Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance

Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer...

Full description

Saved in:
Bibliographic Details
Published inBrain connectivity Vol. 6; no. 1; pp. 57 - 75
Main Authors Dawson, Debra Ann, Lam, Jack, Lewis, Lindsay B., Carbonell, Felix, Mendola, Janine D., Shmuel, Amir
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.
AbstractList Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.
Author Mendola, Janine D.
Shmuel, Amir
Lewis, Lindsay B.
Carbonell, Felix
Dawson, Debra Ann
Lam, Jack
Author_xml – sequence: 1
  givenname: Debra Ann
  surname: Dawson
  fullname: Dawson, Debra Ann
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
– sequence: 2
  givenname: Jack
  surname: Lam
  fullname: Lam, Jack
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
– sequence: 3
  givenname: Lindsay B.
  surname: Lewis
  fullname: Lewis, Lindsay B.
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Canada
– sequence: 4
  givenname: Felix
  surname: Carbonell
  fullname: Carbonell, Felix
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
– sequence: 5
  givenname: Janine D.
  surname: Mendola
  fullname: Mendola, Janine D.
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Canada
– sequence: 6
  givenname: Amir
  surname: Shmuel
  fullname: Shmuel, Amir
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada., Departments of Physiology and Biomedical Engineering, McGill University, Montréal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26415043$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEiWkrX7JAlNmwm9XMeG6Q2UEAqKoICS8tj3ySuJnawPYXwTXwknklbQSWEN7Z1Hvf6-jwu9px3UBRPCZ4R3LTHXVDWzSgmfIYZIw-KA0pEU2JM6d7dmfD94ijGK5yX4A3G_FGxTytOBObsoPj1QYVkVY_mPgToVbLelacqgkEfIVnnk99Yrfp-iy7CUjn7c0Jihpblp6QSoLPB6VE2mTgH-XJt0xZ9tWllHVLOoFNI3wEcOgmgIvILlFaAvtg47Aon-JE9F32WRvTeB0CXK-UmZKyNXtmYlNPwpHi4UH2Eo5v9sPh89vpy_rY8v3jzbn5yXmpOWCpZ1zFhjOi0MlwrUTcU2pZzLWrBKO4qRZuupabW0IIAYWpmRJ0RClWeimGHxcud72bo1mA0uBRULzfBrlXYSq-s_BtxdiWX_lrymvOm5dngxY1B8N-GPC25tlFD3ysHfoiSNHXdsFwL_59aV4RXLadVpj6_R73yQ8hz37EIawhnmfXsz-bvur7980wQO4IOPsYAC6ltmj4-v8X2kmA5xktO8ZJjvOQYr6w7vqe7tf6X4jemg9XX
CitedBy_id crossref_primary_10_1002_brb3_1705
crossref_primary_10_1016_j_nicl_2018_01_022
crossref_primary_10_1016_j_neuroimage_2019_06_007
crossref_primary_10_1007_s10548_019_00708_w
crossref_primary_10_1016_j_neuroimage_2020_117053
crossref_primary_10_1093_cercor_bhac116
crossref_primary_10_1002_hbm_23687
crossref_primary_10_1038_srep43223
crossref_primary_10_1073_pnas_2005238117
crossref_primary_10_1093_cercor_bhx024
crossref_primary_10_1016_j_neuroimage_2016_11_006
Cites_doi 10.1109/42.906424
10.1073/pnas.97.10.5568
10.1002/cne.903340103
10.1016/j.neuroimage.2012.08.025
10.1111/j.2517-6161.1995.tb02031.x
10.1038/353429a0
10.1073/pnas.0905267106
10.1016/j.neuroimage.2012.11.006
10.1038/nature05758
10.1016/j.neuron.2013.07.036
10.1093/cercor/1.1.1
10.1093/cercor/11.12.1182
10.1016/j.neuroimage.2007.09.034
10.1371/journal.pcbi.1000808
10.1152/jn.00102.2009
10.1016/j.neuroimage.2013.10.013
10.1093/cercor/bht087
10.1073/pnas.1214900110
10.1002/hbm.20580
10.1126/science.7754376
10.1007/978-3-662-03733-1
10.1113/jphysiol.1962.sp006837
10.1523/JNEUROSCI.1657-06.2006
10.1016/j.neuron.2007.10.012
10.1038/nature06713
10.1007/s10827-008-0109-3
10.1016/S0896-6273(03)00265-4
10.1212/WNL.0b013e3182929f38
10.1016/j.neuron.2013.04.023
10.1523/JNEUROSCI.4137-04.2005
10.1103/PhysRevE.69.036103
10.7554/eLife.03952
10.1016/j.neuroimage.2011.02.077
10.1038/nrn2201
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2010.08.063
10.1002/cne.901580305
10.1523/JNEUROSCI.22-19-08633.2002
10.1523/JNEUROSCI.2923-07.2007
10.1007/s10548-013-0290-1
10.1038/jcbfm.1993.4
10.1016/j.neuroimage.2013.07.058
10.1073/pnas.95.3.811
10.1073/pnas.93.6.2382
10.1016/j.neuroimage.2012.10.037
10.1073/pnas.0913110107
10.1007/s00221-012-3159-8
10.1152/physrev.1995.75.1.107
10.1016/j.neuroimage.2013.05.099
10.1093/cercor/7.2.181
10.1089/brain.2011.0065
10.1167/10.5.1
10.1523/JNEUROSCI.2572-11.2011
10.1093/cercor/bhq201
10.1016/j.neuroimage.2006.12.030
10.1016/0042-6989(84)90041-5
10.1016/j.neuroimage.2013.09.060
ContentType Journal Article
Copyright (©) Copyright 2016, Mary Ann Liebert, Inc.
Copyright 2016, Mary Ann Liebert, Inc. 2016
Copyright_xml – notice: (©) Copyright 2016, Mary Ann Liebert, Inc.
– notice: Copyright 2016, Mary Ann Liebert, Inc. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7RV
7TK
7X7
7XB
88E
88G
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1089/brain.2014.0331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2158-0022
EndPage 75
ExternalDocumentID PMC4744894
3936693351
26415043
10_1089_brain_2014_0331
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01EY015219
GroupedDBID ---
0R~
4.4
53G
7RV
7X7
88E
8FI
8FJ
AAYXX
ABBKN
ABJNI
ABUWG
ACGFS
ACPRK
ADBBV
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BKEYQ
BNQNF
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EBS
EJD
FYUFA
GNUQQ
HMCUK
IM4
M1P
M2M
NAPCQ
O9-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
RML
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7TK
7XB
8FD
8FK
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
SCNPE
5PM
ID FETCH-LOGICAL-c413t-3bb35dd5bcad4ca5782e9944c575320b6a28b92d7ce9e5e5d73d573202e6504d3
IEDL.DBID 7X7
ISSN 2158-0014
IngestDate Thu Aug 21 17:25:57 EDT 2025
Tue Aug 05 11:28:22 EDT 2025
Sun Aug 24 03:58:59 EDT 2025
Fri Jul 25 04:51:54 EDT 2025
Thu Apr 03 07:09:44 EDT 2025
Tue Jul 01 03:51:48 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords functional connectivity
retinotopic organization
correlation
visual cortex
resting-state networks
spontaneous activity
V1
partial correlation
V2
V3
resting-state
retinotopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-3bb35dd5bcad4ca5782e9944c575320b6a28b92d7ce9e5e5d73d573202e6504d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26415043
PQID 1761138143
PQPubID 2029230
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4744894
proquest_miscellaneous_1877835040
proquest_miscellaneous_1761469426
proquest_journals_1761138143
pubmed_primary_26415043
crossref_citationtrail_10_1089_brain_2014_0331
crossref_primary_10_1089_brain_2014_0331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New Rochelle
– name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA
PublicationTitle Brain connectivity
PublicationTitleAlternate Brain Connect
PublicationYear 2016
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References B20
B21
B22
B23
B24
Salin P (B40) 1995; 75
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
Angelucci A (B4) 2002; 22
B5
B7
B8
B9
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
Benjamini Y (B6) 1995; 57
B12
B56
B13
B57
B14
B58
B15
B16
B17
B18
B19
20817103 - Neuroimage. 2011 Jan 15;54(2):875-91
11709489 - Cereb Cortex. 2001 Dec;11(12):1182-90
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
9448245 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7
20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43
8637882 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2382-6
23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34
4436457 - J Comp Neurol. 1974 Dec 1;158(3):295-305
21045004 - Cereb Cortex. 2011 Jun;21(6):1254-72
8408757 - J Comp Neurol. 1993 Aug 1;334(1):19-46
12765616 - Neuron. 2003 May 22;38(4):659-71
15728852 - J Neurosci. 2005 Feb 23;25(8):2117-31
15089357 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036103
8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
23660870 - Brain Topogr. 2013 Oct;26(4):525-37
21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36
23899725 - Neuroimage. 2013 Dec;83:969-82
20548945 - PLoS Comput Biol. 2010 Jun;6(6):e1000808
17306989 - Neuroimage. 2007 Apr 1;35(2):539-52
21940451 - J Neurosci. 2011 Sep 21;31(38):13604-12
19587323 - J Neurophysiol. 2009 Nov;102(5):2704-18
24099850 - Neuroimage. 2014 Jan 1;84:911-21
23547137 - Cereb Cortex. 2014 Sep;24(9):2334-49
23153969 - Neuroimage. 2013 Feb 15;67:331-43
17898211 - J Neurosci. 2007 Sep 26;27(39):10391-403
7831395 - Physiol Rev. 1995 Jan;75(1):107-54
17964252 - Neuron. 2007 Oct 25;56(2):366-83
22444074 - Brain Connect. 2011;1(6):496-510
17977024 - Neuroimage. 2008 Jan 15;39(2):647-60
22811215 - Exp Brain Res. 2012 Aug;221(2):177-89
23110879 - Neuroimage. 2013 Feb 1;66:376-84
23791200 - Neuron. 2013 Jun 19;78(6):1116-26
25695154 - Elife. 2015;4. doi: 10.7554/eLife.03952
18836824 - J Comput Neurosci. 2009 Apr;26(2):251-69
24128734 - Neuroimage. 2014 Feb 1;86:343-53
24094111 - Neuron. 2013 Oct 2;80(1):184-97
1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42
20616143 - J Vis. 2010;10(5):1
7754376 - Science. 1995 May 12;268(5212):889-93
11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
10805812 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5568-73
9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
18465799 - Hum Brain Mapp. 2008 Jul;29(7):751-61
14449617 - J Physiol. 1962 Jan;160:106-54
6740964 - Vision Res. 1984;24(5):429-48
17476267 - Nature. 2007 May 3;447(7140):83-6
23596068 - Neurology. 2013 May 14;80(20):1826-33
17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
22986355 - Neuroimage. 2012 Nov 15;63(3):1060-9
12351737 - J Neurosci. 2002 Oct 1;22(19):8633-46
21979382 - Neuroimage. 2012 Aug 15;62(2):782-90
18322462 - Nature. 2008 Mar 20;452(7185):352-5
23747458 - Neuroimage. 2013 Dec;83:550-8
1896085 - Nature. 1991 Oct 3;353(6343):429-31
References_xml – ident: B58
  doi: 10.1109/42.906424
– ident: B44
  doi: 10.1073/pnas.97.10.5568
– ident: B3
  doi: 10.1002/cne.903340103
– ident: B35
  doi: 10.1016/j.neuroimage.2012.08.025
– volume: 57
  start-page: 289
  year: 1995
  ident: B6
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: B8
  doi: 10.1038/353429a0
– ident: B49
  doi: 10.1073/pnas.0905267106
– ident: B13
  doi: 10.1016/j.neuroimage.2012.11.006
– ident: B54
  doi: 10.1038/nature05758
– ident: B19
  doi: 10.1016/j.neuron.2013.07.036
– ident: B20
  doi: 10.1093/cercor/1.1.1
– ident: B48
  doi: 10.1093/cercor/11.12.1182
– ident: B16
  doi: 10.1016/j.neuroimage.2007.09.034
– ident: B42
  doi: 10.1371/journal.pcbi.1000808
– ident: B2
  doi: 10.1152/jn.00102.2009
– ident: B12
  doi: 10.1016/j.neuroimage.2013.10.013
– ident: B30
  doi: 10.1093/cercor/bht087
– ident: B33
  doi: 10.1073/pnas.1214900110
– ident: B46
  doi: 10.1002/hbm.20580
– ident: B43
  doi: 10.1126/science.7754376
– ident: B9
  doi: 10.1007/978-3-662-03733-1
– ident: B26
  doi: 10.1113/jphysiol.1962.sp006837
– ident: B32
  doi: 10.1523/JNEUROSCI.1657-06.2006
– ident: B55
  doi: 10.1016/j.neuron.2007.10.012
– ident: B31
  doi: 10.1038/nature06713
– ident: B51
  doi: 10.1007/s10827-008-0109-3
– ident: B17
  doi: 10.1016/S0896-6273(03)00265-4
– ident: B38
– ident: B37
  doi: 10.1212/WNL.0b013e3182929f38
– ident: B56
  doi: 10.1016/j.neuron.2013.04.023
– ident: B45
  doi: 10.1523/JNEUROSCI.4137-04.2005
– ident: B29
  doi: 10.1103/PhysRevE.69.036103
– ident: B5
  doi: 10.7554/eLife.03952
– ident: B25
  doi: 10.1016/j.neuroimage.2011.02.077
– ident: B21
  doi: 10.1038/nrn2201
– ident: B28
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: B50
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: B27
  doi: 10.1002/cne.901580305
– volume: 22
  start-page: 8633
  year: 2002
  ident: B4
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-19-08633.2002
– ident: B1
  doi: 10.1523/JNEUROSCI.2923-07.2007
– ident: B15
  doi: 10.1007/s10548-013-0290-1
– ident: B22
  doi: 10.1038/jcbfm.1993.4
– ident: B34
  doi: 10.1016/j.neuroimage.2013.07.058
– ident: B52
  doi: 10.1073/pnas.95.3.811
– ident: B14
  doi: 10.1073/pnas.93.6.2382
– ident: B23
  doi: 10.1016/j.neuroimage.2012.10.037
– ident: B41
  doi: 10.1073/pnas.0913110107
– ident: B10
  doi: 10.1007/s00221-012-3159-8
– volume: 75
  start-page: 107
  year: 1995
  ident: B40
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1995.75.1.107
– ident: B7
  doi: 10.1016/j.neuroimage.2013.05.099
– ident: B18
  doi: 10.1093/cercor/7.2.181
– ident: B11
  doi: 10.1089/brain.2011.0065
– ident: B57
  doi: 10.1167/10.5.1
– ident: B24
  doi: 10.1523/JNEUROSCI.2572-11.2011
– ident: B36
  doi: 10.1093/cercor/bhq201
– ident: B47
  doi: 10.1016/j.neuroimage.2006.12.030
– ident: B53
  doi: 10.1016/0042-6989(84)90041-5
– ident: B39
  doi: 10.1016/j.neuroimage.2013.09.060
– reference: 24094111 - Neuron. 2013 Oct 2;80(1):184-97
– reference: 23110879 - Neuroimage. 2013 Feb 1;66:376-84
– reference: 15089357 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036103
– reference: 22444074 - Brain Connect. 2011;1(6):496-510
– reference: 23791200 - Neuron. 2013 Jun 19;78(6):1116-26
– reference: 18465799 - Hum Brain Mapp. 2008 Jul;29(7):751-61
– reference: 17476267 - Nature. 2007 May 3;447(7140):83-6
– reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83
– reference: 18322462 - Nature. 2008 Mar 20;452(7185):352-5
– reference: 6740964 - Vision Res. 1984;24(5):429-48
– reference: 23153969 - Neuroimage. 2013 Feb 15;67:331-43
– reference: 23899725 - Neuroimage. 2013 Dec;83:969-82
– reference: 20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43
– reference: 21940451 - J Neurosci. 2011 Sep 21;31(38):13604-12
– reference: 14449617 - J Physiol. 1962 Jan;160:106-54
– reference: 7831395 - Physiol Rev. 1995 Jan;75(1):107-54
– reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
– reference: 20817103 - Neuroimage. 2011 Jan 15;54(2):875-91
– reference: 18836824 - J Comput Neurosci. 2009 Apr;26(2):251-69
– reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
– reference: 10805812 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5568-73
– reference: 8408757 - J Comp Neurol. 1993 Aug 1;334(1):19-46
– reference: 17898211 - J Neurosci. 2007 Sep 26;27(39):10391-403
– reference: 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34
– reference: 21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36
– reference: 24128734 - Neuroimage. 2014 Feb 1;86:343-53
– reference: 22811215 - Exp Brain Res. 2012 Aug;221(2):177-89
– reference: 9448245 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7
– reference: 4436457 - J Comp Neurol. 1974 Dec 1;158(3):295-305
– reference: 23596068 - Neurology. 2013 May 14;80(20):1826-33
– reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
– reference: 23547137 - Cereb Cortex. 2014 Sep;24(9):2334-49
– reference: 8637882 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2382-6
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 23660870 - Brain Topogr. 2013 Oct;26(4):525-37
– reference: 1896085 - Nature. 1991 Oct 3;353(6343):429-31
– reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
– reference: 20616143 - J Vis. 2010;10(5):1
– reference: 21979382 - Neuroimage. 2012 Aug 15;62(2):782-90
– reference: 17977024 - Neuroimage. 2008 Jan 15;39(2):647-60
– reference: 7754376 - Science. 1995 May 12;268(5212):889-93
– reference: 17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42
– reference: 20548945 - PLoS Comput Biol. 2010 Jun;6(6):e1000808
– reference: 25695154 - Elife. 2015;4. doi: 10.7554/eLife.03952
– reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
– reference: 17306989 - Neuroimage. 2007 Apr 1;35(2):539-52
– reference: 12351737 - J Neurosci. 2002 Oct 1;22(19):8633-46
– reference: 21045004 - Cereb Cortex. 2011 Jun;21(6):1254-72
– reference: 22986355 - Neuroimage. 2012 Nov 15;63(3):1060-9
– reference: 23747458 - Neuroimage. 2013 Dec;83:550-8
– reference: 11709489 - Cereb Cortex. 2001 Dec;11(12):1182-90
– reference: 15728852 - J Neurosci. 2005 Feb 23;25(8):2117-31
– reference: 12765616 - Neuron. 2003 May 22;38(4):659-71
– reference: 19587323 - J Neurophysiol. 2009 Nov;102(5):2704-18
– reference: 24099850 - Neuroimage. 2014 Jan 1;84:911-21
SSID ssj0000548004
Score 2.0833282
Snippet Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 57
SubjectTerms Brain Mapping
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Original
Visual Cortex - physiology
Visual Fields - physiology
Visual Pathways - physiology
Title Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance
URI https://www.ncbi.nlm.nih.gov/pubmed/26415043
https://www.proquest.com/docview/1761138143
https://www.proquest.com/docview/1761469426
https://www.proquest.com/docview/1877835040
https://pubmed.ncbi.nlm.nih.gov/PMC4744894
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvXBBQPkILZWREOLiNk6cODmhbumqQqKqqhb2Fjm2o12pTbZNVqL_iR_JjO0NLYiePdl4NWPP8_hlHiEfmsTaJtExMzUvmFB5ypQ2mnHN81zIWGfWEWRP8uML8XWWzULBrQ-0yvWe6DZq02mske9zOG9zSC8i_by8ZqgahberQULjMdnE1mVI6ZIzOdZYYmxm5hQEIbEVDI8D6-4-RblfowYDkrvEXuxF5u4kpn_Q5t-kyTtZaPqMPA3wkR54fz8nj2z7gmwdtHB0vrqlH6kjdLpK-Rb5dYphAdaHqMDhOW9sAlnL0DP80LkbuiW66PKWhi8y3UiPRGjmQCidQtbzxULqGDHaa03QH4thvmipag2deKIXTMmqnnYNBURJvy_6lX_xYH_CbzZ4OdDTb92Npedz1boRfDf9gvgVAu8luZgenR8esyDOwDTkvYGldZ1mxmS1VkZohV3xbVkKoQH_pUlc5yop6jIxUtvSZjYzMjWZRLV2C6BQmPQV2Wi71r4htEyFFpbrhnMDW4hVMbcmlvCcKJS2JiJ7a89UOnQuRwGNy8rdoBdl5VxZoSsrdGVEPo0PLH3Tjv-b7qxdXYXV21d_Yi0i78dhWHd4maJa2628jchLADgP2BQSC2uwT0bktY-ecT4ARDl2j4uIvBdXowH2_b4_0i7mrv-3kHCmLsXbh6e-TZ7AvwwM8x2yMdys7DsAUEO961bJLtmcHJ2cnv0GpEsg5g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJRHaAEjAeLiNg_ndUCo23a1pe2qqrbQW3BsR7tSmyxNVrD_CfEbmbGTpQXRW8-eJI5mPPON_XmGkDeFr3XhS5ep3EsYF1HAhFSSedKLIh67MtSGIDuKhqf801l4tkJ-dXdhkFbZ-UTjqFUlcY98y4N824PwwoOPs28Mu0bh6WrXQsOaxYFefIeUrf6wvwv6fev7g73xzpC1XQWYBIfdsCDPg1CpMJdCcSmwnLtOU84lAJfAd_NI-Eme-iqWOtWhDlUcqDDGNuMa0AxXAbz3DlnlAaQyPbLa3xsdnyx3dVwsn2Z6FkIoTRgmIF09oSTdyrHrA9LJ-KZr29pdCYX_4Nu_aZpX4t7gAbnfAla6bS3sIVnR5SOytl1Csn6xoO-ooZCavfk18vMYDRGkd7Dnh2XZsT7ESUVP8Gp11VQzNIrzBW3vgJqRGqnXzMBeOoA4a7cnqeHgSNvdgn6ZNpNpSUWpaN9Sy2BKWtS0KihgWPp5Ws_thxv9A95Z4HFETY-qS03HE1GaEfw23UXEDKb-mJzeiuKekF5ZlfoZoWnAJdeeLDxPgdPSwvW0cmN4jidCauWQzU4zmWxrpWPLjvPMnNknaWZUmaEqM1SlQ94vH5jZMiH_F93oVJ21_qLO_li3Q14vh2Gl4_GNKHU1tzI8SgFS3SCTxLiVB57ZIU-t9SznA9DXw3p1Domv2dVSACuNXx8ppxNTcZzHkMWn_PnNU39F7g7HR4fZ4f7oYJ3cgz9u-e0bpNdczvULgG9N_rJdM5R8ve1l-huKc11R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAXBJSfQAEjAeLibpw4cXJAqO2yailUFWphb8GxHe1KJVmaXaF9J56Ap2PGTpYWRG89e5I4mv_x5xlCXlSRtVWkQ2ZKnjGh0pgpbTTjmqepkKFOrAPIHqZ7J-L9OBmvkV_9XRiEVfY20Rlq02iskQ845Nsc3IuIB1UHizgajt7OvjOcIIUnrf04DS8iB3b5A9K39s3-EHj9MopG745391g3YYBpMN5zFpdlnBiTlFoZoRW2drd5LoSGICaOwjJVUVbmkZHa5jaxiZGxSSSOHLcQ2QgTw3uvkesyTjjqmBzLVX0nxEZqbnohONWMYSrSdxbK8kGJ8x8QWCa2Qj_g7pxT_CfS_Ruwec4Djm6TW13oSre9rN0ha7a-Sza2a0jbvy3pK-rApK5Kv0F-HqFIAvUuTv_weDu2Ax7T0E94ybqZNzMUj9Ml7W6DupUWQdjMBcB0BB7XFyqpQ-NoP-eCfpnOJ9OaqtrQHQ8ygy1Z1dKmohDN0s_TduE_DNyDd1Z4MNHSj82ZpccTVbsV_DYdYuwMQn-PnFwJ2-6T9bqp7UNC81hoYbmuODdgvqwKuTWhhOdEprQ1AdnqOVPorms6Du84LdzpfZYXjpUFsrJAVgbk9eqBmW8Y8n_SzZ7VRWc52uKPnAfk-WoZdB4PclRtm4WnEWkOwdUlNJnEoh7Y6IA88NKz2g8EwRw71wVEXpCrFQH2HL-4Uk8nrve4kJDP5-LR5Vt_Rm6AchYf9g8PHpOb8MMd0H2TrM_PFvYJxHHz8qlTGEq-XrWG_gapx2Ah
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Correlation-Based+Retinotopically+Organized+Resting-State+Functional+Connectivity+Within+and+Between+Areas+of+the+Visual+Cortex+Reflects+More+Than+Cortical+Distance&rft.jtitle=Brain+connectivity&rft.au=Dawson%2C+Debra+Ann&rft.au=Lam%2C+Jack&rft.au=Lewis%2C+Lindsay+B&rft.au=Carbonell%2C+Felix&rft.date=2016-02-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=2158-0014&rft.eissn=2158-0022&rft.volume=6&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1089%2Fbrain.2014.0331&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3936693351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0014&client=summon