Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance
Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer...
Saved in:
Published in | Brain connectivity Vol. 6; no. 1; pp. 57 - 75 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects. |
---|---|
AbstractList | Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects. |
Author | Mendola, Janine D. Shmuel, Amir Lewis, Lindsay B. Carbonell, Felix Dawson, Debra Ann Lam, Jack |
Author_xml | – sequence: 1 givenname: Debra Ann surname: Dawson fullname: Dawson, Debra Ann organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada – sequence: 2 givenname: Jack surname: Lam fullname: Lam, Jack organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada – sequence: 3 givenname: Lindsay B. surname: Lewis fullname: Lewis, Lindsay B. organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Canada – sequence: 4 givenname: Felix surname: Carbonell fullname: Carbonell, Felix organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada – sequence: 5 givenname: Janine D. surname: Mendola fullname: Mendola, Janine D. organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Canada – sequence: 6 givenname: Amir surname: Shmuel fullname: Shmuel, Amir organization: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Canada., Department of Neurology and Neurosurgery, McGill University, Montréal, Canada., Departments of Physiology and Biomedical Engineering, McGill University, Montréal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26415043$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuEzEUHaEiWkrX7JAlNmwm9XMeG6Q2UEAqKoICS8tj3ySuJnawPYXwTXwknklbQSWEN7Z1Hvf6-jwu9px3UBRPCZ4R3LTHXVDWzSgmfIYZIw-KA0pEU2JM6d7dmfD94ijGK5yX4A3G_FGxTytOBObsoPj1QYVkVY_mPgToVbLelacqgkEfIVnnk99Yrfp-iy7CUjn7c0Jihpblp6QSoLPB6VE2mTgH-XJt0xZ9tWllHVLOoFNI3wEcOgmgIvILlFaAvtg47Aon-JE9F32WRvTeB0CXK-UmZKyNXtmYlNPwpHi4UH2Eo5v9sPh89vpy_rY8v3jzbn5yXmpOWCpZ1zFhjOi0MlwrUTcU2pZzLWrBKO4qRZuupabW0IIAYWpmRJ0RClWeimGHxcud72bo1mA0uBRULzfBrlXYSq-s_BtxdiWX_lrymvOm5dngxY1B8N-GPC25tlFD3ysHfoiSNHXdsFwL_59aV4RXLadVpj6_R73yQ8hz37EIawhnmfXsz-bvur7980wQO4IOPsYAC6ltmj4-v8X2kmA5xktO8ZJjvOQYr6w7vqe7tf6X4jemg9XX |
CitedBy_id | crossref_primary_10_1002_brb3_1705 crossref_primary_10_1016_j_nicl_2018_01_022 crossref_primary_10_1016_j_neuroimage_2019_06_007 crossref_primary_10_1007_s10548_019_00708_w crossref_primary_10_1016_j_neuroimage_2020_117053 crossref_primary_10_1093_cercor_bhac116 crossref_primary_10_1002_hbm_23687 crossref_primary_10_1038_srep43223 crossref_primary_10_1073_pnas_2005238117 crossref_primary_10_1093_cercor_bhx024 crossref_primary_10_1016_j_neuroimage_2016_11_006 |
Cites_doi | 10.1109/42.906424 10.1073/pnas.97.10.5568 10.1002/cne.903340103 10.1016/j.neuroimage.2012.08.025 10.1111/j.2517-6161.1995.tb02031.x 10.1038/353429a0 10.1073/pnas.0905267106 10.1016/j.neuroimage.2012.11.006 10.1038/nature05758 10.1016/j.neuron.2013.07.036 10.1093/cercor/1.1.1 10.1093/cercor/11.12.1182 10.1016/j.neuroimage.2007.09.034 10.1371/journal.pcbi.1000808 10.1152/jn.00102.2009 10.1016/j.neuroimage.2013.10.013 10.1093/cercor/bht087 10.1073/pnas.1214900110 10.1002/hbm.20580 10.1126/science.7754376 10.1007/978-3-662-03733-1 10.1113/jphysiol.1962.sp006837 10.1523/JNEUROSCI.1657-06.2006 10.1016/j.neuron.2007.10.012 10.1038/nature06713 10.1007/s10827-008-0109-3 10.1016/S0896-6273(03)00265-4 10.1212/WNL.0b013e3182929f38 10.1016/j.neuron.2013.04.023 10.1523/JNEUROSCI.4137-04.2005 10.1103/PhysRevE.69.036103 10.7554/eLife.03952 10.1016/j.neuroimage.2011.02.077 10.1038/nrn2201 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2010.08.063 10.1002/cne.901580305 10.1523/JNEUROSCI.22-19-08633.2002 10.1523/JNEUROSCI.2923-07.2007 10.1007/s10548-013-0290-1 10.1038/jcbfm.1993.4 10.1016/j.neuroimage.2013.07.058 10.1073/pnas.95.3.811 10.1073/pnas.93.6.2382 10.1016/j.neuroimage.2012.10.037 10.1073/pnas.0913110107 10.1007/s00221-012-3159-8 10.1152/physrev.1995.75.1.107 10.1016/j.neuroimage.2013.05.099 10.1093/cercor/7.2.181 10.1089/brain.2011.0065 10.1167/10.5.1 10.1523/JNEUROSCI.2572-11.2011 10.1093/cercor/bhq201 10.1016/j.neuroimage.2006.12.030 10.1016/0042-6989(84)90041-5 10.1016/j.neuroimage.2013.09.060 |
ContentType | Journal Article |
Copyright | (©) Copyright 2016, Mary Ann Liebert, Inc. Copyright 2016, Mary Ann Liebert, Inc. 2016 |
Copyright_xml | – notice: (©) Copyright 2016, Mary Ann Liebert, Inc. – notice: Copyright 2016, Mary Ann Liebert, Inc. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7RV 7TK 7X7 7XB 88E 88G 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1089/brain.2014.0331 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Animal Behavior Abstracts ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2158-0022 |
EndPage | 75 |
ExternalDocumentID | PMC4744894 3936693351 26415043 10_1089_brain_2014_0331 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01EY015219 |
GroupedDBID | --- 0R~ 4.4 53G 7RV 7X7 88E 8FI 8FJ AAYXX ABBKN ABJNI ABUWG ACGFS ACPRK ADBBV AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BKEYQ BNQNF BPHCQ BVXVI CCPQU CITATION DWQXO EBS EJD FYUFA GNUQQ HMCUK IM4 M1P M2M NAPCQ O9- PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ RML UKHRP CGR CUY CVF ECM EIF NPM 3V. 7QG 7TK 7XB 8FD 8FK FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO SCNPE 5PM |
ID | FETCH-LOGICAL-c413t-3bb35dd5bcad4ca5782e9944c575320b6a28b92d7ce9e5e5d73d573202e6504d3 |
IEDL.DBID | 7X7 |
ISSN | 2158-0014 |
IngestDate | Thu Aug 21 17:25:57 EDT 2025 Tue Aug 05 11:28:22 EDT 2025 Sun Aug 24 03:58:59 EDT 2025 Fri Jul 25 04:51:54 EDT 2025 Thu Apr 03 07:09:44 EDT 2025 Tue Jul 01 03:51:48 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | functional connectivity retinotopic organization correlation visual cortex resting-state networks spontaneous activity V1 partial correlation V2 V3 resting-state retinotopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-3bb35dd5bcad4ca5782e9944c575320b6a28b92d7ce9e5e5d73d573202e6504d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26415043 |
PQID | 1761138143 |
PQPubID | 2029230 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4744894 proquest_miscellaneous_1877835040 proquest_miscellaneous_1761469426 proquest_journals_1761138143 pubmed_primary_26415043 crossref_citationtrail_10_1089_brain_2014_0331 crossref_primary_10_1089_brain_2014_0331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New Rochelle – name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA |
PublicationTitle | Brain connectivity |
PublicationTitleAlternate | Brain Connect |
PublicationYear | 2016 |
Publisher | Mary Ann Liebert, Inc |
Publisher_xml | – name: Mary Ann Liebert, Inc |
References | B20 B21 B22 B23 B24 Salin P (B40) 1995; 75 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 Angelucci A (B4) 2002; 22 B5 B7 B8 B9 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 Benjamini Y (B6) 1995; 57 B12 B56 B13 B57 B14 B58 B15 B16 B17 B18 B19 20817103 - Neuroimage. 2011 Jan 15;54(2):875-91 11709489 - Cereb Cortex. 2001 Dec;11(12):1182-90 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 9448245 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7 20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 8637882 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2382-6 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 4436457 - J Comp Neurol. 1974 Dec 1;158(3):295-305 21045004 - Cereb Cortex. 2011 Jun;21(6):1254-72 8408757 - J Comp Neurol. 1993 Aug 1;334(1):19-46 12765616 - Neuron. 2003 May 22;38(4):659-71 15728852 - J Neurosci. 2005 Feb 23;25(8):2117-31 15089357 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036103 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 23660870 - Brain Topogr. 2013 Oct;26(4):525-37 21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36 23899725 - Neuroimage. 2013 Dec;83:969-82 20548945 - PLoS Comput Biol. 2010 Jun;6(6):e1000808 17306989 - Neuroimage. 2007 Apr 1;35(2):539-52 21940451 - J Neurosci. 2011 Sep 21;31(38):13604-12 19587323 - J Neurophysiol. 2009 Nov;102(5):2704-18 24099850 - Neuroimage. 2014 Jan 1;84:911-21 23547137 - Cereb Cortex. 2014 Sep;24(9):2334-49 23153969 - Neuroimage. 2013 Feb 15;67:331-43 17898211 - J Neurosci. 2007 Sep 26;27(39):10391-403 7831395 - Physiol Rev. 1995 Jan;75(1):107-54 17964252 - Neuron. 2007 Oct 25;56(2):366-83 22444074 - Brain Connect. 2011;1(6):496-510 17977024 - Neuroimage. 2008 Jan 15;39(2):647-60 22811215 - Exp Brain Res. 2012 Aug;221(2):177-89 23110879 - Neuroimage. 2013 Feb 1;66:376-84 23791200 - Neuron. 2013 Jun 19;78(6):1116-26 25695154 - Elife. 2015;4. doi: 10.7554/eLife.03952 18836824 - J Comput Neurosci. 2009 Apr;26(2):251-69 24128734 - Neuroimage. 2014 Feb 1;86:343-53 24094111 - Neuron. 2013 Oct 2;80(1):184-97 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42 20616143 - J Vis. 2010;10(5):1 7754376 - Science. 1995 May 12;268(5212):889-93 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 10805812 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5568-73 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 18465799 - Hum Brain Mapp. 2008 Jul;29(7):751-61 14449617 - J Physiol. 1962 Jan;160:106-54 6740964 - Vision Res. 1984;24(5):429-48 17476267 - Nature. 2007 May 3;447(7140):83-6 23596068 - Neurology. 2013 May 14;80(20):1826-33 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 22986355 - Neuroimage. 2012 Nov 15;63(3):1060-9 12351737 - J Neurosci. 2002 Oct 1;22(19):8633-46 21979382 - Neuroimage. 2012 Aug 15;62(2):782-90 18322462 - Nature. 2008 Mar 20;452(7185):352-5 23747458 - Neuroimage. 2013 Dec;83:550-8 1896085 - Nature. 1991 Oct 3;353(6343):429-31 |
References_xml | – ident: B58 doi: 10.1109/42.906424 – ident: B44 doi: 10.1073/pnas.97.10.5568 – ident: B3 doi: 10.1002/cne.903340103 – ident: B35 doi: 10.1016/j.neuroimage.2012.08.025 – volume: 57 start-page: 289 year: 1995 ident: B6 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: B8 doi: 10.1038/353429a0 – ident: B49 doi: 10.1073/pnas.0905267106 – ident: B13 doi: 10.1016/j.neuroimage.2012.11.006 – ident: B54 doi: 10.1038/nature05758 – ident: B19 doi: 10.1016/j.neuron.2013.07.036 – ident: B20 doi: 10.1093/cercor/1.1.1 – ident: B48 doi: 10.1093/cercor/11.12.1182 – ident: B16 doi: 10.1016/j.neuroimage.2007.09.034 – ident: B42 doi: 10.1371/journal.pcbi.1000808 – ident: B2 doi: 10.1152/jn.00102.2009 – ident: B12 doi: 10.1016/j.neuroimage.2013.10.013 – ident: B30 doi: 10.1093/cercor/bht087 – ident: B33 doi: 10.1073/pnas.1214900110 – ident: B46 doi: 10.1002/hbm.20580 – ident: B43 doi: 10.1126/science.7754376 – ident: B9 doi: 10.1007/978-3-662-03733-1 – ident: B26 doi: 10.1113/jphysiol.1962.sp006837 – ident: B32 doi: 10.1523/JNEUROSCI.1657-06.2006 – ident: B55 doi: 10.1016/j.neuron.2007.10.012 – ident: B31 doi: 10.1038/nature06713 – ident: B51 doi: 10.1007/s10827-008-0109-3 – ident: B17 doi: 10.1016/S0896-6273(03)00265-4 – ident: B38 – ident: B37 doi: 10.1212/WNL.0b013e3182929f38 – ident: B56 doi: 10.1016/j.neuron.2013.04.023 – ident: B45 doi: 10.1523/JNEUROSCI.4137-04.2005 – ident: B29 doi: 10.1103/PhysRevE.69.036103 – ident: B5 doi: 10.7554/eLife.03952 – ident: B25 doi: 10.1016/j.neuroimage.2011.02.077 – ident: B21 doi: 10.1038/nrn2201 – ident: B28 doi: 10.1016/j.neuroimage.2011.09.015 – ident: B50 doi: 10.1016/j.neuroimage.2010.08.063 – ident: B27 doi: 10.1002/cne.901580305 – volume: 22 start-page: 8633 year: 2002 ident: B4 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-19-08633.2002 – ident: B1 doi: 10.1523/JNEUROSCI.2923-07.2007 – ident: B15 doi: 10.1007/s10548-013-0290-1 – ident: B22 doi: 10.1038/jcbfm.1993.4 – ident: B34 doi: 10.1016/j.neuroimage.2013.07.058 – ident: B52 doi: 10.1073/pnas.95.3.811 – ident: B14 doi: 10.1073/pnas.93.6.2382 – ident: B23 doi: 10.1016/j.neuroimage.2012.10.037 – ident: B41 doi: 10.1073/pnas.0913110107 – ident: B10 doi: 10.1007/s00221-012-3159-8 – volume: 75 start-page: 107 year: 1995 ident: B40 publication-title: Physiol Rev doi: 10.1152/physrev.1995.75.1.107 – ident: B7 doi: 10.1016/j.neuroimage.2013.05.099 – ident: B18 doi: 10.1093/cercor/7.2.181 – ident: B11 doi: 10.1089/brain.2011.0065 – ident: B57 doi: 10.1167/10.5.1 – ident: B24 doi: 10.1523/JNEUROSCI.2572-11.2011 – ident: B36 doi: 10.1093/cercor/bhq201 – ident: B47 doi: 10.1016/j.neuroimage.2006.12.030 – ident: B53 doi: 10.1016/0042-6989(84)90041-5 – ident: B39 doi: 10.1016/j.neuroimage.2013.09.060 – reference: 24094111 - Neuron. 2013 Oct 2;80(1):184-97 – reference: 23110879 - Neuroimage. 2013 Feb 1;66:376-84 – reference: 15089357 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036103 – reference: 22444074 - Brain Connect. 2011;1(6):496-510 – reference: 23791200 - Neuron. 2013 Jun 19;78(6):1116-26 – reference: 18465799 - Hum Brain Mapp. 2008 Jul;29(7):751-61 – reference: 17476267 - Nature. 2007 May 3;447(7140):83-6 – reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83 – reference: 18322462 - Nature. 2008 Mar 20;452(7185):352-5 – reference: 6740964 - Vision Res. 1984;24(5):429-48 – reference: 23153969 - Neuroimage. 2013 Feb 15;67:331-43 – reference: 23899725 - Neuroimage. 2013 Dec;83:969-82 – reference: 20439733 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 – reference: 21940451 - J Neurosci. 2011 Sep 21;31(38):13604-12 – reference: 14449617 - J Physiol. 1962 Jan;160:106-54 – reference: 7831395 - Physiol Rev. 1995 Jan;75(1):107-54 – reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 – reference: 20817103 - Neuroimage. 2011 Jan 15;54(2):875-91 – reference: 18836824 - J Comput Neurosci. 2009 Apr;26(2):251-69 – reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 – reference: 10805812 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5568-73 – reference: 8408757 - J Comp Neurol. 1993 Aug 1;334(1):19-46 – reference: 17898211 - J Neurosci. 2007 Sep 26;27(39):10391-403 – reference: 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 – reference: 21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36 – reference: 24128734 - Neuroimage. 2014 Feb 1;86:343-53 – reference: 22811215 - Exp Brain Res. 2012 Aug;221(2):177-89 – reference: 9448245 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7 – reference: 4436457 - J Comp Neurol. 1974 Dec 1;158(3):295-305 – reference: 23596068 - Neurology. 2013 May 14;80(20):1826-33 – reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 – reference: 23547137 - Cereb Cortex. 2014 Sep;24(9):2334-49 – reference: 8637882 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2382-6 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 23660870 - Brain Topogr. 2013 Oct;26(4):525-37 – reference: 1896085 - Nature. 1991 Oct 3;353(6343):429-31 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 20616143 - J Vis. 2010;10(5):1 – reference: 21979382 - Neuroimage. 2012 Aug 15;62(2):782-90 – reference: 17977024 - Neuroimage. 2008 Jan 15;39(2):647-60 – reference: 7754376 - Science. 1995 May 12;268(5212):889-93 – reference: 17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42 – reference: 20548945 - PLoS Comput Biol. 2010 Jun;6(6):e1000808 – reference: 25695154 - Elife. 2015;4. doi: 10.7554/eLife.03952 – reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 – reference: 17306989 - Neuroimage. 2007 Apr 1;35(2):539-52 – reference: 12351737 - J Neurosci. 2002 Oct 1;22(19):8633-46 – reference: 21045004 - Cereb Cortex. 2011 Jun;21(6):1254-72 – reference: 22986355 - Neuroimage. 2012 Nov 15;63(3):1060-9 – reference: 23747458 - Neuroimage. 2013 Dec;83:550-8 – reference: 11709489 - Cereb Cortex. 2001 Dec;11(12):1182-90 – reference: 15728852 - J Neurosci. 2005 Feb 23;25(8):2117-31 – reference: 12765616 - Neuron. 2003 May 22;38(4):659-71 – reference: 19587323 - J Neurophysiol. 2009 Nov;102(5):2704-18 – reference: 24099850 - Neuroimage. 2014 Jan 1;84:911-21 |
SSID | ssj0000548004 |
Score | 2.0833282 |
Snippet | Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 57 |
SubjectTerms | Brain Mapping Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Original Visual Cortex - physiology Visual Fields - physiology Visual Pathways - physiology |
Title | Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26415043 https://www.proquest.com/docview/1761138143 https://www.proquest.com/docview/1761469426 https://www.proquest.com/docview/1877835040 https://pubmed.ncbi.nlm.nih.gov/PMC4744894 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvXBBQPkILZWREOLiNk6cODmhbumqQqKqqhb2Fjm2o12pTbZNVqL_iR_JjO0NLYiePdl4NWPP8_hlHiEfmsTaJtExMzUvmFB5ypQ2mnHN81zIWGfWEWRP8uML8XWWzULBrQ-0yvWe6DZq02mske9zOG9zSC8i_by8ZqgahberQULjMdnE1mVI6ZIzOdZYYmxm5hQEIbEVDI8D6-4-RblfowYDkrvEXuxF5u4kpn_Q5t-kyTtZaPqMPA3wkR54fz8nj2z7gmwdtHB0vrqlH6kjdLpK-Rb5dYphAdaHqMDhOW9sAlnL0DP80LkbuiW66PKWhi8y3UiPRGjmQCidQtbzxULqGDHaa03QH4thvmipag2deKIXTMmqnnYNBURJvy_6lX_xYH_CbzZ4OdDTb92Npedz1boRfDf9gvgVAu8luZgenR8esyDOwDTkvYGldZ1mxmS1VkZohV3xbVkKoQH_pUlc5yop6jIxUtvSZjYzMjWZRLV2C6BQmPQV2Wi71r4htEyFFpbrhnMDW4hVMbcmlvCcKJS2JiJ7a89UOnQuRwGNy8rdoBdl5VxZoSsrdGVEPo0PLH3Tjv-b7qxdXYXV21d_Yi0i78dhWHd4maJa2628jchLADgP2BQSC2uwT0bktY-ecT4ARDl2j4uIvBdXowH2_b4_0i7mrv-3kHCmLsXbh6e-TZ7AvwwM8x2yMdys7DsAUEO961bJLtmcHJ2cnv0GpEsg5g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJRHaAEjAeLiNg_ndUCo23a1pe2qqrbQW3BsR7tSmyxNVrD_CfEbmbGTpQXRW8-eJI5mPPON_XmGkDeFr3XhS5ep3EsYF1HAhFSSedKLIh67MtSGIDuKhqf801l4tkJ-dXdhkFbZ-UTjqFUlcY98y4N824PwwoOPs28Mu0bh6WrXQsOaxYFefIeUrf6wvwv6fev7g73xzpC1XQWYBIfdsCDPg1CpMJdCcSmwnLtOU84lAJfAd_NI-Eme-iqWOtWhDlUcqDDGNuMa0AxXAbz3DlnlAaQyPbLa3xsdnyx3dVwsn2Z6FkIoTRgmIF09oSTdyrHrA9LJ-KZr29pdCYX_4Nu_aZpX4t7gAbnfAla6bS3sIVnR5SOytl1Csn6xoO-ooZCavfk18vMYDRGkd7Dnh2XZsT7ESUVP8Gp11VQzNIrzBW3vgJqRGqnXzMBeOoA4a7cnqeHgSNvdgn6ZNpNpSUWpaN9Sy2BKWtS0KihgWPp5Ws_thxv9A95Z4HFETY-qS03HE1GaEfw23UXEDKb-mJzeiuKekF5ZlfoZoWnAJdeeLDxPgdPSwvW0cmN4jidCauWQzU4zmWxrpWPLjvPMnNknaWZUmaEqM1SlQ94vH5jZMiH_F93oVJ21_qLO_li3Q14vh2Gl4_GNKHU1tzI8SgFS3SCTxLiVB57ZIU-t9SznA9DXw3p1Domv2dVSACuNXx8ppxNTcZzHkMWn_PnNU39F7g7HR4fZ4f7oYJ3cgz9u-e0bpNdczvULgG9N_rJdM5R8ve1l-huKc11R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAXBJSfQAEjAeLibpw4cXJAqO2yailUFWphb8GxHe1KJVmaXaF9J56Ap2PGTpYWRG89e5I4mv_x5xlCXlSRtVWkQ2ZKnjGh0pgpbTTjmqepkKFOrAPIHqZ7J-L9OBmvkV_9XRiEVfY20Rlq02iskQ845Nsc3IuIB1UHizgajt7OvjOcIIUnrf04DS8iB3b5A9K39s3-EHj9MopG745391g3YYBpMN5zFpdlnBiTlFoZoRW2drd5LoSGICaOwjJVUVbmkZHa5jaxiZGxSSSOHLcQ2QgTw3uvkesyTjjqmBzLVX0nxEZqbnohONWMYSrSdxbK8kGJ8x8QWCa2Qj_g7pxT_CfS_Ruwec4Djm6TW13oSre9rN0ha7a-Sza2a0jbvy3pK-rApK5Kv0F-HqFIAvUuTv_weDu2Ax7T0E94ybqZNzMUj9Ml7W6DupUWQdjMBcB0BB7XFyqpQ-NoP-eCfpnOJ9OaqtrQHQ8ygy1Z1dKmohDN0s_TduE_DNyDd1Z4MNHSj82ZpccTVbsV_DYdYuwMQn-PnFwJ2-6T9bqp7UNC81hoYbmuODdgvqwKuTWhhOdEprQ1AdnqOVPorms6Du84LdzpfZYXjpUFsrJAVgbk9eqBmW8Y8n_SzZ7VRWc52uKPnAfk-WoZdB4PclRtm4WnEWkOwdUlNJnEoh7Y6IA88NKz2g8EwRw71wVEXpCrFQH2HL-4Uk8nrve4kJDP5-LR5Vt_Rm6AchYf9g8PHpOb8MMd0H2TrM_PFvYJxHHz8qlTGEq-XrWG_gapx2Ah |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Correlation-Based+Retinotopically+Organized+Resting-State+Functional+Connectivity+Within+and+Between+Areas+of+the+Visual+Cortex+Reflects+More+Than+Cortical+Distance&rft.jtitle=Brain+connectivity&rft.au=Dawson%2C+Debra+Ann&rft.au=Lam%2C+Jack&rft.au=Lewis%2C+Lindsay+B&rft.au=Carbonell%2C+Felix&rft.date=2016-02-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=2158-0014&rft.eissn=2158-0022&rft.volume=6&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1089%2Fbrain.2014.0331&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3936693351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0014&client=summon |