Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications

Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and g...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 51; no. 16; pp. 726 - 7237
Main Authors Luo, Mu-Jia, Xiao, Qiang, Li, Jin-Heng
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 15.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the C&z.dbd;C bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling. This review covers the recent progress in electro-/photo-catalytic alkene-derived radical cation chemistry for organic synthesis, including synthetic strategies, plausible mechanisms and further research outlook.
AbstractList Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the C&z.dbd;C bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling. This review covers the recent progress in electro-/photo-catalytic alkene-derived radical cation chemistry for organic synthesis, including synthetic strategies, plausible mechanisms and further research outlook.
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the C=C bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Author Xiao, Qiang
Li, Jin-Heng
Luo, Mu-Jia
AuthorAffiliation State Key Laboratory of Applied Organic Chemistry
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
Key Laboratory of Organic Chemistry of Jiangxi Province
Jiangxi Science & Technology Normal University
Lanzhou University
Henan Normal University
Nanchang Hangkong University
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
– name: Key Laboratory of Organic Chemistry of Jiangxi Province
– name: State Key Laboratory of Applied Organic Chemistry
– name: Nanchang Hangkong University
– name: Lanzhou University
– name: Jiangxi Science & Technology Normal University
– name: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
– name: Henan Normal University
Author_xml – sequence: 1
  givenname: Mu-Jia
  surname: Luo
  fullname: Luo, Mu-Jia
– sequence: 2
  givenname: Qiang
  surname: Xiao
  fullname: Xiao, Qiang
– sequence: 3
  givenname: Jin-Heng
  surname: Li
  fullname: Li, Jin-Heng
BookMark eNqFkV1LHDEUhoModLW96b0w4E0RpuZrkpneldV-IXihvR4yZ86w2cZkTLLC_nvjrliQQq9yIM_7cJL3mBz64JGQj4x-ZlR0FyOHRCllYn1AFkwqWkst5SFZUEFVXS74O3Kc0rpMTCu-IOsrh5BjqC_mVcgBTDZumy1Uxv1Bj_WI0T7iWEUzWjCuKoANvoIV3tuU4_ZLFRHQ58qMj8YDpsr6Km19XuHOMs_O7jPpPTmajEv44eU8Ib-_Xd0tf9TXN99_Lr9e1yCZyLWkTTM109CqsYWGdbyTutUaGagBB-imgQE0QNlkhNYCQBpWyFbIZkCFozghn_beOYaHDabcl1UBnTMewyb1XLNWNIoK8X9UdbJTrGt0Qc_eoOuwib48pAgpLwznz8LzPQUxpBRx6udo703c9oz2zw31l3x5u2voV4HpGxhs3v1Vjsa6f0dO95GY4FX9t3TxBJM8n_w
CitedBy_id crossref_primary_10_1021_acscatal_4c02638
crossref_primary_10_1021_acs_accounts_4c00638
crossref_primary_10_1021_acs_orglett_4c03707
crossref_primary_10_1039_D3QO00281K
crossref_primary_10_1016_j_cclet_2023_108633
crossref_primary_10_1002_ejoc_202300528
crossref_primary_10_1002_cctc_202301572
crossref_primary_10_1055_a_2036_2074
crossref_primary_10_1039_D4OB02036G
crossref_primary_10_1021_jacs_4c12925
crossref_primary_10_1039_D3GC02831C
crossref_primary_10_1021_acs_orglett_3c03733
crossref_primary_10_1039_D2GC03829C
crossref_primary_10_1039_D2GC04636A
crossref_primary_10_1002_ejoc_202301060
crossref_primary_10_1021_jacs_2c12902
crossref_primary_10_1021_acs_orglett_2c03774
crossref_primary_10_1021_jacs_3c04879
crossref_primary_10_1002_cctc_202400760
crossref_primary_10_1039_D4CC06246A
crossref_primary_10_1039_D3GC00728F
crossref_primary_10_1055_a_2039_4825
crossref_primary_10_1016_j_cclet_2023_108902
crossref_primary_10_1039_D3GC00837A
crossref_primary_10_1002_ejoc_202301065
crossref_primary_10_1002_smll_202304776
crossref_primary_10_1021_acs_orglett_4c00682
crossref_primary_10_1002_cjoc_202300174
crossref_primary_10_1039_D3QO01010D
crossref_primary_10_1038_s41467_024_44746_w
crossref_primary_10_1021_acscatal_4c02977
crossref_primary_10_1021_acs_orglett_4c00935
crossref_primary_10_1002_ajoc_202300101
crossref_primary_10_1021_acs_joc_4c02567
crossref_primary_10_1002_ange_202408177
crossref_primary_10_1016_j_tet_2024_134131
crossref_primary_10_1016_j_enmf_2025_01_001
crossref_primary_10_1021_acs_orglett_4c03922
crossref_primary_10_1021_acs_orglett_3c02989
crossref_primary_10_1039_D4GC04614E
crossref_primary_10_1021_acs_orglett_3c02744
crossref_primary_10_1021_acs_orglett_3c03678
crossref_primary_10_1039_D4SC01905A
crossref_primary_10_1093_chemle_upae103
crossref_primary_10_1039_D4OB01337A
crossref_primary_10_1055_s_0040_1720135
crossref_primary_10_1039_D3QO01431B
crossref_primary_10_1016_j_mcat_2024_113999
crossref_primary_10_1039_D4QO01740D
crossref_primary_10_1002_anie_202408177
crossref_primary_10_1039_D4CC01335B
crossref_primary_10_3390_ma16237409
crossref_primary_10_1039_D3GC04061E
crossref_primary_10_1002_ange_202309859
crossref_primary_10_1021_acs_orglett_4c02163
crossref_primary_10_1002_ange_202311807
crossref_primary_10_1039_D3GC02701E
crossref_primary_10_3390_catal13060919
crossref_primary_10_1002_hlca_202400017
crossref_primary_10_1021_jacs_3c04010
crossref_primary_10_1038_s41929_023_01032_0
crossref_primary_10_1002_ange_202312803
crossref_primary_10_1039_D4QO02280G
crossref_primary_10_1039_D3QO00408B
crossref_primary_10_1039_D3QO01040F
crossref_primary_10_1039_D2QO01430K
crossref_primary_10_1002_adsc_202401276
crossref_primary_10_1002_adsc_202401430
crossref_primary_10_1039_D2CC05570H
crossref_primary_10_1021_acs_joc_3c01315
crossref_primary_10_1002_asia_202401093
crossref_primary_10_1021_acs_oprd_4c00186
crossref_primary_10_1039_D3QO01659E
crossref_primary_10_1002_anie_202311807
crossref_primary_10_1002_ejoc_202300441
crossref_primary_10_1039_D3OB00744H
crossref_primary_10_1021_acs_joc_5c00087
crossref_primary_10_1021_jacs_3c10439
crossref_primary_10_1002_anie_202309859
crossref_primary_10_1002_adsc_202301289
crossref_primary_10_1002_slct_202404815
crossref_primary_10_1039_D3QO01457F
crossref_primary_10_1021_acscatal_2c06040
crossref_primary_10_1039_D4SC01858C
crossref_primary_10_1021_acs_joc_4c01023
crossref_primary_10_1002_tcr_202400263
crossref_primary_10_1039_D3OB00313B
crossref_primary_10_1021_acs_orglett_4c04207
crossref_primary_10_1039_D4QO00193A
crossref_primary_10_1039_D3OB01915B
crossref_primary_10_1039_D3GC00344B
crossref_primary_10_1039_D3QO00030C
crossref_primary_10_1039_D4CC03256J
crossref_primary_10_1021_acs_joc_4c02363
crossref_primary_10_1002_ange_202501424
crossref_primary_10_1002_ejoc_202201022
crossref_primary_10_1039_D4CC05976J
crossref_primary_10_1039_D4GC00186A
crossref_primary_10_1002_ejoc_202201023
crossref_primary_10_1021_acs_joc_4c01830
crossref_primary_10_1360_TB_2023_0205
crossref_primary_10_1016_j_gresc_2022_10_008
crossref_primary_10_1002_adsc_202400247
crossref_primary_10_1021_acsmaterialslett_3c00645
crossref_primary_10_1002_chem_202402458
crossref_primary_10_1021_acs_orglett_4c02355
crossref_primary_10_1039_D4CC00608A
crossref_primary_10_1016_j_trechm_2024_06_013
crossref_primary_10_1021_acs_joc_4c02803
crossref_primary_10_1021_acs_orglett_3c00121
crossref_primary_10_1002_anie_202407207
crossref_primary_10_1021_jacs_4c05881
crossref_primary_10_1002_chem_202404113
crossref_primary_10_1021_acs_joc_2c03020
crossref_primary_10_1039_D2QO01425D
crossref_primary_10_1055_a_2518_0987
crossref_primary_10_1002_adma_202308101
crossref_primary_10_1002_anie_202300166
crossref_primary_10_1016_j_jcat_2024_115817
crossref_primary_10_1055_s_0043_1775374
crossref_primary_10_1002_anie_202301892
crossref_primary_10_1039_D4QO00059E
crossref_primary_10_1002_anie_202312803
crossref_primary_10_1002_anie_202501424
crossref_primary_10_1039_D3QO00728F
crossref_primary_10_6023_cjoc202310032
crossref_primary_10_1039_D3GC00175J
crossref_primary_10_1002_adsc_202301066
crossref_primary_10_1021_acs_joc_3c02959
crossref_primary_10_1039_D4GC02848A
crossref_primary_10_1021_acs_orglett_4c01038
crossref_primary_10_1039_D3QO00662J
crossref_primary_10_1002_ange_202407207
crossref_primary_10_1002_ejoc_202401180
crossref_primary_10_1021_acs_joc_3c00015
crossref_primary_10_6023_cjoc202404010
crossref_primary_10_1021_acs_orglett_4c01831
crossref_primary_10_1038_s41467_024_54079_3
crossref_primary_10_1002_cjoc_202400008
crossref_primary_10_1002_ange_202300166
crossref_primary_10_1002_ange_202301892
Cites_doi 10.1002/anie.201702940
10.1002/adsc.202000191
10.1002/anie.201801106
10.1002/anie.201712384
10.1021/acs.accounts.7b00287
10.1002/ajoc.201700056
10.1016/j.chempr.2020.12.002
10.1021/jacs.6b07411
10.1055/s-1984-31037
10.1021/jacs.7b09744
10.1002/cctc.202000900
10.1021/jacs.5b03733
10.1126/science.1161976
10.1021/ja4057294
10.1021/acssuschemeng.1c04473
10.1002/anie.202006115
10.1021/ja01042a004
10.1021/acscentsci.0c00549
10.1021/acscatal.6b03388
10.1021/ar200236v
10.1016/0032-3861(64)90207-1
10.1021/acs.accounts.9b00472
10.1021/ol301311e
10.1021/ja026739l
10.1039/C4SC02331E
10.1039/D0SC03148H
10.31635/ccschem.020.202000374
10.1021/ja4031616
10.1055/s-0035-1560171
10.1021/cr400582d
10.1002/cjoc.201800529
10.1021/ja903732v
10.1007/s11426-016-9010-9
10.2174/1385272825666210706124548
10.1021/acscatal.0c05540
10.1021/acs.chemrev.1c00620
10.1039/C4SC01982B
10.1021/jacs.1c09484
10.1021/cr0683966
10.1021/acs.orglett.6b02560
10.1021/cr0680033
10.1039/C6QO00806B
10.1002/asia.202001403
10.1021/ol902813m
10.1002/cjoc.201900028
10.1021/acs.chemrev.7b00397
10.1021/ja806259z
10.1246/cl.1981.1707
10.1002/anie.201805732
10.1021/acs.orglett.1c01824
10.1002/anie.200903992
10.1021/acs.accounts.6b00272
10.1002/anie.201402443
10.1002/anie.202007548
10.1021/acs.accounts.0c00306
10.1021/acs.accounts.8b00265
10.1038/nchem.2000
10.1002/slct.201800170
10.1021/jacs.8b06881
10.1021/acs.chemrev.7b00731
10.1021/ja01650a041
10.1039/C5GC02550H
10.1016/j.tet.2007.04.001
10.1021/acs.orglett.5b00083
10.1002/anie.202005745
10.1039/c2sc20658g
10.1021/cr9903048
10.1021/jo061868w
10.1002/anie.201711359
10.1039/C6CC02246D
10.1039/C9CS00873J
10.1002/anie.201902315
10.3762/bjoc.8.229
10.1039/C6SC02117D
10.1039/D1CS00150G
10.1039/B006015L
10.1021/ja016885b
10.1021/acs.joc.8b00738
10.1039/D1CS00223F
10.1021/acs.orglett.1c01596
10.1021/jacs.1c01967
10.1126/science.1208685
10.1021/acs.orglett.9b04201
10.1039/C7CS00619E
10.1021/acs.joc.8b02025
10.1002/ajoc.202100666
10.1021/acs.accounts.9b00529
10.1021/jo00979a024
10.1021/ar010108z
10.1021/ja206306f
10.1021/ja9033582
10.1021/jacs.8b08592
10.1002/anie.201510418
10.1021/ja038656q
10.1021/ja01333a041
10.1016/S1872-2067(18)63095-5
10.1021/acs.accounts.9b00510
10.1021/acs.chemrev.0c00030
10.1126/science.aat2117
10.1039/D0SC03655B
10.1016/S0040-4020(01)00358-1
10.1002/adsc.201901157
10.1038/s41467-018-06020-8
10.1038/s41586-021-03717-7
10.1002/anie.201200961
10.1002/celc.202000252
10.1002/anie.201809679
10.1039/c3cs60464k
10.1016/j.scib.2019.08.014
10.1021/acscatal.8b01697
10.1002/ajoc.201900020
10.1021/ja711029u
10.1002/tcr.201800053
10.1021/acs.chemrev.7b00763
10.1021/ol7019845
10.1002/anie.201609274
10.1021/acscatal.8b01069
10.1021/ar50136a006
10.1002/tcr.202100048
10.1021/jacs.1c02747
10.1021/ol3030154
10.1021/acscatal.7b02892
10.1021/acs.orglett.6b03545
10.1021/ol051696+
10.1039/B913880N
10.1002/anie.200503656
10.1021/ja2093579
10.1021/acs.orglett.5b00316
10.1002/jlac.197719770203
10.1002/anie.202016666
10.1039/D1CS00208B
10.1002/anie.201507594
10.1246/cl.2009.166
10.1021/acs.orglett.8b02954
10.1039/D1SC00760B
10.1002/anie.201210111
10.1126/science.aal3010
10.1039/D1RA02606B
10.1021/jacs.9b08746
10.1039/B920606J
10.1002/anie.201801305
10.1016/j.tet.2006.08.105
10.1002/anie.201711876
10.1021/acs.accounts.9b00512
10.1021/acs.chemrev.6b00334
10.1021/acs.orglett.7b01095
10.1021/jacs.6b12653
10.1039/D1GC02807C
10.1016/S0013-4686(03)00250-0
10.1002/anie.201610722
10.1021/acs.orglett.0c02582
10.1002/anie.201501220
10.1016/j.jphotochem.2019.112340
10.1016/j.molstruc.2012.06.063
10.1038/s41467-019-13024-5
10.1021/cr300503r
10.1039/D1QO00375E
10.1021/ol802984n
10.1002/anie.200500368
10.1021/ol051296m
10.1021/acs.chemrev.0c00335
10.1021/jf1030778
10.1021/ja410865z
10.1021/acs.accounts.9b00513
10.1016/S0040-4039(01)90778-6
10.1021/ja309635w
10.1021/acs.chemrev.6b00018
10.1021/ja506228u
10.1002/cjoc.201900054
10.1002/anie.202110178
10.31635/ccschem.020.202000490
10.1021/ol100800u
10.1002/adsc.201600587
10.1016/S0040-4020(00)00840-1
10.1021/acs.chemrev.0c01124
10.1021/ja103934y
10.1139/v69-343
10.1002/ajoc.201600441
10.1002/anie.198606831
10.1002/anie.202011657
10.1002/anie.201408650
10.1002/adsc.201801173
10.1021/cr300389u
10.1021/acs.orglett.8b02541
10.1002/anie.201003924
10.1002/anie.200801760
10.1002/anie.202016679
10.1002/anie.202005765
10.1038/s41467-018-03534-z
10.1007/BF00626308
10.1039/C7CC06745C
10.1021/acs.accounts.6b00304
10.1021/acs.orglett.9b00526
10.1016/S0040-4020(01)89486-2
10.1021/cs400088e
10.1002/anie.201809454
10.1002/anie.201913332
10.1021/acs.orglett.8b03345
10.1126/science.aan6206
10.1038/nature18008
10.1021/ol203467v
10.1021/ar040051r
10.1021/jo200490q
10.1039/C9CS00692C
10.1021/ja0172215
10.1021/jacs.8b07578
10.1021/acscatal.1c00099
10.1039/C7SC00953D
10.1021/acs.accounts.9b00511
10.1016/S0040-4020(00)00691-8
10.1246/bcsj.38.661
10.1021/ja512073m
10.1021/acscatal.1c01000
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d2cs00013j
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 7237
ExternalDocumentID 10_1039_D2CS00013J
d2cs00013j
GroupedDBID -
0-7
02
0R
29B
4.4
5GY
6J9
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CAG
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
53G
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
2WC
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c413t-4055f5fb86d8c5192947877e1c6bebc9fb1cc5c01fa3773cc4a1d8c8345be6ed3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 08:50:24 EDT 2025
Thu Jul 10 18:21:35 EDT 2025
Sun Jun 29 16:07:31 EDT 2025
Tue Jul 01 04:18:48 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Aug 16 07:30:20 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-4055f5fb86d8c5192947877e1c6bebc9fb1cc5c01fa3773cc4a1d8c8345be6ed3
Notes Mu-Jia Luo was born in Jiangxi Province, People's Republic of China, in 1991. He received his MS degree from Central China Normal University (CCNU) in 2017. He joined Prof. Li's group at Hunan University in 2017, where he completed his PhD under the supervision of Professor Jin-Heng Li in 2021. In the same year, he joined the Jiangxi Science & Technology Normal University as a lecturer. His current research interests are focused on electrochemical synthetic methodologies.
Jin-Heng Li was born in Hunan, P. R. of China. He received his BS from Hunan Normal University in 1994. From 1997 to 2000, he studied at Guangzhou Institute of Chemistry, Chinese Academy of Sciences, where he obtained his MS degree. After completing his PhD studies at the University of Science and Technology of China in 2002, he continued his studies as a postdoctoral fellow at the University of Hong Kong (P. R. of China). In 2002, he joined the faculty at Hunan Normal University as a professor. In 2011, he worked as a professor in the College of Chemistry and Chemical Engineering at Hunan University. Since 2016, he has been working as a professor at Nanchang Hangkong University. His current research interests are focused on radical chemistry and unsaturated hydrocarbon transformation chemistry, especially including C-H oxidative radical functionalization, cross-coupling reaction, and cycloaddition reaction.
Qiang Xiao was born in Shanxi Province, People's Republic of China, in 1975. He obtained his PhD degree from Tsinghua University with Prof. Yufen Zhao in 2003. From 2004 to 2005, he worked as a research fellow with Prof. Tom Brown at the University of Southampton, UK. Presently, he serves as the director of both Key Laboratory of Organic Chemistry in Jiangxi Province and Institute of Organic Chemistry in Jiangxi Science & Technology University. His research mainly focuses on nucleoside chemistry and new heterocycle synthetic methodologies.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2812-7778
0000-0001-7215-7152
PQID 2702195223
PQPubID 2047503
PageCount 32
ParticipantIDs crossref_primary_10_1039_D2CS00013J
rsc_primary_d2cs00013j
crossref_citationtrail_10_1039_D2CS00013J
proquest_miscellaneous_2718356033
proquest_miscellaneous_2694961957
proquest_journals_2702195223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Chemical Society reviews
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Streiffa (D2CS00013J/cit18e/1) 2021; 50
Gesmundo (D2CS00013J/cit59/1) 2015; 17
Yang (D2CS00013J/cit28/1) 2017; 4
Cho (D2CS00013J/cit9h/1) 2020; 362
Xu (D2CS00013J/cit81/1) 2021; 23
Li (D2CS00013J/cit51/1) 2018; 57
Gentry (D2CS00013J/cit19a/1) 2016; 49
Wang (D2CS00013J/cit7b/1) 2018; 51
Ohkubo (D2CS00013J/cit16b/1) 2010; 46
Miura (D2CS00013J/cit83/1) 2006; 45
Singh (D2CS00013J/cit45c/1) 2017; 107
Tucker (D2CS00013J/cit32b/1) 2012; 51
Qin (D2CS00013J/cit17e/1) 2021; 60
Wu (D2CS00013J/cit44c/1) 2020; 12
Hong (D2CS00013J/cit18a/1) 2004; 37
Rafiee (D2CS00013J/cit15h/1) 2018; 140
Chung (D2CS00013J/cit69/1) 2021; 12
Colonna (D2CS00013J/cit18d/1) 2020; 362
Margrey (D2CS00013J/cit9d/1) 2016; 49
Steckhan (D2CS00013J/cit15a/1) 1986; 25
Liang (D2CS00013J/cit91/1) 2021; 3
Knowles (D2CS00013J/cit32a/1) 2012; 8
Yang (D2CS00013J/cit61/1) 2017; 7
Engels (D2CS00013J/cit64a/1) 1977; 1977
Zhu (D2CS00013J/cit19b/1) 2016; 55
Chen (D2CS00013J/cit48/1) 2015; 17
Feng (D2CS00013J/cit9e/1) 2017; 50
Li (D2CS00013J/cit9f/1) 2018; 20
Ren (D2CS00013J/cit13d/1) 2016
Zhang (D2CS00013J/cit80/1) 2020; 22
Xiong (D2CS00013J/cit78/1) 2018; 140
Yoon (D2CS00013J/cit87b/1) 2013; 3
Zhou (D2CS00013J/cit110/1) 2018; 57
Musacchio (D2CS00013J/cit19c/1) 2017; 355
Yuan (D2CS00013J/cit12m/1) 2021; 50
Ackermann (D2CS00013J/cit12g/1) 2020; 53
Bertrand (D2CS00013J/cit39d/1) 2021; 16
Sivaguru (D2CS00013J/cit60/1) 2021; 121
Nguyen (D2CS00013J/cit20/1) 2013; 135
Grandjean (D2CS00013J/cit75/1) 2013; 52
Griffin (D2CS00013J/cit73/1) 2017; 56
Zhang (D2CS00013J/cit38/1) 2016; 138
Zhang (D2CS00013J/cit71/1) 2020; 59
Shigehisa (D2CS00013J/cit17a/1) 2015
Xu (D2CS00013J/cit56/1) 2008; 130
Liu (D2CS00013J/cit12k/1) 2020; 6
Giglio (D2CS00013J/cit62c/1) 2011; 133
Ohkubo (D2CS00013J/cit105/1) 2005; 7
Seayad (D2CS00013J/cit62b/1) 2010; 12
Yan (D2CS00013J/cit12a/1) 2017; 117
Czyz (D2CS00013J/cit8d/1) 2021; 11
Horner (D2CS00013J/cit10a/1) 2007; 72
Francke (D2CS00013J/cit15b/1) 2014; 43
Ashikari (D2CS00013J/cit65/1) 2012; 14
Sabir (D2CS00013J/cit46b/1) 2018; 3
Dong (D2CS00013J/cit37c/1) 2011; 333
Ošeka (D2CS00013J/cit52/1) 2021; 7
Sarabia (D2CS00013J/cit103/1) 2017; 19
Kanegusuku (D2CS00013J/cit9j/1) 2021; 60
Fukuzumi (D2CS00013J/cit16a/1) 2004; 126
Ozaki (D2CS00013J/cit89/1) 2019; 37
Fu (D2CS00013J/cit15e/1) 2017; 357
Xu (D2CS00013J/cit57/1) 2010; 49
Nutting (D2CS00013J/cit15f/1) 2018; 118
Muzart (D2CS00013J/cit37a/1) 2007; 63
Bao (D2CS00013J/cit44b/1) 2019
Okada (D2CS00013J/cit87c/1) 2018; 83
Wakita (D2CS00013J/cit25b/1) 2011; 59
Wickens (D2CS00013J/cit62f/1) 2015; 54
Badalyan (D2CS00013J/cit15d/1) 2016; 535
Ischay (D2CS00013J/cit87a/1) 2012; 3
Du (D2CS00013J/cit22/1) 2021; 60
Romero (D2CS00013J/cit10b/1) 2014; 136
Li (D2CS00013J/cit62a/1) 2008; 130
Perkowski (D2CS00013J/cit30/1) 2013; 135
Halas (D2CS00013J/cit14b/1) 2003; 48
Siu (D2CS00013J/cit7d/1) 2020; 53
Cai (D2CS00013J/cit67/1) 2018; 9
Xiong (D2CS00013J/cit79/1) 2019; 8
Nicolaou (D2CS00013J/cit111d/1) 2005; 44
Koike (D2CS00013J/cit85b/1) 2009; 38
Wilger (D2CS00013J/cit41/1) 2014; 6
Morse (D2CS00013J/cit29/1) 2015; 6
Arena (D2CS00013J/cit17f/1) 2021; 25
Pirnot (D2CS00013J/cit18c/1) 2016; 55
Belleau (D2CS00013J/cit63a/1) 1969; 47
Holmberg-Douglas (D2CS00013J/cit36/1) 2021; 11
Xiang (D2CS00013J/cit100/1) 2020; 59
Kang (D2CS00013J/cit62g/1) 2016; 52
Ischay (D2CS00013J/cit86/1) 2010; 132
Narayanam (D2CS00013J/cit85d/1) 2009; 131
Xu (D2CS00013J/cit113/1) 2020; 22
Li (D2CS00013J/cit7h/1) 2021; 11
Lin (D2CS00013J/cit93/1) 2017; 19
Zeni (D2CS00013J/cit111e/1) 2006; 106
Moeller (D2CS00013J/cit2a/1) 2000; 56
Hamilton (D2CS00013J/cit26/1) 2012; 134
Schevenels (D2CS00013J/cit39c/1) 2017; 139
Qian (D2CS00013J/cit12i/1) 2020; 7
Shi (D2CS00013J/cit12l/1) 2021; 121
Röckl (D2CS00013J/cit12f/1) 2020; 53
Liu (D2CS00013J/cit115/1) 2019; 37
Cao (D2CS00013J/cit99/1) 2018; 39
Reddy (D2CS00013J/cit2b/1) 2001; 57
Beletskaya (D2CS00013J/cit111c/1) 2000; 100
Imada (D2CS00013J/cit106/1) 2019; 58
Zhou (D2CS00013J/cit114/1) 2017; 8
Francke (D2CS00013J/cit15c/1) 2014; 136
Kojima (D2CS00013J/cit64b/1) 1981; 10
Liu (D2CS00013J/cit35/1) 2020; 59
Callebaut (D2CS00013J/cit45a/1) 2014; 114
Tanaka (D2CS00013J/cit76/1) 2018; 83
Amos (D2CS00013J/cit77/1) 2020; 11
Nguyen (D2CS00013J/cit21/1) 2014; 53
Nakayama (D2CS00013J/cit95/1) 2019; 21
Yuan (D2CS00013J/cit12e/1) 2019; 52
Miller (D2CS00013J/cit19f/1) 2019; 141
Patel (D2CS00013J/cit9i/1) 2021; 10
Reed (D2CS00013J/cit58/1) 2018; 20
Heck (D2CS00013J/cit111b/1) 1979; 12
Novaes (D2CS00013J/cit7e/1) 2021; 50
Zhang (D2CS00013J/cit101/1) 2018; 9
Huang (D2CS00013J/cit18b/1) 2015; 115
Chen (D2CS00013J/cit44e/1) 2021; 8
Sauer (D2CS00013J/cit7a/1) 2018; 8
Chiba (D2CS00013J/cit82/1) 2001; 123
Wu (D2CS00013J/cit42/1) 2018; 57
Yang (D2CS00013J/cit66/1) 2017; 53
Raoult (D2CS00013J/cit14a/1) 1984; 14
Nicewicz (D2CS00013J/cit85a/1) 2008; 322
Xiong (D2CS00013J/cit12d/1) 2019; 52
Okada (D2CS00013J/cit84c/1) 2011; 76
Heck (D2CS00013J/cit111a/1) 1972; 37
Stevenson (D2CS00013J/cit94/1) 2015; 54
Bennett (D2CS00013J/cit34c/1) 2018; 118
Cai (D2CS00013J/cit54/1) 2019; 10
Shin (D2CS00013J/cit9g/1) 2018; 20
Mangion (D2CS00013J/cit3/1) 2002; 35
Xiang (D2CS00013J/cit9c/1) 2012; 1029
Hou (D2CS00013J/cit15g/1) 2018; 57
Huang (D2CS00013J/cit8c/1) 2020; 3
Crossley (D2CS00013J/cit17b/1) 2016; 116
Kärkäs (D2CS00013J/cit12c/1) 2018; 47
Xiong (D2CS00013J/cit7g/1) 2021; 50
Taeufer (D2CS00013J/cit23/1) 2021; 11
Picon (D2CS00013J/cit62e/1) 2012; 14
Yu (D2CS00013J/cit13e/1) 2021; 121
Kennemur (D2CS00013J/cit17c/1) 2021; 121
Xu (D2CS00013J/cit9b/1) 2010; 12
Monos (D2CS00013J/cit55/1) 2018; 361
Narayanam (D2CS00013J/cit13a/1) 2011; 40
Siu (D2CS00013J/cit47/1) 2002; 124
Mei (D2CS00013J/cit44a/1) 2019; 37
Lin (D2CS00013J/cit92/1) 2011; 133
Zhang (D2CS00013J/cit68/1) 2019; 361
Lardy (D2CS00013J/cit19d/1) 2018; 140
Jira (D2CS00013J/cit37b/1) 2009; 48
Dong (D2CS00013J/cit9l/1) 2021; 23
Bauld (D2CS00013J/cit1/1) 1989; 45
Hirata (D2CS00013J/cit43/1) 2021; 23
Skubi (D2CS00013J/cit13c/1) 2016; 116
Chinn (D2CS00013J/cit19g/1) 2021; 143
Hu (D2CS00013J/cit102/1) 2018; 57
Hu (D2CS00013J/cit31/1) 2017; 7
Ogawa (D2CS00013J/cit108/1) 2015; 137
Chen (D2CS00013J/cit33/1) 2020; 392
Roth (D2CS00013J/cit11/1) 2016
Lin (D2CS00013J/cit74/1) 2017; 6
Reed (D2CS00013J/cit24/1) 2021; 143
Sheta (D2CS00013J/cit8b/1) 2020; 11
Yamamoto (D2CS00013J/cit12h/1) 2020; 53
Cheng (D2CS00013J/cit27/1) 2019; 64
Ma (D2CS00013J/cit90/1) 2019; 58
Wang (D2CS00013J/cit98/1) 2017; 56
Nakafuku (D2CS00013J/cit19e/1) 2018; 140
Sarabia (D2CS00013J/cit104/1) 2018; 57
Ellinger (D2CS00013J/cit5/1) 1964; 5
Sigman (D2CS00013J/cit37d/1) 2012; 45
Wu (D2CS00013J/cit44d/1) 2020; 53
Zhong (D2CS00013J/cit62d/1) 2012; 14
Wolfe (D2CS00013J/cit25a/1) 2007; 63
Huang (D2CS00013J/cit70/1) 2021; 143
Vanhoof (D2CS00013J/cit49/1) 2021; 9
Marzabadi (D2CS00013J/cit34a/1) 2000; 56
Wei (D2CS00013J/cit97/1) 2016; 358
Mayo (D2CS00013J/cit40b/1) 1954; 76
Jiang (D2CS00013J/cit7f/1) 2020; 49
Liu (D2CS00013J/cit8a/1) 2020; 59
Heard (D2CS00013J/cit12j/1) 2020; 59
Sweeney (D2CS00013J/cit46a/1) 2002; 31
Holst (D2CS00013J/cit50/1) 2021; 596
Zhang (D2CS00013J/cit17d/1) 2021; 3
Wang (D2CS00013J/cit96/1) 2016; 18
Scott (D2CS00013J/cit4/1) 1963; 17
Qin (D2CS00013J/cit116/1) 2021; 60
Straathof (D2CS00013J/cit32c/1) 2014; 5
Okada (D2CS00013J/cit84b/1) 2009; 11
Gaspar (D2CS00013J/cit39b/1) 2008; 47
Inoue (D2CS00013J/cit63b/1) 1965; 38
Hassner (D2CS00013J/cit39a/1) 1984
Schutte (D2CS00013J/cit6/1) 1969; 91
Chen (D2CS00013J/cit9k/1) 2021; 21
Sabir (D2CS00013J/cit45b/1) 2017; 6
Arata (D2CS00013J/cit84a/1) 2007; 9
Yi (D2CS00013J/cit112/1) 2017; 56
Zeng (D2CS00013J/cit34b/1) 2017; 60
Liu (D2CS00013J/cit53/1) 2021; 3
Okada (D2CS00013J/cit88/1) 2016; 7
Lin (D2CS00013J/cit7c/1) 2019; 19
Zhao (D2CS00013J/cit107/1) 2018; 57
Brandt (D2CS00013J/cit9a/1) 2005; 7
Zhang (D2CS00013J/cit72/1) 2016; 18
Ma (D2CS00013J/cit12b/1) 2018; 8
Prier (D2CS00013J/cit13b/1) 2013; 113
Liu (D2CS00013J/cit2c/1) 2002; 124
Perkowski (D2CS00013J/cit109/1) 2015; 137
Du (D2CS00013J/cit85c/1) 2009; 131
Kharasch (D2CS00013J/cit40a/1) 1933; 55
References_xml – volume: 56
  start-page: 6896
  year: 2017
  ident: D2CS00013J/cit98/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702940
– volume: 362
  start-page: 2183
  year: 2020
  ident: D2CS00013J/cit9h/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202000191
– volume: 57
  start-page: 5695
  year: 2018
  ident: D2CS00013J/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801106
– volume: 57
  start-page: 2174
  year: 2018
  ident: D2CS00013J/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712384
– volume: 50
  start-page: 2346
  year: 2017
  ident: D2CS00013J/cit9e/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00287
– volume: 6
  start-page: 782
  year: 2017
  ident: D2CS00013J/cit45b/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201700056
– volume: 7
  start-page: 255
  year: 2021
  ident: D2CS00013J/cit52/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.002
– volume: 138
  start-page: 12037
  year: 2016
  ident: D2CS00013J/cit38/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07411
– start-page: 960
  year: 1984
  ident: D2CS00013J/cit39a/1
  publication-title: Synthesis
  doi: 10.1055/s-1984-31037
– volume: 140
  start-page: 22
  year: 2018
  ident: D2CS00013J/cit15h/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09744
– volume: 12
  start-page: 5312
  year: 2020
  ident: D2CS00013J/cit44c/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202000900
– volume: 137
  start-page: 7580
  year: 2015
  ident: D2CS00013J/cit109/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03733
– volume: 322
  start-page: 77
  year: 2008
  ident: D2CS00013J/cit85a/1
  publication-title: Science
  doi: 10.1126/science.1161976
– volume: 135
  start-page: 10334
  year: 2013
  ident: D2CS00013J/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4057294
– volume: 9
  start-page: 11596
  year: 2021
  ident: D2CS00013J/cit49/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c04473
– volume: 59
  start-page: 15204
  year: 2020
  ident: D2CS00013J/cit35/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006115
– volume: 91
  start-page: 3715
  year: 1969
  ident: D2CS00013J/cit6/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01042a004
– volume: 6
  start-page: 1317
  year: 2020
  ident: D2CS00013J/cit12k/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00549
– volume: 7
  start-page: 1432
  year: 2017
  ident: D2CS00013J/cit31/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03388
– volume: 45
  start-page: 874
  year: 2012
  ident: D2CS00013J/cit37d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200236v
– volume: 5
  start-page: 559
  year: 1964
  ident: D2CS00013J/cit5/1
  publication-title: Polymer
  doi: 10.1016/0032-3861(64)90207-1
– volume: 52
  start-page: 3339
  year: 2019
  ident: D2CS00013J/cit12d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00472
– volume: 14
  start-page: 3336
  year: 2012
  ident: D2CS00013J/cit62d/1
  publication-title: Org. Lett.
  doi: 10.1021/ol301311e
– volume: 124
  start-page: 10101
  year: 2002
  ident: D2CS00013J/cit2c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026739l
– volume: 3
  start-page: 1727
  year: 2021
  ident: D2CS00013J/cit91/1
  publication-title: CCS Chem.
– volume: 6
  start-page: 270
  year: 2015
  ident: D2CS00013J/cit29/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02331E
– volume: 11
  start-page: 9109
  year: 2020
  ident: D2CS00013J/cit8b/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03148H
– volume: 3
  start-page: 1746
  year: 2020
  ident: D2CS00013J/cit8c/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000374
– volume: 135
  start-page: 9588
  year: 2013
  ident: D2CS00013J/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4031616
– start-page: 2479
  year: 2015
  ident: D2CS00013J/cit17a/1
  publication-title: Synlett
  doi: 10.1055/s-0035-1560171
– volume: 114
  start-page: 7954
  year: 2014
  ident: D2CS00013J/cit45a/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr400582d
– volume: 37
  start-page: 292
  year: 2019
  ident: D2CS00013J/cit44a/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800529
– volume: 131
  start-page: 14604
  year: 2009
  ident: D2CS00013J/cit85c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903732v
– volume: 60
  start-page: 1162
  year: 2017
  ident: D2CS00013J/cit34b/1
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-016-9010-9
– volume: 25
  start-page: 1831
  year: 2021
  ident: D2CS00013J/cit17f/1
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272825666210706124548
– volume: 11
  start-page: 4862
  year: 2021
  ident: D2CS00013J/cit23/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05540
– volume: 121
  start-page: 14649
  year: 2021
  ident: D2CS00013J/cit17c/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00620
– volume: 5
  start-page: 4768
  year: 2014
  ident: D2CS00013J/cit32c/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01982B
– volume: 143
  start-page: 18331
  year: 2021
  ident: D2CS00013J/cit19g/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09484
– volume: 106
  start-page: 4644
  year: 2006
  ident: D2CS00013J/cit111e/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0683966
– volume: 18
  start-page: 5256
  year: 2016
  ident: D2CS00013J/cit72/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b02560
– volume: 107
  start-page: 2080
  year: 2017
  ident: D2CS00013J/cit45c/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0680033
– volume: 4
  start-page: 1037
  year: 2017
  ident: D2CS00013J/cit28/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C6QO00806B
– volume: 16
  start-page: 563
  year: 2021
  ident: D2CS00013J/cit39d/1
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202001403
– volume: 12
  start-page: 1412
  year: 2010
  ident: D2CS00013J/cit62b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol902813m
– volume: 37
  start-page: 570
  year: 2019
  ident: D2CS00013J/cit115/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201900028
– volume: 117
  start-page: 13230
  year: 2017
  ident: D2CS00013J/cit12a/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00397
– volume: 130
  start-page: 13542
  year: 2008
  ident: D2CS00013J/cit56/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806259z
– volume: 10
  start-page: 1707
  year: 1981
  ident: D2CS00013J/cit64b/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1981.1707
– volume: 57
  start-page: 11015
  year: 2018
  ident: D2CS00013J/cit104/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805732
– volume: 23
  start-page: 5693
  year: 2021
  ident: D2CS00013J/cit43/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c01824
– volume: 48
  start-page: 9034
  year: 2009
  ident: D2CS00013J/cit37b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200903992
– volume: 49
  start-page: 1546
  year: 2016
  ident: D2CS00013J/cit19a/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00272
– volume: 53
  start-page: 6198
  year: 2014
  ident: D2CS00013J/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402443
– volume: 59
  start-page: 21195
  year: 2020
  ident: D2CS00013J/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007548
– volume: 53
  start-page: 1620
  year: 2020
  ident: D2CS00013J/cit44d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00306
– volume: 51
  start-page: 2036
  year: 2018
  ident: D2CS00013J/cit7b/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00265
– volume: 6
  start-page: 720
  year: 2014
  ident: D2CS00013J/cit41/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2000
– volume: 3
  start-page: 3702
  year: 2018
  ident: D2CS00013J/cit46b/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201800170
– volume: 140
  start-page: 12318
  year: 2018
  ident: D2CS00013J/cit19d/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06881
– volume: 118
  start-page: 7931
  year: 2018
  ident: D2CS00013J/cit34c/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00731
– volume: 76
  start-page: 5392
  year: 1954
  ident: D2CS00013J/cit40b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01650a041
– volume: 18
  start-page: 2864
  year: 2016
  ident: D2CS00013J/cit96/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC02550H
– volume: 63
  start-page: 7505
  year: 2007
  ident: D2CS00013J/cit37a/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2007.04.001
– volume: 17
  start-page: 986
  year: 2015
  ident: D2CS00013J/cit48/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b00083
– volume: 59
  start-page: 18866
  year: 2020
  ident: D2CS00013J/cit12j/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005745
– volume: 3
  start-page: 2807
  year: 2012
  ident: D2CS00013J/cit87a/1
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20658g
– volume: 100
  start-page: 3009
  year: 2000
  ident: D2CS00013J/cit111c/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9903048
– volume: 72
  start-page: 1609
  year: 2007
  ident: D2CS00013J/cit10a/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo061868w
– volume: 57
  start-page: 1286
  year: 2018
  ident: D2CS00013J/cit102/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711359
– volume: 52
  start-page: 6193
  year: 2016
  ident: D2CS00013J/cit62g/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02246D
– volume: 50
  start-page: 1512
  year: 2021
  ident: D2CS00013J/cit18e/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00873J
– volume: 58
  start-page: 6756
  year: 2019
  ident: D2CS00013J/cit90/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902315
– volume: 8
  start-page: 2025
  year: 2012
  ident: D2CS00013J/cit32a/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.8.229
– volume: 7
  start-page: 6387
  year: 2016
  ident: D2CS00013J/cit88/1
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02117D
– volume: 50
  start-page: 10058
  year: 2021
  ident: D2CS00013J/cit12m/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00150G
– volume: 31
  start-page: 247
  year: 2002
  ident: D2CS00013J/cit46a/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B006015L
– volume: 123
  start-page: 11314
  year: 2001
  ident: D2CS00013J/cit82/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016885b
– volume: 83
  start-page: 4948
  year: 2018
  ident: D2CS00013J/cit87c/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b00738
– volume: 50
  start-page: 7941
  year: 2021
  ident: D2CS00013J/cit7e/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00223F
– volume: 23
  start-page: 4870
  year: 2021
  ident: D2CS00013J/cit81/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c01596
– volume: 143
  start-page: 7247
  year: 2021
  ident: D2CS00013J/cit70/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01967
– volume: 333
  start-page: 1609
  year: 2011
  ident: D2CS00013J/cit37c/1
  publication-title: Science
  doi: 10.1126/science.1208685
– volume: 22
  start-page: 1692
  year: 2020
  ident: D2CS00013J/cit113/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b04201
– volume: 47
  start-page: 5786
  year: 2018
  ident: D2CS00013J/cit12c/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00619E
– volume: 83
  start-page: 13625
  year: 2018
  ident: D2CS00013J/cit76/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b02025
– volume: 10
  start-page: 3201
  year: 2021
  ident: D2CS00013J/cit9i/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202100666
– volume: 53
  start-page: 547
  year: 2020
  ident: D2CS00013J/cit7d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00529
– volume: 37
  start-page: 2320
  year: 1972
  ident: D2CS00013J/cit111a/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00979a024
– start-page: 1139
  year: 2016
  ident: D2CS00013J/cit13d/1
  publication-title: Synlett
– volume: 35
  start-page: 297
  year: 2002
  ident: D2CS00013J/cit3/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010108z
– volume: 133
  start-page: 13320
  year: 2011
  ident: D2CS00013J/cit62c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206306f
– volume: 131
  start-page: 8756
  year: 2009
  ident: D2CS00013J/cit85d/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9033582
– volume: 140
  start-page: 16387
  year: 2018
  ident: D2CS00013J/cit78/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08592
– volume: 55
  start-page: 2226
  year: 2016
  ident: D2CS00013J/cit19b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510418
– volume: 126
  start-page: 1600
  year: 2004
  ident: D2CS00013J/cit16a/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038656q
– volume: 55
  start-page: 2468
  year: 1933
  ident: D2CS00013J/cit40a/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01333a041
– volume: 39
  start-page: 1194
  year: 2018
  ident: D2CS00013J/cit99/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(18)63095-5
– volume: 53
  start-page: 84
  year: 2020
  ident: D2CS00013J/cit12g/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00510
– volume: 121
  start-page: 506
  year: 2021
  ident: D2CS00013J/cit13e/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00030
– volume: 361
  start-page: 1369
  year: 2018
  ident: D2CS00013J/cit55/1
  publication-title: Science
  doi: 10.1126/science.aat2117
– volume: 11
  start-page: 11274
  year: 2020
  ident: D2CS00013J/cit77/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03655B
– start-page: 4507
  year: 2019
  ident: D2CS00013J/cit44b/1
  publication-title: Synthesis
– volume: 57
  start-page: 5183
  year: 2001
  ident: D2CS00013J/cit2b/1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)00358-1
– volume: 362
  start-page: 1550
  year: 2020
  ident: D2CS00013J/cit18d/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201901157
– volume: 9
  start-page: 3551
  year: 2018
  ident: D2CS00013J/cit67/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06020-8
– volume: 596
  start-page: 74
  year: 2021
  ident: D2CS00013J/cit50/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03717-7
– volume: 51
  start-page: 4144
  year: 2012
  ident: D2CS00013J/cit32b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201200961
– volume: 7
  start-page: 2527
  year: 2020
  ident: D2CS00013J/cit12i/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000252
– volume: 57
  start-page: 15153
  year: 2018
  ident: D2CS00013J/cit107/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809679
– volume: 43
  start-page: 2492
  year: 2014
  ident: D2CS00013J/cit15b/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60464k
– volume: 64
  start-page: 1896
  year: 2019
  ident: D2CS00013J/cit27/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.08.014
– volume: 8
  start-page: 7179
  year: 2018
  ident: D2CS00013J/cit12b/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01697
– volume: 8
  start-page: 658
  year: 2019
  ident: D2CS00013J/cit79/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201900020
– volume: 130
  start-page: 2962
  year: 2008
  ident: D2CS00013J/cit62a/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711029u
– volume: 19
  start-page: 440
  year: 2019
  ident: D2CS00013J/cit7c/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201800053
– volume: 118
  start-page: 4834
  year: 2018
  ident: D2CS00013J/cit15f/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00763
– volume: 9
  start-page: 4347
  year: 2007
  ident: D2CS00013J/cit84a/1
  publication-title: Org. Lett.
  doi: 10.1021/ol7019845
– volume: 56
  start-page: 1120
  year: 2017
  ident: D2CS00013J/cit112/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201609274
– volume: 8
  start-page: 5175
  year: 2018
  ident: D2CS00013J/cit7a/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01069
– volume: 12
  start-page: 146
  year: 1979
  ident: D2CS00013J/cit111b/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50136a006
– volume: 21
  start-page: 2306
  year: 2021
  ident: D2CS00013J/cit9k/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202100048
– volume: 143
  start-page: 6065
  year: 2021
  ident: D2CS00013J/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02747
– volume: 14
  start-page: 6250
  year: 2012
  ident: D2CS00013J/cit62e/1
  publication-title: Org. Lett.
  doi: 10.1021/ol3030154
– volume: 3
  start-page: 872
  year: 2021
  ident: D2CS00013J/cit53/1
  publication-title: CCS Chem.
– volume: 7
  start-page: 8362
  year: 2017
  ident: D2CS00013J/cit61/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02892
– volume: 19
  start-page: 368
  year: 2017
  ident: D2CS00013J/cit93/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b03545
– volume: 7
  start-page: 4265
  year: 2005
  ident: D2CS00013J/cit105/1
  publication-title: Org. Lett.
  doi: 10.1021/ol051696+
– volume: 40
  start-page: 102
  year: 2011
  ident: D2CS00013J/cit13a/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B913880N
– volume: 45
  start-page: 1461
  year: 2006
  ident: D2CS00013J/cit83/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200503656
– volume: 133
  start-page: 19350
  year: 2011
  ident: D2CS00013J/cit92/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2093579
– volume: 17
  start-page: 1316
  year: 2015
  ident: D2CS00013J/cit59/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b00316
– volume: 1977
  start-page: 204
  year: 1977
  ident: D2CS00013J/cit64a/1
  publication-title: Liebigs Ann. Chem.
  doi: 10.1002/jlac.197719770203
– volume: 60
  start-page: 21116
  year: 2021
  ident: D2CS00013J/cit9j/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016666
– volume: 50
  start-page: 8857
  year: 2021
  ident: D2CS00013J/cit7g/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00208B
– volume: 55
  start-page: 48
  year: 2016
  ident: D2CS00013J/cit18c/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507594
– volume: 38
  start-page: 166
  year: 2009
  ident: D2CS00013J/cit85b/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2009.166
– volume: 20
  start-page: 6836
  year: 2018
  ident: D2CS00013J/cit9f/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02954
– volume: 12
  start-page: 5892
  year: 2021
  ident: D2CS00013J/cit69/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC00760B
– volume: 52
  start-page: 3967
  year: 2013
  ident: D2CS00013J/cit75/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201210111
– volume: 355
  start-page: 727
  year: 2017
  ident: D2CS00013J/cit19c/1
  publication-title: Science
  doi: 10.1126/science.aal3010
– volume: 11
  start-page: 24474
  year: 2021
  ident: D2CS00013J/cit7h/1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA02606B
– start-page: 714
  year: 2016
  ident: D2CS00013J/cit11/1
  publication-title: Synlett
– volume: 141
  start-page: 16590
  year: 2019
  ident: D2CS00013J/cit19f/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08746
– volume: 46
  start-page: 601
  year: 2010
  ident: D2CS00013J/cit16b/1
  publication-title: Chem. Commun.
  doi: 10.1039/B920606J
– volume: 57
  start-page: 5139
  year: 2018
  ident: D2CS00013J/cit110/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801305
– volume: 63
  start-page: 261
  year: 2007
  ident: D2CS00013J/cit25a/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2006.08.105
– volume: 57
  start-page: 1636
  year: 2018
  ident: D2CS00013J/cit15g/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711876
– volume: 52
  start-page: 3309
  year: 2019
  ident: D2CS00013J/cit12e/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00512
– volume: 116
  start-page: 8912
  year: 2016
  ident: D2CS00013J/cit17b/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00334
– volume: 19
  start-page: 2865
  year: 2017
  ident: D2CS00013J/cit103/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01095
– volume: 139
  start-page: 6329
  year: 2017
  ident: D2CS00013J/cit39c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12653
– volume: 23
  start-page: 7963
  year: 2021
  ident: D2CS00013J/cit9l/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC02807C
– volume: 48
  start-page: 1837
  year: 2003
  ident: D2CS00013J/cit14b/1
  publication-title: J. Electrochim. Acta
  doi: 10.1016/S0013-4686(03)00250-0
– volume: 56
  start-page: 2097
  year: 2017
  ident: D2CS00013J/cit73/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610722
– volume: 22
  start-page: 7250
  year: 2020
  ident: D2CS00013J/cit80/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02582
– volume: 54
  start-page: 6506
  year: 2015
  ident: D2CS00013J/cit94/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501220
– volume: 392
  start-page: 112340
  year: 2020
  ident: D2CS00013J/cit33/1
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2019.112340
– volume: 1029
  start-page: 15
  year: 2012
  ident: D2CS00013J/cit9c/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2012.06.063
– volume: 10
  start-page: 4953
  year: 2019
  ident: D2CS00013J/cit54/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13024-5
– volume: 113
  start-page: 5322
  year: 2013
  ident: D2CS00013J/cit13b/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300503r
– volume: 8
  start-page: 5206
  year: 2021
  ident: D2CS00013J/cit44e/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00375E
– volume: 11
  start-page: 1033
  year: 2009
  ident: D2CS00013J/cit84b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol802984n
– volume: 44
  start-page: 4442
  year: 2005
  ident: D2CS00013J/cit111d/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200500368
– volume: 7
  start-page: 3553
  year: 2005
  ident: D2CS00013J/cit9a/1
  publication-title: Org. Lett.
  doi: 10.1021/ol051296m
– volume: 121
  start-page: 485
  year: 2021
  ident: D2CS00013J/cit12l/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00335
– volume: 59
  start-page: 2938
  year: 2011
  ident: D2CS00013J/cit25b/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf1030778
– volume: 136
  start-page: 427
  year: 2014
  ident: D2CS00013J/cit15c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410865z
– volume: 53
  start-page: 105
  year: 2020
  ident: D2CS00013J/cit12h/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00513
– volume: 17
  start-page: 1073
  year: 1963
  ident: D2CS00013J/cit4/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)90778-6
– volume: 134
  start-page: 18577
  year: 2012
  ident: D2CS00013J/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309635w
– volume: 116
  start-page: 10035
  year: 2016
  ident: D2CS00013J/cit13c/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00018
– volume: 136
  start-page: 17024
  year: 2014
  ident: D2CS00013J/cit10b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506228u
– volume: 37
  start-page: 561
  year: 2019
  ident: D2CS00013J/cit89/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201900054
– volume: 60
  start-page: 25949
  year: 2021
  ident: D2CS00013J/cit17e/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110178
– volume: 3
  start-page: 2259
  year: 2021
  ident: D2CS00013J/cit17d/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000490
– volume: 12
  start-page: 2590
  year: 2010
  ident: D2CS00013J/cit9b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol100800u
– volume: 358
  start-page: 3887
  year: 2016
  ident: D2CS00013J/cit97/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201600587
– volume: 56
  start-page: 9527
  year: 2000
  ident: D2CS00013J/cit2a/1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(00)00840-1
– volume: 121
  start-page: 4253
  year: 2021
  ident: D2CS00013J/cit60/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01124
– volume: 132
  start-page: 8572
  year: 2010
  ident: D2CS00013J/cit86/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103934y
– volume: 47
  start-page: 2117
  year: 1969
  ident: D2CS00013J/cit63a/1
  publication-title: Can. J. Chem.
  doi: 10.1139/v69-343
– volume: 6
  start-page: 418
  year: 2017
  ident: D2CS00013J/cit74/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201600441
– volume: 25
  start-page: 683
  year: 1986
  ident: D2CS00013J/cit15a/1
  publication-title: Angew. Chem., Int. Engl.
  doi: 10.1002/anie.198606831
– volume: 60
  start-page: 1861
  year: 2021
  ident: D2CS00013J/cit116/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202011657
– volume: 54
  start-page: 236
  year: 2015
  ident: D2CS00013J/cit62f/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408650
– volume: 361
  start-page: 485
  year: 2019
  ident: D2CS00013J/cit68/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801173
– volume: 115
  start-page: 2596
  year: 2015
  ident: D2CS00013J/cit18b/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300389u
– volume: 20
  start-page: 5872
  year: 2018
  ident: D2CS00013J/cit9g/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02541
– volume: 49
  start-page: 8004
  year: 2010
  ident: D2CS00013J/cit57/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003924
– volume: 47
  start-page: 5758
  year: 2008
  ident: D2CS00013J/cit39b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801760
– volume: 60
  start-page: 9875
  year: 2021
  ident: D2CS00013J/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016679
– volume: 59
  start-page: 13962
  year: 2020
  ident: D2CS00013J/cit8a/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005765
– volume: 9
  start-page: 1225
  year: 2018
  ident: D2CS00013J/cit101/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03534-z
– volume: 14
  start-page: 639
  year: 1984
  ident: D2CS00013J/cit14a/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF00626308
– volume: 53
  start-page: 12634
  year: 2017
  ident: D2CS00013J/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06745C
– volume: 49
  start-page: 1997
  year: 2016
  ident: D2CS00013J/cit9d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00304
– volume: 21
  start-page: 2246
  year: 2019
  ident: D2CS00013J/cit95/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b00526
– volume: 45
  start-page: 5307
  year: 1989
  ident: D2CS00013J/cit1/1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)89486-2
– volume: 3
  start-page: 895
  year: 2013
  ident: D2CS00013J/cit87b/1
  publication-title: ACS Catal.
  doi: 10.1021/cs400088e
– volume: 58
  start-page: 125
  year: 2019
  ident: D2CS00013J/cit106/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809454
– volume: 59
  start-page: 3465
  year: 2020
  ident: D2CS00013J/cit71/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913332
– volume: 20
  start-page: 7345
  year: 2018
  ident: D2CS00013J/cit58/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03345
– volume: 357
  start-page: 575
  year: 2017
  ident: D2CS00013J/cit15e/1
  publication-title: Science
  doi: 10.1126/science.aan6206
– volume: 535
  start-page: 406
  year: 2016
  ident: D2CS00013J/cit15d/1
  publication-title: Nature
  doi: 10.1038/nature18008
– volume: 14
  start-page: 938
  year: 2012
  ident: D2CS00013J/cit65/1
  publication-title: Org. Lett.
  doi: 10.1021/ol203467v
– volume: 37
  start-page: 673
  year: 2004
  ident: D2CS00013J/cit18a/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040051r
– volume: 76
  start-page: 3470
  year: 2011
  ident: D2CS00013J/cit84c/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo200490q
– volume: 49
  start-page: 1790
  year: 2020
  ident: D2CS00013J/cit7f/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00692C
– volume: 124
  start-page: 530
  year: 2002
  ident: D2CS00013J/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0172215
– volume: 140
  start-page: 11202
  year: 2018
  ident: D2CS00013J/cit19e/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07578
– volume: 11
  start-page: 3153
  year: 2021
  ident: D2CS00013J/cit36/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00099
– volume: 8
  start-page: 4654
  year: 2017
  ident: D2CS00013J/cit114/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00953D
– volume: 53
  start-page: 45
  year: 2020
  ident: D2CS00013J/cit12f/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00511
– volume: 56
  start-page: 8385
  year: 2000
  ident: D2CS00013J/cit34a/1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(00)00691-8
– volume: 38
  start-page: 661
  year: 1965
  ident: D2CS00013J/cit63b/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.38.661
– volume: 137
  start-page: 1400
  year: 2015
  ident: D2CS00013J/cit108/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512073m
– volume: 11
  start-page: 5472
  year: 2021
  ident: D2CS00013J/cit8d/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01000
SSID ssj0011762
Score 2.6768537
SecondaryResourceType review_article
Snippet Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 726
SubjectTerms Alkenes
Cations
Chemical synthesis
Coupling
Coupling (molecular)
Electron transfer
Lewis bases
Nucleophiles
Oxidation
Oxidizing agents
Photocatalysis
Radicals
Reaction mechanisms
Single electrons
stoichiometry
Substrates
synthesis
Title Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications
URI https://www.proquest.com/docview/2702195223
https://www.proquest.com/docview/2694961957
https://www.proquest.com/docview/2718356033
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtE2UBG8IKQWRLfGt6mUlQqhoTopL5VseOMjimdekEav57jS5xUDAS8RJV9alk-X04-2-eC0MtBKrRKtCaJKBLCOJek0FVOpCi4GMgMvlI23vn0kxifscmMzzoR1za6ZKPe6B83xpX8j1ahDfRqo2T_QbNxUGiA36BfeIKG4flXOh75GjbEVtD9utws3VnMtUvBevkNjBgpYRbfgVKuCn8d48_nXuumyps9DwCT5_zMvTOAc49dX9fAC904nfvtLo-NeQYar8-Q1TT692zdEezplkwW0fDPFoVr_QyQPI-Szp1gsqjJ2ITWcAgB-1ebFJZ3bBW1BxNJ8Ig23pYyAdqXPr1jY2xDdtkAqq7plJnofIVl5nPB_GLhE2oTpJaZXjv6etF-x6J3Ydu5h_Yz2D5kPbR_Mpp--Bjvl1Ipwv2Sn3aTuJbmx-2_d6lKu__YWzXFYRwJmd5Dd8PuAZ94KNxHt0z9AN0eNup8iC4aSBzvAgLvAgIHQGCvWhwB8RZ7OOAGDnhR4wgH3IXDI3T2fjQdjkkop0E0MJUNAWrOK16pgSgHGoh7ltvETNKkWiijdF6pVGuuk7QqqJRUa1akIDmgjCsjTEkPUK9e1uYxwmWuElUYXqYlY0yVSmvFmcgpjFLIhPXRq2bl5jrkmrclTy7nzueB5vN32fCLW-VJH72Islc-w8qNUkeNAubhDVzPbSxlmsMOgvbR89gN62UvvYraLLcgI3KWC5CSf5ABgkaB-lMY5wCUG-fRYuHJ7zoO0Z32hThCvc1qa54CT92oZwF0PwHlO5dS
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electro-%2Fphotocatalytic+alkene-derived+radical+cation+chemistry%3A+recent+advances+in+synthetic+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Luo%2C+Mu-Jia&rft.au=Xiao%2C+Qiang&rft.au=Li%2C+Jin-Heng&rft.date=2022-08-15&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=16&rft.spage=726&rft.epage=7237&rft_id=info:doi/10.1039%2Fd2cs00013j&rft.externalDocID=d2cs00013j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon