Evaluating and Enhancing Face Anti-Spoofing Algorithms for Light Makeup: A General Detection Approach

Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of li...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 24; p. 8075
Main Authors Lai, Zhimao, Guo, Yang, Hu, Yongjian, Su, Wenkang, Feng, Renhai
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces.
AbstractList Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces.Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces.
Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces. If these instances are incorrectly flagged as fraudulent by face anti-spoofing systems, it could lead to user inconvenience. In response, we develop a face anti-spoofing database that includes light makeup faces and establishes a criterion for determining light makeup to select appropriate data. Building on this foundation, we assess multiple established face anti-spoofing algorithms using the newly created database. Our findings reveal that the majority of these algorithms experience a decrease in performance when faced with light makeup faces. Consequently, this paper introduces a general face anti-spoofing algorithm specifically designed for light makeup faces, which includes a makeup augmentation module, a batch channel normalization module, a backbone network updated via the Exponential Moving Average (EMA) method, an asymmetric virtual triplet loss module, and a nearest neighbor supervised contrastive module. The experimental outcomes confirm that the proposed algorithm exhibits superior detection capabilities when handling light makeup faces.
Audience Academic
Author Feng, Renhai
Hu, Yongjian
Lai, Zhimao
Guo, Yang
Su, Wenkang
Author_xml – sequence: 1
  givenname: Zhimao
  orcidid: 0000-0003-1808-6976
  surname: Lai
  fullname: Lai, Zhimao
– sequence: 2
  givenname: Yang
  surname: Guo
  fullname: Guo, Yang
– sequence: 3
  givenname: Yongjian
  orcidid: 0000-0002-7775-3786
  surname: Hu
  fullname: Hu, Yongjian
– sequence: 4
  givenname: Wenkang
  orcidid: 0000-0002-5043-2552
  surname: Su
  fullname: Su, Wenkang
– sequence: 5
  givenname: Renhai
  orcidid: 0000-0001-7194-6889
  surname: Feng
  fullname: Feng, Renhai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39771809$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAUhSNURB-w4A-gSGzoIsWxHdthF5VpqTSIBbCObvzIeEjsYDtI_Pt6mDJCyAtfH30-V0f3XhZnzjtdFK9rdENIi95HTDEViDfPios6l5XAGJ39U58XlzHuEcKEEPGiOCct57VA7UWhN79gWiFZN5bgVLlxO3Dy8LoDqcvOJVt9Xbw3B6mbRh9s2s2xND6UWzvuUvkZfuh1-VB25b12OsBUftRJy2S9K7tlCR7k7mXx3MAU9aun-6r4frf5dvup2n65f7jttpWkNUkVGQakm5qCYQ1THNFBKEkHxBFjcmAN1QPhBBnWDqoZBmoMqpkCrpQgihlOroqHo6_ysO-XYGcIv3sPtv8j-DD2EJKVk-5rSdoGoGkFCMpyT9xIRAlFhlCCWshe745eOcLPVcfUzzZKPU3gtF9jT-qGCI4pwRl9-x-692twOWmmaMsbTBnK1M2RGiH3t874FEDmo_RsZZ6osVnvBK5bznBL84c3T7brMGt1yvN3ehm4PgIy-BiDNiekRv1hM_rTZpBHzzOm7A
Cites_doi 10.1109/ISBA.2017.7947686
10.1109/CVPR52729.2023.01959
10.1109/ICCV51070.2023.01803
10.1109/ICPR48806.2021.9413347
10.1109/CVPR.2016.90
10.1007/s10044-023-01132-4
10.1109/FG.2017.77
10.1007/978-3-031-19787-1_42
10.1109/CVPR52688.2022.00409
10.1145/3476099.3484316
10.1109/IWBF50991.2021.9465073
10.1007/978-3-031-19778-9_3
10.1109/CVPR.2018.00048
10.1109/CVPR52729.2023.02353
10.3390/s22207767
10.1109/CVPR.2019.00481
10.1109/ACCESS.2020.3044723
10.1109/ICIP49359.2023.10223078
10.1109/TIFS.2015.2400395
10.1109/BTAS.2012.6374605
10.3390/s23084077
10.3390/s22124503
10.1109/CVPR52733.2024.00026
10.1109/CVPR.2015.7298682
10.1109/TBIOM.2019.2946175
10.1068/p6634
10.1109/ICB.2012.6199754
10.3390/s23020929
10.1007/978-3-031-78195-7_20
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24248075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1c395aa598a84614a25c04340f34309a
A821976294
39771809
10_3390_s24248075
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Fund Cultivation Project from China People's Police University
  grantid: JJPY202402
– fundername: Scientific Research and Innovation Program for Young and Middle-aged Teachers from China People's Police University
  grantid: ZQN202411
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c413t-3bb0e514af656d704b8dc4b07066cb654eb3730f69bd5bb4ff016da7dd83d6f73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:19 EDT 2025
Fri Jul 11 15:04:08 EDT 2025
Fri Jul 25 22:54:21 EDT 2025
Tue Jun 10 21:10:22 EDT 2025
Mon Jul 21 05:46:55 EDT 2025
Tue Jul 01 02:10:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords face anti-spoofing
metric learning
general detection
deep neural network
makeup transfer
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-3bb0e514af656d704b8dc4b07066cb654eb3730f69bd5bb4ff016da7dd83d6f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7775-3786
0000-0001-7194-6889
0000-0003-1808-6976
0000-0002-5043-2552
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24248075
PMID 39771809
PQID 3149752460
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1c395aa598a84614a25c04340f34309a
proquest_miscellaneous_3153872432
proquest_journals_3149752460
gale_infotracacademiconefile_A821976294
pubmed_primary_39771809
crossref_primary_10_3390_s24248075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_32
ref_31
Yang (ref_1) 2014; 9218
ref_30
Singh (ref_23) 2023; 26
ref_19
ref_18
ref_17
ref_16
ref_38
ref_15
ref_37
Hinton (ref_39) 2008; 9
Rathgeb (ref_10) 2020; 8
Di (ref_29) 2015; 10
ref_25
ref_24
ref_22
Kotwal (ref_8) 2019; 2
ref_21
ref_20
ref_3
Ueda (ref_6) 2010; 39
ref_2
ref_28
ref_27
ref_26
ref_9
ref_5
ref_4
ref_7
References_xml – ident: ref_7
  doi: 10.1109/ISBA.2017.7947686
– ident: ref_30
– ident: ref_24
  doi: 10.1109/CVPR52729.2023.01959
– ident: ref_14
  doi: 10.1109/ICCV51070.2023.01803
– ident: ref_12
  doi: 10.1109/ICPR48806.2021.9413347
– ident: ref_26
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_39
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_18
  doi: 10.1109/CVPR.2016.90
– volume: 9218
  start-page: 373
  year: 2014
  ident: ref_1
  article-title: Learn convolutional neural network for face anti-spoofing
  publication-title: Comput. Sci.
– ident: ref_16
– volume: 26
  start-page: 773
  year: 2023
  ident: ref_23
  article-title: LBP and CNN feature fusion for face anti-spoofing
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-023-01132-4
– ident: ref_32
  doi: 10.1109/FG.2017.77
– ident: ref_34
  doi: 10.1007/978-3-031-19787-1_42
– ident: ref_17
  doi: 10.1109/CVPR52688.2022.00409
– ident: ref_36
  doi: 10.1145/3476099.3484316
– ident: ref_11
  doi: 10.1109/IWBF50991.2021.9465073
– ident: ref_13
  doi: 10.1007/978-3-031-19778-9_3
– ident: ref_19
  doi: 10.1109/CVPR.2018.00048
– ident: ref_20
  doi: 10.1109/CVPR52729.2023.02353
– ident: ref_3
  doi: 10.3390/s22207767
– ident: ref_9
  doi: 10.1109/CVPR.2019.00481
– volume: 8
  start-page: 224958
  year: 2020
  ident: ref_10
  article-title: Makeup presentation attacks: Review and detection performance benchmark
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3044723
– ident: ref_21
  doi: 10.1109/ICIP49359.2023.10223078
– ident: ref_25
– volume: 10
  start-page: 746
  year: 2015
  ident: ref_29
  article-title: Face spoof detection with image distortion analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2400395
– ident: ref_33
– ident: ref_27
– ident: ref_28
  doi: 10.1109/BTAS.2012.6374605
– ident: ref_5
  doi: 10.3390/s23084077
– ident: ref_2
  doi: 10.3390/s22124503
– ident: ref_15
– ident: ref_22
  doi: 10.1109/CVPR52733.2024.00026
– ident: ref_37
  doi: 10.1109/CVPR.2015.7298682
– volume: 2
  start-page: 15
  year: 2019
  ident: ref_8
  article-title: Detection of age-induced makeup attacks on face recognition systems using multi-layer deep features
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
  doi: 10.1109/TBIOM.2019.2946175
– ident: ref_38
– volume: 39
  start-page: 260
  year: 2010
  ident: ref_6
  article-title: Influence of make-up on facial recognition
  publication-title: Perception
  doi: 10.1068/p6634
– ident: ref_31
  doi: 10.1109/ICB.2012.6199754
– ident: ref_4
  doi: 10.3390/s23020929
– ident: ref_35
  doi: 10.1007/978-3-031-78195-7_20
SSID ssj0023338
Score 2.4400907
Snippet Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives,...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8075
SubjectTerms Algorithms
Automated Facial Recognition - methods
Biometry
Comparative analysis
Cosmetics
Databases, Factual
Deep learning
deep neural network
Face
face anti-spoofing
Fraud
general detection
Holidays & special occasions
Humans
Image Processing, Computer-Assisted - methods
Light
makeup transfer
metric learning
Supervision
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELWqntoDglIg0CKDkDhFTeKxk3BLYVcVor1Apd4sO2O3FeBd7Wb_n3HiXRU4cOEYxwdnxjPznjJ-ZuxdgTL2JvpceGFysFLkRtUUeFhhKxS6CuLh5MsrdXENn2_kzYOrvmJP2CQPPBnurOxFK42RbWOoVJZgKtkXIKDwAkTRjtCIat6WTCWqJYh5TTpCgkj92Toegoiyu79Vn1Gk_-9U_AfAHAvN_DF7lBAi76aVPWF7Lhyxwwe6gU-ZmyWN7nDLTUA-C3dRNoOe5qZ3vAvDff51uaB9Q0Pdj9vF6n64-7nmBFD5l8jG-aX57jbLD7zjSXeaf3LD2JUVeJdkxo_Z9Xz27eNFnu5LyHsqRUMurC0cASDjCaRhXYBtsAdLQa1Ub5UEIs4U0F61FqW14D3hPTQ1YiNQ-Vo8Y_thEdwLxq3HUvmmUUYJgAKtAVP2FTpfOmcRM_Z2a0e9nGQxNNGJaGy9M3bGzqOFdxOikvU4QP7Vyb_6X_7N2PvoHx3jbViZ3qRjA7TOqFylu4ZyLmX0FjJ2snWhToG41oIYYC0rUEXG3uxeUwjF_yImuMUmzqGsX1cgqow9n1y_W3PEx1Hi7OX_-JZX7KAiTDR1w5yw_WG1caeEaQb7ety-vwCHvPHO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFInKIm8SMJFxRglwpRLlCpN8vPbQU4293s_2cm8YaXxDGOFTkznplv7PFnQl4WTmBtYshZYDrnRrBcyxoMz1WuZdL5iuPh5NPP8uSMfzwX52nBbZvKKvc-cXTUrre4Rn7MAMrXouKyeLO-yvHWKNxdTVdoXCc3Sog0WNLVLD_MCReD_GtiE2KQ2h9v8SgEku_-EYNGqv5_HfJfMHMMN8vb5DDhRNpNir1Drvl4l9z6jT3wHvGLxNQdV1RHRxfxAskz4GmpraddHC7zL-seZg80dd9X8DfDxY8tBZhKP2FOTk_1N79bv6YdTezT9L0fxtqsSLtENn6fnC0XX9-d5OnWhNxCQBpyZkzhAQbpAFDN1QU3jbPcgGlLaY0UHNJnMOsgW-OEMTwEQH1O1841zMlQswfkIPbRPyLUBFfK0DRSS8Z54YzmurSV86H03jiXkRd7Oar1RI6hIKlAYatZ2Bl5ixKeOyCf9djQb1YqmYcqLWuF1qJtNAAiGHwlbMEZLwLjrGh1Rl6hfhRa3bDRVqfDAzBO5K9SXQOeF_x6yzNytFehSua4Vb8mT0aez6_BkHB3REff77AP-P664qzKyMNJ9fOYESUj0dnj_3_8CblZAeaZql2OyMGw2fmngFkG82ycmD8Bw_Hqzg
  priority: 102
  providerName: ProQuest
Title Evaluating and Enhancing Face Anti-Spoofing Algorithms for Light Makeup: A General Detection Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/39771809
https://www.proquest.com/docview/3149752460
https://www.proquest.com/docview/3153872432
https://doaj.org/article/1c395aa598a84614a25c04340f34309a
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bi9QwFD7sBWR9EK9r13WIIvhU7TRp2goiXZ1xEWcRdWDeStIks4trO9vpgP57z-llcL28FNrkIZxLzvc1yReAZ4GJaG-i87njyhc64r6SMSaeCU3KpbGhoMPJszN5OhcfFtFiB4Y7NnsDrv9J7eg-qXl9-eLH1c83mPCviXEiZX-5piMOJKq7C_tYkGK6yGAmtosJIUca1okKXe9-ADcI_pCC1bWq1Ir3_z1F_wE82wI0vQ23euTIss7Vd2DHlnfh5m96gvfATnrt7nLJVGnYpDwnOQ18m6rCsqxsLvwvqwrjCT9ll8uqvmjOv68ZAlf2kVg6m6lvdrN6xTLW61Gzd7Zpd2uVLOvlx-_DfDr5-vbU7-9R8AssUY3PtQ4sAiPlELyZOBA6MYXQmOxSFlpGAgk1JrqTqTaR1sI5xIFGxcYk3EgX8wewV1alfQhMOzOWLkmkklyIwGgl1LgIjXVja7UxHjwd7JivOrmMHGkG2T3f2t2DE7LwtgMpXLcfqnqZ9wmTjwueRkpFaaIQIuHgw6gIBBeB44IHqfLgOfknp8hoalWo_jgBjpMUrfIswbkYZ_pUeHA8uDAf4ivnyAzjKBQy8ODJthlTi9ZLVGmrDfXBahCHgoceHHau3455CJyj_7Y8goMQAVC39eUY9pp6Yx8jgGn0CHbjRYzPZPp-BPsnk7NPn0ftz4BRG7i_AINB8IQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBOEXNxo6TICEU6C5butsLrdRbsGN7WxWSZTcrxJ_iNzKTFy-JW49xLMuah-cb2_MZ4HlgIrqb6HzuuPKFjrivZIyOZ0KTcmlsKKg4eX4op8fiw0l0sgU_-loYulbZr4nNQm2qgvbIdzlC-TgKhQzeLL_69GoUna72T2i0ZnFgv3_DlG39en8P9fsiDCfjo3dTv3tVwC9wwa59rnVgESYoh1DGxIHQiSmERtOXstAyEpheotk7mWoTaS2cQ1RkVGxMwo10McdxL8FlwTGSU2X65P2Q4HHM91r2IvwZ7K6p9ILIfv-Iec3TAP8GgL9gbRPeJjfgeodLWdYa0k3YsuUtuPYbW-FtsOOOGbxcMFUaNi5PiawDvyaqsCwr6zP_47JCa8Wm7PMCpVefflkzhMVsRnsAbK7O7Wb5imWsY7tme7Zu7oKVLOvIze_A8YXI8y5sl1Vp7wPTzoykSxKpJBciMFoJNSpCY93IWm2MB896OebLlowjxySGhJ0PwvbgLUl46ED82U1DtVrknTvmo4KnkVJRmigEYDj5MCoCwUXguOBBqjx4SfrJycvrlSpUV6yA8yS-rDxLcKXHOJIKD3Z6Fead-6_zX8bqwdPhNzouncao0lYb6oOxJg4FDz2416p-mDOhciJWe_D_wZ_AlenRfJbP9g8PHsLVEPFWe9NmB7br1cY-QrxU68eNkTL4dNFe8RPpPCiX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgEE9R09hxEiSEMtpqY1s1AZP2ltmx3SEgLW0qxF_j13FObtwk3vYYx7Ks43P5jn38GeBZYCKqTXQ-d1z5QkfcVzJGwzOhSbk0NhR0OfloJvdOxNvT6HQLfnR3YaissvOJtaM2i4L2yIccoXwchUIGQ9eWRRyPp6-XX316QYpOWrvnNBoVObDfv2H6tn61P8a1fh6G08mHN3t--8KAX6DzrnyudWARMiiHsMbEgdCJKYRGM5Cy0DISmGqiCTiZahNpLZxDhGRUbEzCjXQxx3EvwXZMWdEAtncns-N3fbrHMftruIw4T4Phmi5iEPXvHxGwfijg33DwF8itg930OlxrUSrLGrW6AVu2vAlXf-MuvAV20vKEl3OmSsMm5TlRd-DXVBWWZWX10X-_XKDuYlP2eY7yq86_rBmCZHZIOwLsSH2ym-VLlrGW-5qNbVVXhpUsa6nOb8PJhUj0DgzKRWnvAdPOjKRLEqkkFyIwWgk1KkJj3chabYwHTzs55suGmiPHlIaEnffC9mCXJNx3IDbtumGxmuetceajgqeRUlGaKIRjOPkwKgLBReC44EGqPHhB65OTzVcrVaj26gLOk9iz8ixBv49RJRUe7HRLmLfOYJ3_Ul0PnvS_0YzpbEaVdrGhPhh54lDw0IO7zdL3cyaMTjRr9_8_-GO4jBaRH-7PDh7AlRDBV1N2swODarWxDxE8VfpRq6UMzi7aMH4ChoMuKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+and+Enhancing+Face+Anti-Spoofing+Algorithms+for+Light+Makeup%3A+A+General+Detection+Approach&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lai%2C+Zhimao&rft.au=Guo%2C+Yang&rft.au=Hu%2C+Yongjian&rft.au=Su%2C+Wenkang&rft.date=2024-12-01&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft_id=info:doi/10.3390%2Fs24248075&rft_id=info%3Apmid%2F39771809&rft.externalDocID=39771809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon