Evaluating and Enhancing Face Anti-Spoofing Algorithms for Light Makeup: A General Detection Approach
Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of li...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 24; p. 8075 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces. |
---|---|
AbstractList | Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces.Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces. Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces. |
Audience | Academic |
Author | Feng, Renhai Hu, Yongjian Lai, Zhimao Guo, Yang Su, Wenkang |
Author_xml | – sequence: 1 givenname: Zhimao orcidid: 0000-0003-1808-6976 surname: Lai fullname: Lai, Zhimao – sequence: 2 givenname: Yang surname: Guo fullname: Guo, Yang – sequence: 3 givenname: Yongjian orcidid: 0000-0002-7775-3786 surname: Hu fullname: Hu, Yongjian – sequence: 4 givenname: Wenkang orcidid: 0000-0002-5043-2552 surname: Su fullname: Su, Wenkang – sequence: 5 givenname: Renhai orcidid: 0000-0001-7194-6889 surname: Feng fullname: Feng, Renhai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39771809$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktv1DAUhSNURB-w4A-gSGzoIsWxHdthF5VpqTSIBbCObvzIeEjsYDtI_Pt6mDJCyAtfH30-V0f3XhZnzjtdFK9rdENIi95HTDEViDfPios6l5XAGJ39U58XlzHuEcKEEPGiOCct57VA7UWhN79gWiFZN5bgVLlxO3Dy8LoDqcvOJVt9Xbw3B6mbRh9s2s2xND6UWzvuUvkZfuh1-VB25b12OsBUftRJy2S9K7tlCR7k7mXx3MAU9aun-6r4frf5dvup2n65f7jttpWkNUkVGQakm5qCYQ1THNFBKEkHxBFjcmAN1QPhBBnWDqoZBmoMqpkCrpQgihlOroqHo6_ysO-XYGcIv3sPtv8j-DD2EJKVk-5rSdoGoGkFCMpyT9xIRAlFhlCCWshe745eOcLPVcfUzzZKPU3gtF9jT-qGCI4pwRl9-x-692twOWmmaMsbTBnK1M2RGiH3t874FEDmo_RsZZ6osVnvBK5bznBL84c3T7brMGt1yvN3ehm4PgIy-BiDNiekRv1hM_rTZpBHzzOm7A |
Cites_doi | 10.1109/ISBA.2017.7947686 10.1109/CVPR52729.2023.01959 10.1109/ICCV51070.2023.01803 10.1109/ICPR48806.2021.9413347 10.1109/CVPR.2016.90 10.1007/s10044-023-01132-4 10.1109/FG.2017.77 10.1007/978-3-031-19787-1_42 10.1109/CVPR52688.2022.00409 10.1145/3476099.3484316 10.1109/IWBF50991.2021.9465073 10.1007/978-3-031-19778-9_3 10.1109/CVPR.2018.00048 10.1109/CVPR52729.2023.02353 10.3390/s22207767 10.1109/CVPR.2019.00481 10.1109/ACCESS.2020.3044723 10.1109/ICIP49359.2023.10223078 10.1109/TIFS.2015.2400395 10.1109/BTAS.2012.6374605 10.3390/s23084077 10.3390/s22124503 10.1109/CVPR52733.2024.00026 10.1109/CVPR.2015.7298682 10.1109/TBIOM.2019.2946175 10.1068/p6634 10.1109/ICB.2012.6199754 10.3390/s23020929 10.1007/978-3-031-78195-7_20 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24248075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1c395aa598a84614a25c04340f34309a A821976294 39771809 10_3390_s24248075 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Fund Cultivation Project from China People's Police University grantid: JJPY202402 – fundername: Scientific Research and Innovation Program for Young and Middle-aged Teachers from China People's Police University grantid: ZQN202411 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c413t-3bb0e514af656d704b8dc4b07066cb654eb3730f69bd5bb4ff016da7dd83d6f73 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Fri Jul 11 15:04:08 EDT 2025 Fri Jul 25 22:54:21 EDT 2025 Tue Jun 10 21:10:22 EDT 2025 Mon Jul 21 05:46:55 EDT 2025 Tue Jul 01 02:10:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | face anti-spoofing metric learning general detection deep neural network makeup transfer |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-3bb0e514af656d704b8dc4b07066cb654eb3730f69bd5bb4ff016da7dd83d6f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7775-3786 0000-0001-7194-6889 0000-0003-1808-6976 0000-0002-5043-2552 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24248075 |
PMID | 39771809 |
PQID | 3149752460 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c395aa598a84614a25c04340f34309a proquest_miscellaneous_3153872432 proquest_journals_3149752460 gale_infotracacademiconefile_A821976294 pubmed_primary_39771809 crossref_primary_10_3390_s24248075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_32 ref_31 Yang (ref_1) 2014; 9218 ref_30 Singh (ref_23) 2023; 26 ref_19 ref_18 ref_17 ref_16 ref_38 ref_15 ref_37 Hinton (ref_39) 2008; 9 Rathgeb (ref_10) 2020; 8 Di (ref_29) 2015; 10 ref_25 ref_24 ref_22 Kotwal (ref_8) 2019; 2 ref_21 ref_20 ref_3 Ueda (ref_6) 2010; 39 ref_2 ref_28 ref_27 ref_26 ref_9 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_7 doi: 10.1109/ISBA.2017.7947686 – ident: ref_30 – ident: ref_24 doi: 10.1109/CVPR52729.2023.01959 – ident: ref_14 doi: 10.1109/ICCV51070.2023.01803 – ident: ref_12 doi: 10.1109/ICPR48806.2021.9413347 – ident: ref_26 – volume: 9 start-page: 2579 year: 2008 ident: ref_39 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_18 doi: 10.1109/CVPR.2016.90 – volume: 9218 start-page: 373 year: 2014 ident: ref_1 article-title: Learn convolutional neural network for face anti-spoofing publication-title: Comput. Sci. – ident: ref_16 – volume: 26 start-page: 773 year: 2023 ident: ref_23 article-title: LBP and CNN feature fusion for face anti-spoofing publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-023-01132-4 – ident: ref_32 doi: 10.1109/FG.2017.77 – ident: ref_34 doi: 10.1007/978-3-031-19787-1_42 – ident: ref_17 doi: 10.1109/CVPR52688.2022.00409 – ident: ref_36 doi: 10.1145/3476099.3484316 – ident: ref_11 doi: 10.1109/IWBF50991.2021.9465073 – ident: ref_13 doi: 10.1007/978-3-031-19778-9_3 – ident: ref_19 doi: 10.1109/CVPR.2018.00048 – ident: ref_20 doi: 10.1109/CVPR52729.2023.02353 – ident: ref_3 doi: 10.3390/s22207767 – ident: ref_9 doi: 10.1109/CVPR.2019.00481 – volume: 8 start-page: 224958 year: 2020 ident: ref_10 article-title: Makeup presentation attacks: Review and detection performance benchmark publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044723 – ident: ref_21 doi: 10.1109/ICIP49359.2023.10223078 – ident: ref_25 – volume: 10 start-page: 746 year: 2015 ident: ref_29 article-title: Face spoof detection with image distortion analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2400395 – ident: ref_33 – ident: ref_27 – ident: ref_28 doi: 10.1109/BTAS.2012.6374605 – ident: ref_5 doi: 10.3390/s23084077 – ident: ref_2 doi: 10.3390/s22124503 – ident: ref_15 – ident: ref_22 doi: 10.1109/CVPR52733.2024.00026 – ident: ref_37 doi: 10.1109/CVPR.2015.7298682 – volume: 2 start-page: 15 year: 2019 ident: ref_8 article-title: Detection of age-induced makeup attacks on face recognition systems using multi-layer deep features publication-title: IEEE Trans. Biom. Behav. Identity Sci. doi: 10.1109/TBIOM.2019.2946175 – ident: ref_38 – volume: 39 start-page: 260 year: 2010 ident: ref_6 article-title: Influence of make-up on facial recognition publication-title: Perception doi: 10.1068/p6634 – ident: ref_31 doi: 10.1109/ICB.2012.6199754 – ident: ref_4 doi: 10.3390/s23020929 – ident: ref_35 doi: 10.1007/978-3-031-78195-7_20 |
SSID | ssj0023338 |
Score | 2.4400907 |
Snippet | Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives,... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 8075 |
SubjectTerms | Algorithms Automated Facial Recognition - methods Biometry Comparative analysis Cosmetics Databases, Factual Deep learning deep neural network Face face anti-spoofing Fraud general detection Holidays & special occasions Humans Image Processing, Computer-Assisted - methods Light makeup transfer metric learning Supervision |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELWqntoDglIg0CKDkDhFTeKxk3BLYVcVor1Apd4sO2O3FeBd7Wb_n3HiXRU4cOEYxwdnxjPznjJ-ZuxdgTL2JvpceGFysFLkRtUUeFhhKxS6CuLh5MsrdXENn2_kzYOrvmJP2CQPPBnurOxFK42RbWOoVJZgKtkXIKDwAkTRjtCIat6WTCWqJYh5TTpCgkj92Toegoiyu79Vn1Gk_-9U_AfAHAvN_DF7lBAi76aVPWF7Lhyxwwe6gU-ZmyWN7nDLTUA-C3dRNoOe5qZ3vAvDff51uaB9Q0Pdj9vF6n64-7nmBFD5l8jG-aX57jbLD7zjSXeaf3LD2JUVeJdkxo_Z9Xz27eNFnu5LyHsqRUMurC0cASDjCaRhXYBtsAdLQa1Ub5UEIs4U0F61FqW14D3hPTQ1YiNQ-Vo8Y_thEdwLxq3HUvmmUUYJgAKtAVP2FTpfOmcRM_Z2a0e9nGQxNNGJaGy9M3bGzqOFdxOikvU4QP7Vyb_6X_7N2PvoHx3jbViZ3qRjA7TOqFylu4ZyLmX0FjJ2snWhToG41oIYYC0rUEXG3uxeUwjF_yImuMUmzqGsX1cgqow9n1y_W3PEx1Hi7OX_-JZX7KAiTDR1w5yw_WG1caeEaQb7ety-vwCHvPHO priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFInKIm8SMJFxRglwpRLlCpN8vPbQU4293s_2cm8YaXxDGOFTkznplv7PFnQl4WTmBtYshZYDrnRrBcyxoMz1WuZdL5iuPh5NPP8uSMfzwX52nBbZvKKvc-cXTUrre4Rn7MAMrXouKyeLO-yvHWKNxdTVdoXCc3Sog0WNLVLD_MCReD_GtiE2KQ2h9v8SgEku_-EYNGqv5_HfJfMHMMN8vb5DDhRNpNir1Drvl4l9z6jT3wHvGLxNQdV1RHRxfxAskz4GmpraddHC7zL-seZg80dd9X8DfDxY8tBZhKP2FOTk_1N79bv6YdTezT9L0fxtqsSLtENn6fnC0XX9-d5OnWhNxCQBpyZkzhAQbpAFDN1QU3jbPcgGlLaY0UHNJnMOsgW-OEMTwEQH1O1841zMlQswfkIPbRPyLUBFfK0DRSS8Z54YzmurSV86H03jiXkRd7Oar1RI6hIKlAYatZ2Bl5ixKeOyCf9djQb1YqmYcqLWuF1qJtNAAiGHwlbMEZLwLjrGh1Rl6hfhRa3bDRVqfDAzBO5K9SXQOeF_x6yzNytFehSua4Vb8mT0aez6_BkHB3REff77AP-P664qzKyMNJ9fOYESUj0dnj_3_8CblZAeaZql2OyMGw2fmngFkG82ycmD8Bw_Hqzg priority: 102 providerName: ProQuest |
Title | Evaluating and Enhancing Face Anti-Spoofing Algorithms for Light Makeup: A General Detection Approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39771809 https://www.proquest.com/docview/3149752460 https://www.proquest.com/docview/3153872432 https://doaj.org/article/1c395aa598a84614a25c04340f34309a |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bi9QwFD7sBWR9EK9r13WIIvhU7TRp2goiXZ1xEWcRdWDeStIks4trO9vpgP57z-llcL28FNrkIZxLzvc1yReAZ4GJaG-i87njyhc64r6SMSaeCU3KpbGhoMPJszN5OhcfFtFiB4Y7NnsDrv9J7eg-qXl9-eLH1c83mPCviXEiZX-5piMOJKq7C_tYkGK6yGAmtosJIUca1okKXe9-ADcI_pCC1bWq1Ir3_z1F_wE82wI0vQ23euTIss7Vd2DHlnfh5m96gvfATnrt7nLJVGnYpDwnOQ18m6rCsqxsLvwvqwrjCT9ll8uqvmjOv68ZAlf2kVg6m6lvdrN6xTLW61Gzd7Zpd2uVLOvlx-_DfDr5-vbU7-9R8AssUY3PtQ4sAiPlELyZOBA6MYXQmOxSFlpGAgk1JrqTqTaR1sI5xIFGxcYk3EgX8wewV1alfQhMOzOWLkmkklyIwGgl1LgIjXVja7UxHjwd7JivOrmMHGkG2T3f2t2DE7LwtgMpXLcfqnqZ9wmTjwueRkpFaaIQIuHgw6gIBBeB44IHqfLgOfknp8hoalWo_jgBjpMUrfIswbkYZ_pUeHA8uDAf4ivnyAzjKBQy8ODJthlTi9ZLVGmrDfXBahCHgoceHHau3455CJyj_7Y8goMQAVC39eUY9pp6Yx8jgGn0CHbjRYzPZPp-BPsnk7NPn0ftz4BRG7i_AINB8IQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEXNxo6TICEU6C5butsLrdRbsGN7WxWSZTcrxJ_iNzKTFy-JW49xLMuah-cb2_MZ4HlgIrqb6HzuuPKFjrivZIyOZ0KTcmlsKKg4eX4op8fiw0l0sgU_-loYulbZr4nNQm2qgvbIdzlC-TgKhQzeLL_69GoUna72T2i0ZnFgv3_DlG39en8P9fsiDCfjo3dTv3tVwC9wwa59rnVgESYoh1DGxIHQiSmERtOXstAyEpheotk7mWoTaS2cQ1RkVGxMwo10McdxL8FlwTGSU2X65P2Q4HHM91r2IvwZ7K6p9ILIfv-Iec3TAP8GgL9gbRPeJjfgeodLWdYa0k3YsuUtuPYbW-FtsOOOGbxcMFUaNi5PiawDvyaqsCwr6zP_47JCa8Wm7PMCpVefflkzhMVsRnsAbK7O7Wb5imWsY7tme7Zu7oKVLOvIze_A8YXI8y5sl1Vp7wPTzoykSxKpJBciMFoJNSpCY93IWm2MB896OebLlowjxySGhJ0PwvbgLUl46ED82U1DtVrknTvmo4KnkVJRmigEYDj5MCoCwUXguOBBqjx4SfrJycvrlSpUV6yA8yS-rDxLcKXHOJIKD3Z6Fead-6_zX8bqwdPhNzouncao0lYb6oOxJg4FDz2416p-mDOhciJWe_D_wZ_AlenRfJbP9g8PHsLVEPFWe9NmB7br1cY-QrxU68eNkTL4dNFe8RPpPCiX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgEE9R09hxEiSEMtpqY1s1AZP2ltmx3SEgLW0qxF_j13FObtwk3vYYx7Ks43P5jn38GeBZYCKqTXQ-d1z5QkfcVzJGwzOhSbk0NhR0OfloJvdOxNvT6HQLfnR3YaissvOJtaM2i4L2yIccoXwchUIGQ9eWRRyPp6-XX316QYpOWrvnNBoVObDfv2H6tn61P8a1fh6G08mHN3t--8KAX6DzrnyudWARMiiHsMbEgdCJKYRGM5Cy0DISmGqiCTiZahNpLZxDhGRUbEzCjXQxx3EvwXZMWdEAtncns-N3fbrHMftruIw4T4Phmi5iEPXvHxGwfijg33DwF8itg930OlxrUSrLGrW6AVu2vAlXf-MuvAV20vKEl3OmSsMm5TlRd-DXVBWWZWX10X-_XKDuYlP2eY7yq86_rBmCZHZIOwLsSH2ym-VLlrGW-5qNbVVXhpUsa6nOb8PJhUj0DgzKRWnvAdPOjKRLEqkkFyIwWgk1KkJj3chabYwHTzs55suGmiPHlIaEnffC9mCXJNx3IDbtumGxmuetceajgqeRUlGaKIRjOPkwKgLBReC44EGqPHhB65OTzVcrVaj26gLOk9iz8ixBv49RJRUe7HRLmLfOYJ3_Ul0PnvS_0YzpbEaVdrGhPhh54lDw0IO7zdL3cyaMTjRr9_8_-GO4jBaRH-7PDh7AlRDBV1N2swODarWxDxE8VfpRq6UMzi7aMH4ChoMuKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+and+Enhancing+Face+Anti-Spoofing+Algorithms+for+Light+Makeup%3A+A+General+Detection+Approach&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lai%2C+Zhimao&rft.au=Guo%2C+Yang&rft.au=Hu%2C+Yongjian&rft.au=Su%2C+Wenkang&rft.date=2024-12-01&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft_id=info:doi/10.3390%2Fs24248075&rft_id=info%3Apmid%2F39771809&rft.externalDocID=39771809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |