_10_1039_D3QO01659E crossref_primary_10_1002_anie_202311807 crossref_primary_10_1002_ejoc_202300441 crossref_primary_10_1039_D3OB00744H crossref_primary_10_1021_acs_joc_5c00087 crossref_primary_10_1021_jacs_3c10439 crossref_primary_10_1002_anie_202309859 crossref_primary_10_1002_adsc_202301289 crossref_primary_10_1002_slct_202404815 crossref_primary_10_1039_D3QO01457F crossref_primary_10_1021_acscatal_2c06040 crossref_primary_10_1039_D4SC01858C crossref_primary_10_1021_acs_joc_4c01023 crossref_primary_10_1002_tcr_202400263 crossref_primary_10_1039_D3OB00313B crossref_primary_10_1021_acs_orglett_4c04207 crossref_primary_10_1039_D4QO00193A crossref_primary_10_1039_D3OB01915B crossref_primary_10_1039_D3GC00344B crossref_primary_10_1039_D3QO00030C crossref_primary_10_1039_D4CC03256J crossref_primary_10_1021_acs_joc_4c02363 crossref_primary_10_1002_ange_202501424 crossref_primary_10_1002_ejoc_202201022 crossref_primary_10_1039_D4CC05976J crossref_primary_10_1039_D4GC00186A crossref_primary_10_1002_ejoc_202201023 crossref_primary_10_1021_acs_joc_4c01830 crossref_primary_10_1360_TB_2023_0205 crossref_primary_10_1016_j_gresc_2022_10_008 crossref_primary_10_1002_adsc_202400247 crossref_primary_10_1021_acsmaterialslett_3c00645 crossref_primary_10_1002_chem_202402458 crossref_primary_10_1021_acs_orglett_4c02355 crossref_primary_10_1039_D4CC00608A crossref_primary_10_1016_j_trechm_2024_06_013 crossref_primary_10_1021_acs_joc_4c02803 crossref_primary_10_1021_acs_orglett_3c00121 crossref_primary_10_1002_anie_202407207 crossref_primary_10_1021_jacs_4c05881 crossref_primary_10_1002_chem_202404113 crossref_primary_10_1021_acs_joc_2c03020 crossref_primary_10_1039_D2QO01425D crossref_primary_10_1055_a_2518_0987 crossref_primary_10_1002_adma_202308101 crossref_primary_10_1002_anie_202300166 crossref_primary_10_1016_j_jcat_2024_115817 crossref_primary_10_1055_s_0043_1775374 crossref_primary_10_1002_anie_202301892 crossref_primary_10_1039_D4QO00059E crossref_primary_10_1002_anie_202312803 crossref_primary_10_1002_anie_202501424 crossref_primary_10_1039_D3QO00728F crossref_primary_10_6023_cjoc202310032 crossref_primary_10_1039_D3GC00175J crossref_primary_10_1002_adsc_202301066 crossref_primary_10_1021_acs_joc_3c02959 crossref_primary_10_1039_D4GC02848A crossref_primary_10_1021_acs_orglett_4c01038 crossref_primary_10_1039_D3QO00662J crossref_primary_10_1002_ange_202407207 crossref_primary_10_1002_ejoc_202401180 crossref_primary_10_1021_acs_joc_3c00015 crossref_primary_10_6023_cjoc202404010 crossref_primary_10_1021_acs_orglett_4c01831 crossref_primary_10_1038_s41467_024_54079_3 crossref_primary_10_1002_cjoc_202400008 crossref_primary_10_1002_ange_202300166 crossref_primary_10_1002_ange_202301892 |
Cites_doi | 10.1002/anie.201702940 10.1002/adsc.202000191 10.1002/anie.201801106 10.1002/anie.201712384 10.1021/acs.accounts.7b00287 10.1002/ajoc.201700056 10.1016/j.chempr.2020.12.002 10.1021/jacs.6b07411 10.1055/s-1984-31037 10.1021/jacs.7b09744 10.1002/cctc.202000900 10.1021/jacs.5b03733 10.1126/science.1161976 10.1021/ja4057294 10.1021/acssuschemeng.1c04473 10.1002/anie.202006115 10.1021/ja01042a004 10.1021/acscentsci.0c00549 10.1021/acscatal.6b03388 10.1021/ar200236v 10.1016/0032-3861(64)90207-1 10.1021/acs.accounts.9b00472 10.1021/ol301311e 10.1021/ja026739l 10.1039/C4SC02331E 10.1039/D0SC03148H 10.31635/ccschem.020.202000374 10.1021/ja4031616 10.1055/s-0035-1560171 10.1021/cr400582d 10.1002/cjoc.201800529 10.1021/ja903732v 10.1007/s11426-016-9010-9 10.2174/1385272825666210706124548 10.1021/acscatal.0c05540 10.1021/acs.chemrev.1c00620 10.1039/C4SC01982B 10.1021/jacs.1c09484 10.1021/cr0683966 10.1021/acs.orglett.6b02560 10.1021/cr0680033 10.1039/C6QO00806B 10.1002/asia.202001403 10.1021/ol902813m 10.1002/cjoc.201900028 10.1021/acs.chemrev.7b00397 10.1021/ja806259z 10.1246/cl.1981.1707 10.1002/anie.201805732 10.1021/acs.orglett.1c01824 10.1002/anie.200903992 10.1021/acs.accounts.6b00272 10.1002/anie.201402443 10.1002/anie.202007548 10.1021/acs.accounts.0c00306 10.1021/acs.accounts.8b00265 10.1038/nchem.2000 10.1002/slct.201800170 10.1021/jacs.8b06881 10.1021/acs.chemrev.7b00731 10.1021/ja01650a041 10.1039/C5GC02550H 10.1016/j.tet.2007.04.001 10.1021/acs.orglett.5b00083 10.1002/anie.202005745 10.1039/c2sc20658g 10.1021/cr9903048 10.1021/jo061868w 10.1002/anie.201711359 10.1039/C6CC02246D 10.1039/C9CS00873J 10.1002/anie.201902315 10.3762/bjoc.8.229 10.1039/C6SC02117D 10.1039/D1CS00150G 10.1039/B006015L 10.1021/ja016885b 10.1021/acs.joc.8b00738 10.1039/D1CS00223F 10.1021/acs.orglett.1c01596 10.1021/jacs.1c01967 10.1126/science.1208685 10.1021/acs.orglett.9b04201 10.1039/C7CS00619E 10.1021/acs.joc.8b02025 10.1002/ajoc.202100666 10.1021/acs.accounts.9b00529 10.1021/jo00979a024 10.1021/ar010108z 10.1021/ja206306f 10.1021/ja9033582 10.1021/jacs.8b08592 10.1002/anie.201510418 10.1021/ja038656q 10.1021/ja01333a041 10.1016/S1872-2067(18)63095-5 10.1021/acs.accounts.9b00510 10.1021/acs.chemrev.0c00030 10.1126/science.aat2117 10.1039/D0SC03655B 10.1016/S0040-4020(01)00358-1 10.1002/adsc.201901157 10.1038/s41467-018-06020-8 10.1038/s41586-021-03717-7 10.1002/anie.201200961 10.1002/celc.202000252 10.1002/anie.201809679 10.1039/c3cs60464k 10.1016/j.scib.2019.08.014 10.1021/acscatal.8b01697 10.1002/ajoc.201900020 10.1021/ja711029u 10.1002/tcr.201800053 10.1021/acs.chemrev.7b00763 10.1021/ol7019845 10.1002/anie.201609274 10.1021/acscatal.8b01069 10.1021/ar50136a006 10.1002/tcr.202100048 10.1021/jacs.1c02747 10.1021/ol3030154 10.1021/acscatal.7b02892 10.1021/acs.orglett.6b03545 10.1021/ol051696+ 10.1039/B913880N 10.1002/anie.200503656 10.1021/ja2093579 10.1021/acs.orglett.5b00316 10.1002/jlac.197719770203 10.1002/anie.202016666 10.1039/D1CS00208B 10.1002/anie.201507594 10.1246/cl.2009.166 10.1021/acs.orglett.8b02954 10.1039/D1SC00760B 10.1002/anie.201210111 10.1126/science.aal3010 10.1039/D1RA02606B 10.1021/jacs.9b08746 10.1039/B920606J 10.1002/anie.201801305 10.1016/j.tet.2006.08.105 10.1002/anie.201711876 10.1021/acs.accounts.9b00512 10.1021/acs.chemrev.6b00334 10.1021/acs.orglett.7b01095 10.1021/jacs.6b12653 10.1039/D1GC02807C 10.1016/S0013-4686(03)00250-0 10.1002/anie.201610722 10.1021/acs.orglett.0c02582 10.1002/anie.201501220 10.1016/j.jphotochem.2019.112340 10.1016/j.molstruc.2012.06.063 10.1038/s41467-019-13024-5 10.1021/cr300503r 10.1039/D1QO00375E 10.1021/ol802984n 10.1002/anie.200500368 10.1021/ol051296m 10.1021/acs.chemrev.0c00335 10.1021/jf1030778 10.1021/ja410865z 10.1021/acs.accounts.9b00513 10.1016/S0040-4039(01)90778-6 10.1021/ja309635w 10.1021/acs.chemrev.6b00018 10.1021/ja506228u 10.1002/cjoc.201900054 10.1002/anie.202110178 10.31635/ccschem.020.202000490 10.1021/ol100800u 10.1002/adsc.201600587 10.1016/S0040-4020(00)00840-1 10.1021/acs.chemrev.0c01124 10.1021/ja103934y 10.1139/v69-343 10.1002/ajoc.201600441 10.1002/anie.198606831 10.1002/anie.202011657 10.1002/anie.201408650 10.1002/adsc.201801173 10.1021/cr300389u 10.1021/acs.orglett.8b02541 10.1002/anie.201003924 10.1002/anie.200801760 10.1002/anie.202016679 10.1002/anie.202005765 10.1038/s41467-018-03534-z 10.1007/BF00626308 10.1039/C7CC06745C 10.1021/acs.accounts.6b00304 10.1021/acs.orglett.9b00526 10.1016/S0040-4020(01)89486-2 10.1021/cs400088e 10.1002/anie.201809454 10.1002/anie.201913332 10.1021/acs.orglett.8b03345 10.1126/science.aan6206 10.1038/nature18008 10.1021/ol203467v 10.1021/ar040051r 10.1021/jo200490q 10.1039/C9CS00692C 10.1021/ja0172215 10.1021/jacs.8b07578 10.1021/acscatal.1c00099 10.1039/C7SC00953D 10.1021/acs.accounts.9b00511 10.1016/S0040-4020(00)00691-8 10.1246/bcsj.38.661 10.1021/ja512073m 10.1021/acscatal.1c01000 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d2cs00013j |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 7237 |
ExternalDocumentID | 10_1039_D2CS00013J d2cs00013j |
GroupedDBID | - 0-7 02 0R 29B 4.4 5GY 6J9 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 53G 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 2WC 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c413t-4055f5fb86d8c5192947877e1c6bebc9fb1cc5c01fa3773cc4a1d8c8345be6ed3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 08:50:24 EDT 2025 Thu Jul 10 18:21:35 EDT 2025 Sun Jun 29 16:07:31 EDT 2025 Tue Jul 01 04:18:48 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Aug 16 07:30:20 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-4055f5fb86d8c5192947877e1c6bebc9fb1cc5c01fa3773cc4a1d8c8345be6ed3 |
Notes | Mu-Jia Luo was born in Jiangxi Province, People's Republic of China, in 1991. He received his MS degree from Central China Normal University (CCNU) in 2017. He joined Prof. Li's group at Hunan University in 2017, where he completed his PhD under the supervision of Professor Jin-Heng Li in 2021. In the same year, he joined the Jiangxi Science & Technology Normal University as a lecturer. His current research interests are focused on electrochemical synthetic methodologies. Jin-Heng Li was born in Hunan, P. R. of China. He received his BS from Hunan Normal University in 1994. From 1997 to 2000, he studied at Guangzhou Institute of Chemistry, Chinese Academy of Sciences, where he obtained his MS degree. After completing his PhD studies at the University of Science and Technology of China in 2002, he continued his studies as a postdoctoral fellow at the University of Hong Kong (P. R. of China). In 2002, he joined the faculty at Hunan Normal University as a professor. In 2011, he worked as a professor in the College of Chemistry and Chemical Engineering at Hunan University. Since 2016, he has been working as a professor at Nanchang Hangkong University. His current research interests are focused on radical chemistry and unsaturated hydrocarbon transformation chemistry, especially including C-H oxidative radical functionalization, cross-coupling reaction, and cycloaddition reaction. Qiang Xiao was born in Shanxi Province, People's Republic of China, in 1975. He obtained his PhD degree from Tsinghua University with Prof. Yufen Zhao in 2003. From 2004 to 2005, he worked as a research fellow with Prof. Tom Brown at the University of Southampton, UK. Presently, he serves as the director of both Key Laboratory of Organic Chemistry in Jiangxi Province and Institute of Organic Chemistry in Jiangxi Science & Technology University. His research mainly focuses on nucleoside chemistry and new heterocycle synthetic methodologies. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2812-7778 0000-0001-7215-7152 |
PQID | 2702195223 |
PQPubID | 2047503 |
PageCount | 32 |
ParticipantIDs | crossref_primary_10_1039_D2CS00013J rsc_primary_d2cs00013j crossref_citationtrail_10_1039_D2CS00013J proquest_miscellaneous_2718356033 proquest_miscellaneous_2694961957 proquest_journals_2702195223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Chemical Society reviews |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Streiffa (D2CS00013J/cit18e/1) 2021; 50 Gesmundo (D2CS00013J/cit59/1) 2015; 17 Yang (D2CS00013J/cit28/1) 2017; 4 Cho (D2CS00013J/cit9h/1) 2020; 362 Xu (D2CS00013J/cit81/1) 2021; 23 Li (D2CS00013J/cit51/1) 2018; 57 Gentry (D2CS00013J/cit19a/1) 2016; 49 Wang (D2CS00013J/cit7b/1) 2018; 51 Ohkubo (D2CS00013J/cit16b/1) 2010; 46 Miura (D2CS00013J/cit83/1) 2006; 45 Singh (D2CS00013J/cit45c/1) 2017; 107 Tucker (D2CS00013J/cit32b/1) 2012; 51 Qin (D2CS00013J/cit17e/1) 2021; 60 Wu (D2CS00013J/cit44c/1) 2020; 12 Hong (D2CS00013J/cit18a/1) 2004; 37 Rafiee (D2CS00013J/cit15h/1) 2018; 140 Chung (D2CS00013J/cit69/1) 2021; 12 Colonna (D2CS00013J/cit18d/1) 2020; 362 Margrey (D2CS00013J/cit9d/1) 2016; 49 Steckhan (D2CS00013J/cit15a/1) 1986; 25 Liang (D2CS00013J/cit91/1) 2021; 3 Knowles (D2CS00013J/cit32a/1) 2012; 8 Yang (D2CS00013J/cit61/1) 2017; 7 Engels (D2CS00013J/cit64a/1) 1977; 1977 Zhu (D2CS00013J/cit19b/1) 2016; 55 Chen (D2CS00013J/cit48/1) 2015; 17 Feng (D2CS00013J/cit9e/1) 2017; 50 Li (D2CS00013J/cit9f/1) 2018; 20 Ren (D2CS00013J/cit13d/1) 2016 Zhang (D2CS00013J/cit80/1) 2020; 22 Xiong (D2CS00013J/cit78/1) 2018; 140 Yoon (D2CS00013J/cit87b/1) 2013; 3 Zhou (D2CS00013J/cit110/1) 2018; 57 Musacchio (D2CS00013J/cit19c/1) 2017; 355 Yuan (D2CS00013J/cit12m/1) 2021; 50 Ackermann (D2CS00013J/cit12g/1) 2020; 53 Bertrand (D2CS00013J/cit39d/1) 2021; 16 Sivaguru (D2CS00013J/cit60/1) 2021; 121 Nguyen (D2CS00013J/cit20/1) 2013; 135 Grandjean (D2CS00013J/cit75/1) 2013; 52 Griffin (D2CS00013J/cit73/1) 2017; 56 Zhang (D2CS00013J/cit38/1) 2016; 138 Zhang (D2CS00013J/cit71/1) 2020; 59 Shigehisa (D2CS00013J/cit17a/1) 2015 Xu (D2CS00013J/cit56/1) 2008; 130 Liu (D2CS00013J/cit12k/1) 2020; 6 Giglio (D2CS00013J/cit62c/1) 2011; 133 Ohkubo (D2CS00013J/cit105/1) 2005; 7 Seayad (D2CS00013J/cit62b/1) 2010; 12 Yan (D2CS00013J/cit12a/1) 2017; 117 Czyz (D2CS00013J/cit8d/1) 2021; 11 Horner (D2CS00013J/cit10a/1) 2007; 72 Francke (D2CS00013J/cit15b/1) 2014; 43 Ashikari (D2CS00013J/cit65/1) 2012; 14 Sabir (D2CS00013J/cit46b/1) 2018; 3 Dong (D2CS00013J/cit37c/1) 2011; 333 Ošeka (D2CS00013J/cit52/1) 2021; 7 Sarabia (D2CS00013J/cit103/1) 2017; 19 Kanegusuku (D2CS00013J/cit9j/1) 2021; 60 Fukuzumi (D2CS00013J/cit16a/1) 2004; 126 Ozaki (D2CS00013J/cit89/1) 2019; 37 Fu (D2CS00013J/cit15e/1) 2017; 357 Xu (D2CS00013J/cit57/1) 2010; 49 Nutting (D2CS00013J/cit15f/1) 2018; 118 Muzart (D2CS00013J/cit37a/1) 2007; 63 Bao (D2CS00013J/cit44b/1) 2019 Okada (D2CS00013J/cit87c/1) 2018; 83 Wakita (D2CS00013J/cit25b/1) 2011; 59 Wickens (D2CS00013J/cit62f/1) 2015; 54 Badalyan (D2CS00013J/cit15d/1) 2016; 535 Ischay (D2CS00013J/cit87a/1) 2012; 3 Du (D2CS00013J/cit22/1) 2021; 60 Romero (D2CS00013J/cit10b/1) 2014; 136 Li (D2CS00013J/cit62a/1) 2008; 130 Perkowski (D2CS00013J/cit30/1) 2013; 135 Halas (D2CS00013J/cit14b/1) 2003; 48 Siu (D2CS00013J/cit7d/1) 2020; 53 Cai (D2CS00013J/cit67/1) 2018; 9 Xiong (D2CS00013J/cit79/1) 2019; 8 Nicolaou (D2CS00013J/cit111d/1) 2005; 44 Koike (D2CS00013J/cit85b/1) 2009; 38 Wilger (D2CS00013J/cit41/1) 2014; 6 Morse (D2CS00013J/cit29/1) 2015; 6 Arena (D2CS00013J/cit17f/1) 2021; 25 Pirnot (D2CS00013J/cit18c/1) 2016; 55 Belleau (D2CS00013J/cit63a/1) 1969; 47 Holmberg-Douglas (D2CS00013J/cit36/1) 2021; 11 Xiang (D2CS00013J/cit100/1) 2020; 59 Kang (D2CS00013J/cit62g/1) 2016; 52 Ischay (D2CS00013J/cit86/1) 2010; 132 Narayanam (D2CS00013J/cit85d/1) 2009; 131 Xu (D2CS00013J/cit113/1) 2020; 22 Li (D2CS00013J/cit7h/1) 2021; 11 Lin (D2CS00013J/cit93/1) 2017; 19 Zeni (D2CS00013J/cit111e/1) 2006; 106 Moeller (D2CS00013J/cit2a/1) 2000; 56 Hamilton (D2CS00013J/cit26/1) 2012; 134 Schevenels (D2CS00013J/cit39c/1) 2017; 139 Qian (D2CS00013J/cit12i/1) 2020; 7 Shi (D2CS00013J/cit12l/1) 2021; 121 Röckl (D2CS00013J/cit12f/1) 2020; 53 Liu (D2CS00013J/cit115/1) 2019; 37 Cao (D2CS00013J/cit99/1) 2018; 39 Reddy (D2CS00013J/cit2b/1) 2001; 57 Beletskaya (D2CS00013J/cit111c/1) 2000; 100 Imada (D2CS00013J/cit106/1) 2019; 58 Zhou (D2CS00013J/cit114/1) 2017; 8 Francke (D2CS00013J/cit15c/1) 2014; 136 Kojima (D2CS00013J/cit64b/1) 1981; 10 Liu (D2CS00013J/cit35/1) 2020; 59 Callebaut (D2CS00013J/cit45a/1) 2014; 114 Tanaka (D2CS00013J/cit76/1) 2018; 83 Amos (D2CS00013J/cit77/1) 2020; 11 Nguyen (D2CS00013J/cit21/1) 2014; 53 Nakayama (D2CS00013J/cit95/1) 2019; 21 Yuan (D2CS00013J/cit12e/1) 2019; 52 Miller (D2CS00013J/cit19f/1) 2019; 141 Patel (D2CS00013J/cit9i/1) 2021; 10 Reed (D2CS00013J/cit58/1) 2018; 20 Heck (D2CS00013J/cit111b/1) 1979; 12 Novaes (D2CS00013J/cit7e/1) 2021; 50 Zhang (D2CS00013J/cit101/1) 2018; 9 Huang (D2CS00013J/cit18b/1) 2015; 115 Chen (D2CS00013J/cit44e/1) 2021; 8 Sauer (D2CS00013J/cit7a/1) 2018; 8 Chiba (D2CS00013J/cit82/1) 2001; 123 Wu (D2CS00013J/cit42/1) 2018; 57 Yang (D2CS00013J/cit66/1) 2017; 53 Raoult (D2CS00013J/cit14a/1) 1984; 14 Nicewicz (D2CS00013J/cit85a/1) 2008; 322 Xiong (D2CS00013J/cit12d/1) 2019; 52 Okada (D2CS00013J/cit84c/1) 2011; 76 Heck (D2CS00013J/cit111a/1) 1972; 37 Stevenson (D2CS00013J/cit94/1) 2015; 54 Bennett (D2CS00013J/cit34c/1) 2018; 118 Cai (D2CS00013J/cit54/1) 2019; 10 Shin (D2CS00013J/cit9g/1) 2018; 20 Mangion (D2CS00013J/cit3/1) 2002; 35 Xiang (D2CS00013J/cit9c/1) 2012; 1029 Hou (D2CS00013J/cit15g/1) 2018; 57 Huang (D2CS00013J/cit8c/1) 2020; 3 Crossley (D2CS00013J/cit17b/1) 2016; 116 Kärkäs (D2CS00013J/cit12c/1) 2018; 47 Xiong (D2CS00013J/cit7g/1) 2021; 50 Taeufer (D2CS00013J/cit23/1) 2021; 11 Picon (D2CS00013J/cit62e/1) 2012; 14 Yu (D2CS00013J/cit13e/1) 2021; 121 Kennemur (D2CS00013J/cit17c/1) 2021; 121 Xu (D2CS00013J/cit9b/1) 2010; 12 Monos (D2CS00013J/cit55/1) 2018; 361 Narayanam (D2CS00013J/cit13a/1) 2011; 40 Siu (D2CS00013J/cit47/1) 2002; 124 Mei (D2CS00013J/cit44a/1) 2019; 37 Lin (D2CS00013J/cit92/1) 2011; 133 Zhang (D2CS00013J/cit68/1) 2019; 361 Lardy (D2CS00013J/cit19d/1) 2018; 140 Jira (D2CS00013J/cit37b/1) 2009; 48 Dong (D2CS00013J/cit9l/1) 2021; 23 Bauld (D2CS00013J/cit1/1) 1989; 45 Hirata (D2CS00013J/cit43/1) 2021; 23 Skubi (D2CS00013J/cit13c/1) 2016; 116 Chinn (D2CS00013J/cit19g/1) 2021; 143 Hu (D2CS00013J/cit102/1) 2018; 57 Hu (D2CS00013J/cit31/1) 2017; 7 Ogawa (D2CS00013J/cit108/1) 2015; 137 Chen (D2CS00013J/cit33/1) 2020; 392 Roth (D2CS00013J/cit11/1) 2016 Lin (D2CS00013J/cit74/1) 2017; 6 Reed (D2CS00013J/cit24/1) 2021; 143 Sheta (D2CS00013J/cit8b/1) 2020; 11 Yamamoto (D2CS00013J/cit12h/1) 2020; 53 Cheng (D2CS00013J/cit27/1) 2019; 64 Ma (D2CS00013J/cit90/1) 2019; 58 Wang (D2CS00013J/cit98/1) 2017; 56 Nakafuku (D2CS00013J/cit19e/1) 2018; 140 Sarabia (D2CS00013J/cit104/1) 2018; 57 Ellinger (D2CS00013J/cit5/1) 1964; 5 Sigman (D2CS00013J/cit37d/1) 2012; 45 Wu (D2CS00013J/cit44d/1) 2020; 53 Zhong (D2CS00013J/cit62d/1) 2012; 14 Wolfe (D2CS00013J/cit25a/1) 2007; 63 Huang (D2CS00013J/cit70/1) 2021; 143 Vanhoof (D2CS00013J/cit49/1) 2021; 9 Marzabadi (D2CS00013J/cit34a/1) 2000; 56 Wei (D2CS00013J/cit97/1) 2016; 358 Mayo (D2CS00013J/cit40b/1) 1954; 76 Jiang (D2CS00013J/cit7f/1) 2020; 49 Liu (D2CS00013J/cit8a/1) 2020; 59 Heard (D2CS00013J/cit12j/1) 2020; 59 Sweeney (D2CS00013J/cit46a/1) 2002; 31 Holst (D2CS00013J/cit50/1) 2021; 596 Zhang (D2CS00013J/cit17d/1) 2021; 3 Wang (D2CS00013J/cit96/1) 2016; 18 Scott (D2CS00013J/cit4/1) 1963; 17 Qin (D2CS00013J/cit116/1) 2021; 60 Straathof (D2CS00013J/cit32c/1) 2014; 5 Okada (D2CS00013J/cit84b/1) 2009; 11 Gaspar (D2CS00013J/cit39b/1) 2008; 47 Inoue (D2CS00013J/cit63b/1) 1965; 38 Hassner (D2CS00013J/cit39a/1) 1984 Schutte (D2CS00013J/cit6/1) 1969; 91 Chen (D2CS00013J/cit9k/1) 2021; 21 Sabir (D2CS00013J/cit45b/1) 2017; 6 Arata (D2CS00013J/cit84a/1) 2007; 9 Yi (D2CS00013J/cit112/1) 2017; 56 Zeng (D2CS00013J/cit34b/1) 2017; 60 Liu (D2CS00013J/cit53/1) 2021; 3 Okada (D2CS00013J/cit88/1) 2016; 7 Lin (D2CS00013J/cit7c/1) 2019; 19 Zhao (D2CS00013J/cit107/1) 2018; 57 Brandt (D2CS00013J/cit9a/1) 2005; 7 Zhang (D2CS00013J/cit72/1) 2016; 18 Ma (D2CS00013J/cit12b/1) 2018; 8 Prier (D2CS00013J/cit13b/1) 2013; 113 Liu (D2CS00013J/cit2c/1) 2002; 124 Perkowski (D2CS00013J/cit109/1) 2015; 137 Du (D2CS00013J/cit85c/1) 2009; 131 Kharasch (D2CS00013J/cit40a/1) 1933; 55 |
References_xml | – volume: 56 start-page: 6896 year: 2017 ident: D2CS00013J/cit98/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702940 – volume: 362 start-page: 2183 year: 2020 ident: D2CS00013J/cit9h/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202000191 – volume: 57 start-page: 5695 year: 2018 ident: D2CS00013J/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801106 – volume: 57 start-page: 2174 year: 2018 ident: D2CS00013J/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712384 – volume: 50 start-page: 2346 year: 2017 ident: D2CS00013J/cit9e/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00287 – volume: 6 start-page: 782 year: 2017 ident: D2CS00013J/cit45b/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201700056 – volume: 7 start-page: 255 year: 2021 ident: D2CS00013J/cit52/1 publication-title: Chem doi: 10.1016/j.chempr.2020.12.002 – volume: 138 start-page: 12037 year: 2016 ident: D2CS00013J/cit38/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07411 – start-page: 960 year: 1984 ident: D2CS00013J/cit39a/1 publication-title: Synthesis doi: 10.1055/s-1984-31037 – volume: 140 start-page: 22 year: 2018 ident: D2CS00013J/cit15h/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09744 – volume: 12 start-page: 5312 year: 2020 ident: D2CS00013J/cit44c/1 publication-title: ChemCatChem doi: 10.1002/cctc.202000900 – volume: 137 start-page: 7580 year: 2015 ident: D2CS00013J/cit109/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03733 – volume: 322 start-page: 77 year: 2008 ident: D2CS00013J/cit85a/1 publication-title: Science doi: 10.1126/science.1161976 – volume: 135 start-page: 10334 year: 2013 ident: D2CS00013J/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4057294 – volume: 9 start-page: 11596 year: 2021 ident: D2CS00013J/cit49/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c04473 – volume: 59 start-page: 15204 year: 2020 ident: D2CS00013J/cit35/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006115 – volume: 91 start-page: 3715 year: 1969 ident: D2CS00013J/cit6/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01042a004 – volume: 6 start-page: 1317 year: 2020 ident: D2CS00013J/cit12k/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00549 – volume: 7 start-page: 1432 year: 2017 ident: D2CS00013J/cit31/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03388 – volume: 45 start-page: 874 year: 2012 ident: D2CS00013J/cit37d/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar200236v – volume: 5 start-page: 559 year: 1964 ident: D2CS00013J/cit5/1 publication-title: Polymer doi: 10.1016/0032-3861(64)90207-1 – volume: 52 start-page: 3339 year: 2019 ident: D2CS00013J/cit12d/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00472 – volume: 14 start-page: 3336 year: 2012 ident: D2CS00013J/cit62d/1 publication-title: Org. Lett. doi: 10.1021/ol301311e – volume: 124 start-page: 10101 year: 2002 ident: D2CS00013J/cit2c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026739l – volume: 3 start-page: 1727 year: 2021 ident: D2CS00013J/cit91/1 publication-title: CCS Chem. – volume: 6 start-page: 270 year: 2015 ident: D2CS00013J/cit29/1 publication-title: Chem. Sci. doi: 10.1039/C4SC02331E – volume: 11 start-page: 9109 year: 2020 ident: D2CS00013J/cit8b/1 publication-title: Chem. Sci. doi: 10.1039/D0SC03148H – volume: 3 start-page: 1746 year: 2020 ident: D2CS00013J/cit8c/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000374 – volume: 135 start-page: 9588 year: 2013 ident: D2CS00013J/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4031616 – start-page: 2479 year: 2015 ident: D2CS00013J/cit17a/1 publication-title: Synlett doi: 10.1055/s-0035-1560171 – volume: 114 start-page: 7954 year: 2014 ident: D2CS00013J/cit45a/1 publication-title: Chem. Rev. doi: 10.1021/cr400582d – volume: 37 start-page: 292 year: 2019 ident: D2CS00013J/cit44a/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201800529 – volume: 131 start-page: 14604 year: 2009 ident: D2CS00013J/cit85c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903732v – volume: 60 start-page: 1162 year: 2017 ident: D2CS00013J/cit34b/1 publication-title: Sci. China Chem. doi: 10.1007/s11426-016-9010-9 – volume: 25 start-page: 1831 year: 2021 ident: D2CS00013J/cit17f/1 publication-title: Curr. Org. Chem. doi: 10.2174/1385272825666210706124548 – volume: 11 start-page: 4862 year: 2021 ident: D2CS00013J/cit23/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c05540 – volume: 121 start-page: 14649 year: 2021 ident: D2CS00013J/cit17c/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00620 – volume: 5 start-page: 4768 year: 2014 ident: D2CS00013J/cit32c/1 publication-title: Chem. Sci. doi: 10.1039/C4SC01982B – volume: 143 start-page: 18331 year: 2021 ident: D2CS00013J/cit19g/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09484 – volume: 106 start-page: 4644 year: 2006 ident: D2CS00013J/cit111e/1 publication-title: Chem. Rev. doi: 10.1021/cr0683966 – volume: 18 start-page: 5256 year: 2016 ident: D2CS00013J/cit72/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b02560 – volume: 107 start-page: 2080 year: 2017 ident: D2CS00013J/cit45c/1 publication-title: Chem. Rev. doi: 10.1021/cr0680033 – volume: 4 start-page: 1037 year: 2017 ident: D2CS00013J/cit28/1 publication-title: Org. Chem. Front. doi: 10.1039/C6QO00806B – volume: 16 start-page: 563 year: 2021 ident: D2CS00013J/cit39d/1 publication-title: Chem. Asian J. doi: 10.1002/asia.202001403 – volume: 12 start-page: 1412 year: 2010 ident: D2CS00013J/cit62b/1 publication-title: Org. Lett. doi: 10.1021/ol902813m – volume: 37 start-page: 570 year: 2019 ident: D2CS00013J/cit115/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201900028 – volume: 117 start-page: 13230 year: 2017 ident: D2CS00013J/cit12a/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00397 – volume: 130 start-page: 13542 year: 2008 ident: D2CS00013J/cit56/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806259z – volume: 10 start-page: 1707 year: 1981 ident: D2CS00013J/cit64b/1 publication-title: Chem. Lett. doi: 10.1246/cl.1981.1707 – volume: 57 start-page: 11015 year: 2018 ident: D2CS00013J/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805732 – volume: 23 start-page: 5693 year: 2021 ident: D2CS00013J/cit43/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c01824 – volume: 48 start-page: 9034 year: 2009 ident: D2CS00013J/cit37b/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903992 – volume: 49 start-page: 1546 year: 2016 ident: D2CS00013J/cit19a/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00272 – volume: 53 start-page: 6198 year: 2014 ident: D2CS00013J/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402443 – volume: 59 start-page: 21195 year: 2020 ident: D2CS00013J/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007548 – volume: 53 start-page: 1620 year: 2020 ident: D2CS00013J/cit44d/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00306 – volume: 51 start-page: 2036 year: 2018 ident: D2CS00013J/cit7b/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00265 – volume: 6 start-page: 720 year: 2014 ident: D2CS00013J/cit41/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2000 – volume: 3 start-page: 3702 year: 2018 ident: D2CS00013J/cit46b/1 publication-title: ChemistrySelect doi: 10.1002/slct.201800170 – volume: 140 start-page: 12318 year: 2018 ident: D2CS00013J/cit19d/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06881 – volume: 118 start-page: 7931 year: 2018 ident: D2CS00013J/cit34c/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00731 – volume: 76 start-page: 5392 year: 1954 ident: D2CS00013J/cit40b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01650a041 – volume: 18 start-page: 2864 year: 2016 ident: D2CS00013J/cit96/1 publication-title: Green Chem. doi: 10.1039/C5GC02550H – volume: 63 start-page: 7505 year: 2007 ident: D2CS00013J/cit37a/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2007.04.001 – volume: 17 start-page: 986 year: 2015 ident: D2CS00013J/cit48/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b00083 – volume: 59 start-page: 18866 year: 2020 ident: D2CS00013J/cit12j/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005745 – volume: 3 start-page: 2807 year: 2012 ident: D2CS00013J/cit87a/1 publication-title: Chem. Sci. doi: 10.1039/c2sc20658g – volume: 100 start-page: 3009 year: 2000 ident: D2CS00013J/cit111c/1 publication-title: Chem. Rev. doi: 10.1021/cr9903048 – volume: 72 start-page: 1609 year: 2007 ident: D2CS00013J/cit10a/1 publication-title: J. Org. Chem. doi: 10.1021/jo061868w – volume: 57 start-page: 1286 year: 2018 ident: D2CS00013J/cit102/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711359 – volume: 52 start-page: 6193 year: 2016 ident: D2CS00013J/cit62g/1 publication-title: Chem. Commun. doi: 10.1039/C6CC02246D – volume: 50 start-page: 1512 year: 2021 ident: D2CS00013J/cit18e/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00873J – volume: 58 start-page: 6756 year: 2019 ident: D2CS00013J/cit90/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902315 – volume: 8 start-page: 2025 year: 2012 ident: D2CS00013J/cit32a/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.8.229 – volume: 7 start-page: 6387 year: 2016 ident: D2CS00013J/cit88/1 publication-title: Chem. Sci. doi: 10.1039/C6SC02117D – volume: 50 start-page: 10058 year: 2021 ident: D2CS00013J/cit12m/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00150G – volume: 31 start-page: 247 year: 2002 ident: D2CS00013J/cit46a/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B006015L – volume: 123 start-page: 11314 year: 2001 ident: D2CS00013J/cit82/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016885b – volume: 83 start-page: 4948 year: 2018 ident: D2CS00013J/cit87c/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b00738 – volume: 50 start-page: 7941 year: 2021 ident: D2CS00013J/cit7e/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00223F – volume: 23 start-page: 4870 year: 2021 ident: D2CS00013J/cit81/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c01596 – volume: 143 start-page: 7247 year: 2021 ident: D2CS00013J/cit70/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01967 – volume: 333 start-page: 1609 year: 2011 ident: D2CS00013J/cit37c/1 publication-title: Science doi: 10.1126/science.1208685 – volume: 22 start-page: 1692 year: 2020 ident: D2CS00013J/cit113/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b04201 – volume: 47 start-page: 5786 year: 2018 ident: D2CS00013J/cit12c/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00619E – volume: 83 start-page: 13625 year: 2018 ident: D2CS00013J/cit76/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b02025 – volume: 10 start-page: 3201 year: 2021 ident: D2CS00013J/cit9i/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202100666 – volume: 53 start-page: 547 year: 2020 ident: D2CS00013J/cit7d/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00529 – volume: 37 start-page: 2320 year: 1972 ident: D2CS00013J/cit111a/1 publication-title: J. Org. Chem. doi: 10.1021/jo00979a024 – start-page: 1139 year: 2016 ident: D2CS00013J/cit13d/1 publication-title: Synlett – volume: 35 start-page: 297 year: 2002 ident: D2CS00013J/cit3/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar010108z – volume: 133 start-page: 13320 year: 2011 ident: D2CS00013J/cit62c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206306f – volume: 131 start-page: 8756 year: 2009 ident: D2CS00013J/cit85d/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9033582 – volume: 140 start-page: 16387 year: 2018 ident: D2CS00013J/cit78/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08592 – volume: 55 start-page: 2226 year: 2016 ident: D2CS00013J/cit19b/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510418 – volume: 126 start-page: 1600 year: 2004 ident: D2CS00013J/cit16a/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038656q – volume: 55 start-page: 2468 year: 1933 ident: D2CS00013J/cit40a/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01333a041 – volume: 39 start-page: 1194 year: 2018 ident: D2CS00013J/cit99/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63095-5 – volume: 53 start-page: 84 year: 2020 ident: D2CS00013J/cit12g/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00510 – volume: 121 start-page: 506 year: 2021 ident: D2CS00013J/cit13e/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00030 – volume: 361 start-page: 1369 year: 2018 ident: D2CS00013J/cit55/1 publication-title: Science doi: 10.1126/science.aat2117 – volume: 11 start-page: 11274 year: 2020 ident: D2CS00013J/cit77/1 publication-title: Chem. Sci. doi: 10.1039/D0SC03655B – start-page: 4507 year: 2019 ident: D2CS00013J/cit44b/1 publication-title: Synthesis – volume: 57 start-page: 5183 year: 2001 ident: D2CS00013J/cit2b/1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)00358-1 – volume: 362 start-page: 1550 year: 2020 ident: D2CS00013J/cit18d/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201901157 – volume: 9 start-page: 3551 year: 2018 ident: D2CS00013J/cit67/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06020-8 – volume: 596 start-page: 74 year: 2021 ident: D2CS00013J/cit50/1 publication-title: Nature doi: 10.1038/s41586-021-03717-7 – volume: 51 start-page: 4144 year: 2012 ident: D2CS00013J/cit32b/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201200961 – volume: 7 start-page: 2527 year: 2020 ident: D2CS00013J/cit12i/1 publication-title: ChemElectroChem doi: 10.1002/celc.202000252 – volume: 57 start-page: 15153 year: 2018 ident: D2CS00013J/cit107/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809679 – volume: 43 start-page: 2492 year: 2014 ident: D2CS00013J/cit15b/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60464k – volume: 64 start-page: 1896 year: 2019 ident: D2CS00013J/cit27/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.08.014 – volume: 8 start-page: 7179 year: 2018 ident: D2CS00013J/cit12b/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01697 – volume: 8 start-page: 658 year: 2019 ident: D2CS00013J/cit79/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201900020 – volume: 130 start-page: 2962 year: 2008 ident: D2CS00013J/cit62a/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711029u – volume: 19 start-page: 440 year: 2019 ident: D2CS00013J/cit7c/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201800053 – volume: 118 start-page: 4834 year: 2018 ident: D2CS00013J/cit15f/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00763 – volume: 9 start-page: 4347 year: 2007 ident: D2CS00013J/cit84a/1 publication-title: Org. Lett. doi: 10.1021/ol7019845 – volume: 56 start-page: 1120 year: 2017 ident: D2CS00013J/cit112/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609274 – volume: 8 start-page: 5175 year: 2018 ident: D2CS00013J/cit7a/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01069 – volume: 12 start-page: 146 year: 1979 ident: D2CS00013J/cit111b/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar50136a006 – volume: 21 start-page: 2306 year: 2021 ident: D2CS00013J/cit9k/1 publication-title: Chem. Rec. doi: 10.1002/tcr.202100048 – volume: 143 start-page: 6065 year: 2021 ident: D2CS00013J/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02747 – volume: 14 start-page: 6250 year: 2012 ident: D2CS00013J/cit62e/1 publication-title: Org. Lett. doi: 10.1021/ol3030154 – volume: 3 start-page: 872 year: 2021 ident: D2CS00013J/cit53/1 publication-title: CCS Chem. – volume: 7 start-page: 8362 year: 2017 ident: D2CS00013J/cit61/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02892 – volume: 19 start-page: 368 year: 2017 ident: D2CS00013J/cit93/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b03545 – volume: 7 start-page: 4265 year: 2005 ident: D2CS00013J/cit105/1 publication-title: Org. Lett. doi: 10.1021/ol051696+ – volume: 40 start-page: 102 year: 2011 ident: D2CS00013J/cit13a/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B913880N – volume: 45 start-page: 1461 year: 2006 ident: D2CS00013J/cit83/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200503656 – volume: 133 start-page: 19350 year: 2011 ident: D2CS00013J/cit92/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2093579 – volume: 17 start-page: 1316 year: 2015 ident: D2CS00013J/cit59/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b00316 – volume: 1977 start-page: 204 year: 1977 ident: D2CS00013J/cit64a/1 publication-title: Liebigs Ann. Chem. doi: 10.1002/jlac.197719770203 – volume: 60 start-page: 21116 year: 2021 ident: D2CS00013J/cit9j/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016666 – volume: 50 start-page: 8857 year: 2021 ident: D2CS00013J/cit7g/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00208B – volume: 55 start-page: 48 year: 2016 ident: D2CS00013J/cit18c/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507594 – volume: 38 start-page: 166 year: 2009 ident: D2CS00013J/cit85b/1 publication-title: Chem. Lett. doi: 10.1246/cl.2009.166 – volume: 20 start-page: 6836 year: 2018 ident: D2CS00013J/cit9f/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02954 – volume: 12 start-page: 5892 year: 2021 ident: D2CS00013J/cit69/1 publication-title: Chem. Sci. doi: 10.1039/D1SC00760B – volume: 52 start-page: 3967 year: 2013 ident: D2CS00013J/cit75/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201210111 – volume: 355 start-page: 727 year: 2017 ident: D2CS00013J/cit19c/1 publication-title: Science doi: 10.1126/science.aal3010 – volume: 11 start-page: 24474 year: 2021 ident: D2CS00013J/cit7h/1 publication-title: RSC Adv. doi: 10.1039/D1RA02606B – start-page: 714 year: 2016 ident: D2CS00013J/cit11/1 publication-title: Synlett – volume: 141 start-page: 16590 year: 2019 ident: D2CS00013J/cit19f/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08746 – volume: 46 start-page: 601 year: 2010 ident: D2CS00013J/cit16b/1 publication-title: Chem. Commun. doi: 10.1039/B920606J – volume: 57 start-page: 5139 year: 2018 ident: D2CS00013J/cit110/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801305 – volume: 63 start-page: 261 year: 2007 ident: D2CS00013J/cit25a/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2006.08.105 – volume: 57 start-page: 1636 year: 2018 ident: D2CS00013J/cit15g/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711876 – volume: 52 start-page: 3309 year: 2019 ident: D2CS00013J/cit12e/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00512 – volume: 116 start-page: 8912 year: 2016 ident: D2CS00013J/cit17b/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00334 – volume: 19 start-page: 2865 year: 2017 ident: D2CS00013J/cit103/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01095 – volume: 139 start-page: 6329 year: 2017 ident: D2CS00013J/cit39c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12653 – volume: 23 start-page: 7963 year: 2021 ident: D2CS00013J/cit9l/1 publication-title: Green Chem. doi: 10.1039/D1GC02807C – volume: 48 start-page: 1837 year: 2003 ident: D2CS00013J/cit14b/1 publication-title: J. Electrochim. Acta doi: 10.1016/S0013-4686(03)00250-0 – volume: 56 start-page: 2097 year: 2017 ident: D2CS00013J/cit73/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610722 – volume: 22 start-page: 7250 year: 2020 ident: D2CS00013J/cit80/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02582 – volume: 54 start-page: 6506 year: 2015 ident: D2CS00013J/cit94/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501220 – volume: 392 start-page: 112340 year: 2020 ident: D2CS00013J/cit33/1 publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2019.112340 – volume: 1029 start-page: 15 year: 2012 ident: D2CS00013J/cit9c/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2012.06.063 – volume: 10 start-page: 4953 year: 2019 ident: D2CS00013J/cit54/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13024-5 – volume: 113 start-page: 5322 year: 2013 ident: D2CS00013J/cit13b/1 publication-title: Chem. Rev. doi: 10.1021/cr300503r – volume: 8 start-page: 5206 year: 2021 ident: D2CS00013J/cit44e/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00375E – volume: 11 start-page: 1033 year: 2009 ident: D2CS00013J/cit84b/1 publication-title: Org. Lett. doi: 10.1021/ol802984n – volume: 44 start-page: 4442 year: 2005 ident: D2CS00013J/cit111d/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200500368 – volume: 7 start-page: 3553 year: 2005 ident: D2CS00013J/cit9a/1 publication-title: Org. Lett. doi: 10.1021/ol051296m – volume: 121 start-page: 485 year: 2021 ident: D2CS00013J/cit12l/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00335 – volume: 59 start-page: 2938 year: 2011 ident: D2CS00013J/cit25b/1 publication-title: J. Agric. Food Chem. doi: 10.1021/jf1030778 – volume: 136 start-page: 427 year: 2014 ident: D2CS00013J/cit15c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410865z – volume: 53 start-page: 105 year: 2020 ident: D2CS00013J/cit12h/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00513 – volume: 17 start-page: 1073 year: 1963 ident: D2CS00013J/cit4/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)90778-6 – volume: 134 start-page: 18577 year: 2012 ident: D2CS00013J/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309635w – volume: 116 start-page: 10035 year: 2016 ident: D2CS00013J/cit13c/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00018 – volume: 136 start-page: 17024 year: 2014 ident: D2CS00013J/cit10b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506228u – volume: 37 start-page: 561 year: 2019 ident: D2CS00013J/cit89/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201900054 – volume: 60 start-page: 25949 year: 2021 ident: D2CS00013J/cit17e/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110178 – volume: 3 start-page: 2259 year: 2021 ident: D2CS00013J/cit17d/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000490 – volume: 12 start-page: 2590 year: 2010 ident: D2CS00013J/cit9b/1 publication-title: Org. Lett. doi: 10.1021/ol100800u – volume: 358 start-page: 3887 year: 2016 ident: D2CS00013J/cit97/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201600587 – volume: 56 start-page: 9527 year: 2000 ident: D2CS00013J/cit2a/1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(00)00840-1 – volume: 121 start-page: 4253 year: 2021 ident: D2CS00013J/cit60/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01124 – volume: 132 start-page: 8572 year: 2010 ident: D2CS00013J/cit86/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103934y – volume: 47 start-page: 2117 year: 1969 ident: D2CS00013J/cit63a/1 publication-title: Can. J. Chem. doi: 10.1139/v69-343 – volume: 6 start-page: 418 year: 2017 ident: D2CS00013J/cit74/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201600441 – volume: 25 start-page: 683 year: 1986 ident: D2CS00013J/cit15a/1 publication-title: Angew. Chem., Int. Engl. doi: 10.1002/anie.198606831 – volume: 60 start-page: 1861 year: 2021 ident: D2CS00013J/cit116/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202011657 – volume: 54 start-page: 236 year: 2015 ident: D2CS00013J/cit62f/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408650 – volume: 361 start-page: 485 year: 2019 ident: D2CS00013J/cit68/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801173 – volume: 115 start-page: 2596 year: 2015 ident: D2CS00013J/cit18b/1 publication-title: Chem. Rev. doi: 10.1021/cr300389u – volume: 20 start-page: 5872 year: 2018 ident: D2CS00013J/cit9g/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02541 – volume: 49 start-page: 8004 year: 2010 ident: D2CS00013J/cit57/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003924 – volume: 47 start-page: 5758 year: 2008 ident: D2CS00013J/cit39b/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801760 – volume: 60 start-page: 9875 year: 2021 ident: D2CS00013J/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016679 – volume: 59 start-page: 13962 year: 2020 ident: D2CS00013J/cit8a/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005765 – volume: 9 start-page: 1225 year: 2018 ident: D2CS00013J/cit101/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03534-z – volume: 14 start-page: 639 year: 1984 ident: D2CS00013J/cit14a/1 publication-title: J. Appl. Electrochem. doi: 10.1007/BF00626308 – volume: 53 start-page: 12634 year: 2017 ident: D2CS00013J/cit66/1 publication-title: Chem. Commun. doi: 10.1039/C7CC06745C – volume: 49 start-page: 1997 year: 2016 ident: D2CS00013J/cit9d/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00304 – volume: 21 start-page: 2246 year: 2019 ident: D2CS00013J/cit95/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b00526 – volume: 45 start-page: 5307 year: 1989 ident: D2CS00013J/cit1/1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)89486-2 – volume: 3 start-page: 895 year: 2013 ident: D2CS00013J/cit87b/1 publication-title: ACS Catal. doi: 10.1021/cs400088e – volume: 58 start-page: 125 year: 2019 ident: D2CS00013J/cit106/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809454 – volume: 59 start-page: 3465 year: 2020 ident: D2CS00013J/cit71/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913332 – volume: 20 start-page: 7345 year: 2018 ident: D2CS00013J/cit58/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b03345 – volume: 357 start-page: 575 year: 2017 ident: D2CS00013J/cit15e/1 publication-title: Science doi: 10.1126/science.aan6206 – volume: 535 start-page: 406 year: 2016 ident: D2CS00013J/cit15d/1 publication-title: Nature doi: 10.1038/nature18008 – volume: 14 start-page: 938 year: 2012 ident: D2CS00013J/cit65/1 publication-title: Org. Lett. doi: 10.1021/ol203467v – volume: 37 start-page: 673 year: 2004 ident: D2CS00013J/cit18a/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar040051r – volume: 76 start-page: 3470 year: 2011 ident: D2CS00013J/cit84c/1 publication-title: J. Org. Chem. doi: 10.1021/jo200490q – volume: 49 start-page: 1790 year: 2020 ident: D2CS00013J/cit7f/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00692C – volume: 124 start-page: 530 year: 2002 ident: D2CS00013J/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0172215 – volume: 140 start-page: 11202 year: 2018 ident: D2CS00013J/cit19e/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07578 – volume: 11 start-page: 3153 year: 2021 ident: D2CS00013J/cit36/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c00099 – volume: 8 start-page: 4654 year: 2017 ident: D2CS00013J/cit114/1 publication-title: Chem. Sci. doi: 10.1039/C7SC00953D – volume: 53 start-page: 45 year: 2020 ident: D2CS00013J/cit12f/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00511 – volume: 56 start-page: 8385 year: 2000 ident: D2CS00013J/cit34a/1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(00)00691-8 – volume: 38 start-page: 661 year: 1965 ident: D2CS00013J/cit63b/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.38.661 – volume: 137 start-page: 1400 year: 2015 ident: D2CS00013J/cit108/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512073m – volume: 11 start-page: 5472 year: 2021 ident: D2CS00013J/cit8d/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01000 |
SSID | ssj0011762 |
Score | 2.6768537 |
SecondaryResourceType | review_article |
Snippet | Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 726 |
SubjectTerms | Alkenes Cations Chemical synthesis Coupling Coupling (molecular) Electron transfer Lewis bases Nucleophiles Oxidation Oxidizing agents Photocatalysis Radicals Reaction mechanisms Single electrons stoichiometry Substrates synthesis |
Title | Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications |
URI | https://www.proquest.com/docview/2702195223 https://www.proquest.com/docview/2694961957 https://www.proquest.com/docview/2718356033 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtE2UBG8IKQWRLfGt6mUlQqhoTopL5VseOMjimdekEav57jS5xUDAS8RJV9alk-X04-2-eC0MtBKrRKtCaJKBLCOJek0FVOpCi4GMgMvlI23vn0kxifscmMzzoR1za6ZKPe6B83xpX8j1ahDfRqo2T_QbNxUGiA36BfeIKG4flXOh75GjbEVtD9utws3VnMtUvBevkNjBgpYRbfgVKuCn8d48_nXuumyps9DwCT5_zMvTOAc49dX9fAC904nfvtLo-NeQYar8-Q1TT692zdEezplkwW0fDPFoVr_QyQPI-Szp1gsqjJ2ITWcAgB-1ebFJZ3bBW1BxNJ8Ig23pYyAdqXPr1jY2xDdtkAqq7plJnofIVl5nPB_GLhE2oTpJaZXjv6etF-x6J3Ydu5h_Yz2D5kPbR_Mpp--Bjvl1Ipwv2Sn3aTuJbmx-2_d6lKu__YWzXFYRwJmd5Dd8PuAZ94KNxHt0z9AN0eNup8iC4aSBzvAgLvAgIHQGCvWhwB8RZ7OOAGDnhR4wgH3IXDI3T2fjQdjkkop0E0MJUNAWrOK16pgSgHGoh7ltvETNKkWiijdF6pVGuuk7QqqJRUa1akIDmgjCsjTEkPUK9e1uYxwmWuElUYXqYlY0yVSmvFmcgpjFLIhPXRq2bl5jrkmrclTy7nzueB5vN32fCLW-VJH72Islc-w8qNUkeNAubhDVzPbSxlmsMOgvbR89gN62UvvYraLLcgI3KWC5CSf5ABgkaB-lMY5wCUG-fRYuHJ7zoO0Z32hThCvc1qa54CT92oZwF0PwHlO5dS |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electro-%2Fphotocatalytic+alkene-derived+radical+cation+chemistry%3A+recent+advances+in+synthetic+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Luo%2C+Mu-Jia&rft.au=Xiao%2C+Qiang&rft.au=Li%2C+Jin-Heng&rft.date=2022-08-15&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=16&rft.spage=726&rft.epage=7237&rft_id=info:doi/10.1039%2Fd2cs00013j&rft.externalDocID=d2cs00013j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |