Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCo...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 57; no. 12; pp. 2914 - 2927.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
[Display omitted]
•Isolation of PDCoV RBD-directed human neutralizing mAbs•Molecular basis of mAb-mediated broad PDCoV neutralization revealed by cryo-EM•Potent PDCoV neutralization involves competitive inhibition of receptor engagement•Deep-mutational scanning identification of a mAb cocktail to limit viral resistance
Porcine delta-coronavirus (PDCoV) recently spilled over to humans, and no countermeasures are approved. Rexhepaj et al. describe human mAbs that broadly neutralize PDCoV variants by inhibiting host receptor engagement to the RBD. They perform deep-mutational scanning to enhance our understanding of DCoV immunity and identify a two-mAb cocktail that could potentially limit viral resistance. |
---|---|
AbstractList | Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
[Display omitted]
•Isolation of PDCoV RBD-directed human neutralizing mAbs•Molecular basis of mAb-mediated broad PDCoV neutralization revealed by cryo-EM•Potent PDCoV neutralization involves competitive inhibition of receptor engagement•Deep-mutational scanning identification of a mAb cocktail to limit viral resistance
Porcine delta-coronavirus (PDCoV) recently spilled over to humans, and no countermeasures are approved. Rexhepaj et al. describe human mAbs that broadly neutralize PDCoV variants by inhibiting host receptor engagement to the RBD. They perform deep-mutational scanning to enhance our understanding of DCoV immunity and identify a two-mAb cocktail that could potentially limit viral resistance. Porcine deltacoronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent coronaviruses. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryo-electron microscopy structures of PD33 and PD41 in complex with the S receptor-binding domain and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV, and used deep mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks. Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks. Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks. |
Author | Veesler, David Yoshiyama, Courtney N. Mccallum, Mathew Perruzza, Lisa Dickinson, Miles S. Starr, Tyler N. Saliba, Christian Leoni, Giada Tortorici, M. Alejandra Quispe, Joel Rexhepaj, Megi Asarnow, Daniel Taylor, Ashley L. Benigni, Fabio Guarino, Barbara Balmelli, Alessio Corti, Davide Culap, Katja Sprouse, Kaitlin R. Brown, Jack T. Park, Young-Jun |
AuthorAffiliation | 1 Department of Biochemistry, University of Washington, Seattle, Washington, USA 3 Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland 2 Howard Hughes Medical Institute, Seattle, WA 98195, USA 4 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry, University of Washington, Seattle, Washington, USA – name: 4 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – name: 3 Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – name: 2 Howard Hughes Medical Institute, Seattle, WA 98195, USA |
Author_xml | – sequence: 1 givenname: Megi surname: Rexhepaj fullname: Rexhepaj, Megi organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 2 givenname: Daniel surname: Asarnow fullname: Asarnow, Daniel organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 3 givenname: Lisa surname: Perruzza fullname: Perruzza, Lisa organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 4 givenname: Young-Jun surname: Park fullname: Park, Young-Jun organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 5 givenname: Barbara surname: Guarino fullname: Guarino, Barbara organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 6 givenname: Mathew surname: Mccallum fullname: Mccallum, Mathew organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 7 givenname: Katja surname: Culap fullname: Culap, Katja organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 8 givenname: Christian surname: Saliba fullname: Saliba, Christian organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 9 givenname: Giada surname: Leoni fullname: Leoni, Giada organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 10 givenname: Alessio surname: Balmelli fullname: Balmelli, Alessio organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 11 givenname: Courtney N. surname: Yoshiyama fullname: Yoshiyama, Courtney N. organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 12 givenname: Miles S. surname: Dickinson fullname: Dickinson, Miles S. organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 13 givenname: Joel surname: Quispe fullname: Quispe, Joel organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 14 givenname: Jack T. surname: Brown fullname: Brown, Jack T. organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 15 givenname: M. Alejandra surname: Tortorici fullname: Tortorici, M. Alejandra organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 16 givenname: Kaitlin R. surname: Sprouse fullname: Sprouse, Kaitlin R. organization: Department of Biochemistry, University of Washington, Seattle, WA, USA – sequence: 17 givenname: Ashley L. surname: Taylor fullname: Taylor, Ashley L. organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – sequence: 18 givenname: Davide surname: Corti fullname: Corti, Davide organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 19 givenname: Tyler N. surname: Starr fullname: Starr, Tyler N. email: tyler.starr@biochem.utah.edu organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – sequence: 20 givenname: Fabio surname: Benigni fullname: Benigni, Fabio email: fbenigni@vir.bio organization: Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland – sequence: 21 givenname: David orcidid: 0000-0002-6019-8675 surname: Veesler fullname: Veesler, David email: dveesler@uw.edu organization: Department of Biochemistry, University of Washington, Seattle, WA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39488210$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1r3DAQFSWl-Wj_QSg-9uKNPtfWJaWE5gMCveQuZqXxRostuZK9kPz6ymwS0ktOM7z35s0w75QchRiQkHNGV4yy9cVu5YdhDn7FKZcFWlHKPpETRnVTS9bSo6VvZN2smTgmpznvikAqTb-QY6Fl23JGT4i7y7GHycdQQXAVZgsjVgOMow_bKnbVJkVw_VMVcJ4S9P55wSFMfhOdx1zBFnzIU4UDpu3COewnqG1MMcDepzlj_ko-d9Bn_PZSz8jD9e-Hq9v6_s_N3dWv-9pKJqZarMFprbhGqyW3VChQrWiA605yt24UFaID5A1IYNypFlzrnEUETjslxRn5ebAd582AhQjLxWZMfoD0ZCJ48z8T_KPZxr1hnDeatqo4_HhxSPHvjHkyg88W-x4CxjkbwbhQiglBi_T7-2VvW15fWwTyILAp5pywe5MwapYEzc4cEjRLggtaAipjl4cxLI_ae0wmW4_BovMJ7WRc9B8b_AOBgajY |
Cites_doi | 10.1126/science.1085952 10.1038/ncomms15092 10.1080/22221751.2022.2040341 10.1126/science.abg9175 10.1038/nature17200 10.1016/j.cell.2020.09.037 10.1038/357417a0 10.1016/j.cell.2024.06.016 10.1128/AEM.02427-06 10.1016/j.cell.2022.05.019 10.1002/jcc.20084 10.1016/j.cell.2024.06.006 10.1002/pro.3235 10.1128/JVI.79.3.1595-1604.2005 10.1038/s41586-023-06599-z 10.1073/pnas.1708727114 10.1093/cid/ciab456 10.1038/s41564-020-0688-y 10.1038/s41586-023-06761-7 10.1016/j.jmb.2007.05.022 10.1371/journal.ppat.1010951 10.1038/s41586-020-2012-7 10.1126/science.1085953 10.1038/nmeth.3286 10.1073/pnas.1707304114 10.7554/eLife.17219 10.1038/s41586-021-04111-z 10.1128/JVI.01556-17 10.1093/ve/veab096 10.1038/s41592-019-0580-y 10.1107/S0907444910007493 10.1038/nm.3985 10.1038/nprot.2007.15 10.1126/scitranslmed.abi9915 10.1016/j.cell.2020.06.025 10.1073/pnas.0409465102 10.1111/tbed.14434 10.7554/eLife.51230 10.1038/s41592-020-00990-8 10.1038/nm1024 10.1126/science.abl8506 10.7554/eLife.42166 10.1093/nar/gkn316 10.1093/nsr/nwae206 10.1038/s41594-020-0468-7 10.1016/j.jim.2007.09.017 10.1093/cid/ciab924 10.1093/molbev/msu300 10.1038/s41467-022-29062-5 10.1016/j.str.2020.12.003 10.1038/nature02145 10.1128/JVI.79.2.884-895.2005 10.1128/mBio.00373-17 10.1056/NEJMoa030747 10.1016/j.cell.2020.08.012 10.1107/S0907444909042073 10.1016/j.cell.2021.03.028 10.1107/S2059798319011471 10.1038/s41467-021-21006-9 10.1126/science.1259530 10.1016/j.jsb.2012.09.006 10.1111/eva.12997 10.1038/s41564-022-01155-3 10.1126/science.2471267 10.1038/s41467-022-31615-7 10.1016/j.chom.2020.06.010 10.1126/science.abb2507 10.1128/JVI.01628-17 10.1056/NEJMoa1211721 10.1107/S2059798318002425 10.1038/nsmb.3293 10.1056/NEJMoa030781 10.1038/s41586-023-06487-6 10.1093/bioinformatics/bts565 10.1126/sciimmunol.adf1421 10.1016/bs.aivir.2019.08.002 10.1016/j.jsb.2005.07.007 10.1038/nmeth.4169 10.1038/s41592-019-0575-8 10.1038/s41586-022-05513-3 10.1126/science.abe3354 10.1038/s41586-021-03530-2 10.1016/j.cell.2021.02.026 10.1016/j.str.2018.09.006 10.1038/s41586-021-03237-4 10.1038/nature16988 10.1017/S1431927620014282 10.1093/molbev/msaa117 10.1016/j.cell.2018.12.028 10.1107/S205225251801463X 10.1073/pnas.1517719113 10.1126/science.abn8652 10.1186/s12985-024-02358-2 10.1126/science.abj3321 10.1038/s41564-023-01359-1 10.1016/j.chom.2020.11.007 10.1016/j.jsb.2005.03.010 10.1126/science.abq2679 10.1038/357420a0 10.1038/s41467-020-19146-5 10.3181/00379727-121-30734 10.1016/j.celrep.2024.114530 10.1126/science.abj0299 10.1038/s41586-021-03807-6 10.1038/s41586-021-03925-1 10.1126/science.abf9302 10.1038/s41594-019-0233-y 10.1056/NEJMoa2001017 10.1016/j.jmb.2017.12.010 10.1016/j.immuni.2018.12.017 10.1371/journal.ppat.1007236 10.1016/j.cell.2020.02.058 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.immuni.2024.10.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 2927.e7 |
ExternalDocumentID | PMC12279085 39488210 10_1016_j_immuni_2024_10_001 S1074761324004813 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI167966 – fundername: Wellcome Trust – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: DP1 AI158186 – fundername: NIH HHS grantid: S10 OD023476 – fundername: NIAID NIH HHS grantid: 75N93022C00036 |
GroupedDBID | --- --K -DZ 0R~ 0SF 1RT 1~5 4.4 457 4G. 53G 5GY 62- 6I. 7-5 8C1 AACTN AAEDT AAEDW AAFTH AAKRW AALRI AAMRU AAVLU AAXUO ABMAC ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT AEFWE AENEX AFRAH AFTJW AGGSO AGKMS AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IH2 IHE IXB J1W JIG LX5 M2O M3Z M41 N9A O-L O9- OK1 OVD P2P RCE ROL RPZ SCP SES SSZ TEORI TR2 .55 .GJ 29I 2WC 5VS 8FE 8FH AAIKJ AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKBMS AKYEP APXCP BKEYQ BPHCQ BVXVI CITATION FEDTE FGOYB G-2 HVGLF HZ~ LK8 OHT OZT PQQKQ PROAC R2- RIG UHS X7M Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c413t-36ad99529ec942c035a5837a29f42d675033fae27a4a12d58ad8ddceea20f543 |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 18:25:33 EDT 2025 Mon Jul 21 10:08:10 EDT 2025 Thu Jul 24 02:16:49 EDT 2025 Thu Jul 03 08:34:40 EDT 2025 Sat Jan 11 15:49:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | porcine deltacoronavirus PDCoV spike glycoprotein deep mutational scanning neutralizing antibodies zoonosis cryo-EM structures |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-36ad99529ec942c035a5837a29f42d675033fae27a4a12d58ad8ddceea20f543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to the work M.R., L.P., F.B., and D.V. designed the experiments. M.R., L.P. and J.T.B. recombinantly expressed and purified glycoproteins. M.M. cloned the construct and produced an initial batch of the anti-kappa light chain nanobody and M.R. purified subsequent batches. L.P., A.D., and F.B. performed immunization and monoclonal antibody isolations. K.C., C.S. and A.B. produced the recombinant antibodies. M.R. performed binding assays and performed entry assays. M.R. and C.Y. produced pseudoviruses. K.S. and C.N.Y. helped with generating hybridoma and parent pseudovirus. Y.J.P. carried out cryo-EM specimen preparation, data collection, and processing of the PD33-bound PDCoV RBD structure. Y.J.P., and D.V. built and refined the PD33-bound RBD cryoEM structure. M.R., M.S.D., and D.A. carried out cryo-EM specimen preparation and data collection of the PD41-bound PDCoV SSD2018/300. D.A. processed the PD41-bound PDCoV SSD2018/300 cryoEM dataset. M.R., D.A. and D.V. built and refined the PD41-bound RBD cryoEM structure. J.Q. helped with specimen preparation and cryoEM data collection of the PD41-bound PDCoV SSD2018/300. M.A.T. provided key reagents. A.T. and T.N.S. performed bioinformatic analysis to aid in strain selection of PDCoV and carried out DMS. B.G. evaluated mAb-mediated effector functions. M.R., Y.J.P., D.A., T.N.S. and D.V. analyzed the data and wrote the manuscript with input from all authors. D.C., T.N.S., F.B. and D.V. supervised the project. Lead contact Author contributions |
ORCID | 0000-0002-6019-8675 |
OpenAccessLink | https://dx.doi.org/10.1016/j.immuni.2024.10.001 |
PMID | 39488210 |
PQID | 3123551330 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12279085 proquest_miscellaneous_3123551330 pubmed_primary_39488210 crossref_primary_10_1016_j_immuni_2024_10_001 elsevier_sciencedirect_doi_10_1016_j_immuni_2024_10_001 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-10 |
PublicationDateYYYYMMDD | 2024-12-10 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Brochet, Lefranc, Giudicelli (bib84) 2008; 36 Croll (bib101) 2018; 74 Mastronarde (bib89) 2005; 152 Saunders, Fernandez, Planchais, Michel, Rajah, Baquero Salazar, Postal, Porrot, Guivel-Benhassine, Blanc (bib79) 2023 Ye, Chen, Zhu, Guo, Xie, Hou, Xu, Zhou, Fang, Wang (bib110) 2020; 13 Yeager, Ashmun, Williams, Cardellichio, Shapiro, Look, Holmes (bib17) 1992; 357 Letko, Marzi, Munster (bib20) 2020; 5 Menachery, Yount, Debbink, Agnihothram, Gralinski, Plante, Graham, Scobey, Ge, Donaldson (bib29) 2015; 21 Tortorici, Veesler (bib27) 2019; 105 Song, Gui, Wang, Xiang (bib70) 2018; 14 Frenz, Rämisch, Borst, Walls, Adolf-Bryfogle, Schief, Veesler, DiMaio (bib104) 2019; 27 Corbett, Nason, Flach, Gagne, O’Connell, Johnston, Shah, Edara, Floyd, Lai (bib32) 2021; 373 Ksiazek, Erdman, Goldsmith, Zaki, Peret, Emery, Tong, Urbani, Comer, Lim (bib8) 2003; 348 Dingens, Arenz, Weight, Overbaugh, Bloom (bib57) 2019; 50 Wang, Song, Barad, Cheng, Fraser, DiMaio (bib102) 2016; 5 Vlasova, Toh, Lee, Poovorawan, Davis, Azevedo, Lednicky, Saif, Gray (bib59) 2022; 11 Starr, Greaney, Addetia, Hannon, Choudhary, Dingens, Li, Bloom (bib55) 2021; 371 Liu, Yue, Meng, Xiao, Yang, Liu, Jian, Zhu, Yu, Ren (bib71) 2024; 11 Li, Hulswit, Kenney, Widjaja, Jung, Alhamo, van Dieren, van Kuppeveld, Saif, Bosch (bib15) 2018; 115 Liebschner, Afonine, Baker, Bunkóczi, Chen, Croll, Hintze, Hung, Jain, McCoy (bib105) 2019; 75 Xiong, Cao, Ma, Tortorici, Liu, Si, Liu, Gu, Walls, Wang (bib23) 2022; 612 Hsueh, Wu, Lin, Hsu, Lin, Chang, Lin, Liu, Chiou, Chan (bib112) 2021; 7 Vijgen, Keyaerts, Moës, Thoelen, Wollants, Lemey, Vandamme, Van Ranst (bib4) 2005; 79 Crawford, Bloom (bib119) 2019; 4 Xiong, Tortorici, Snijder, Yoshioka, Walls, Li, McGuire, Rey, Bosch, Veesler (bib37) 2018; 92 Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib99) 2018; 27 Tortorici, Beltramello, Lempp, Pinto, Dang, Rosen, McCallum, Bowen, Minola, Jaconi (bib53) 2020; 370 Krissinel, Henrick (bib108) 2007; 372 Scheres (bib95) 2012; 180 Piccoli, Park, Tortorici, Czudnochowski, Walls, Beltramello, Silacci-Fregni, Pinto, Rosen, Bowen (bib33) 2020; 183 Tortorici, Walls, Joshi, Park, Eguia, Miranda, Kepl, Dosey, Stevens-Ayers, Boeckh (bib13) 2022; 185 Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib88) 2005; 151 Marra, Jones, Astell, Holt, Brooks-Wilson, Butterfield, Khattra, Asano, Barber, Chan (bib6) 2003; 300 Wentz, Shusta (bib117) 2007; 73 McCallum, Walls, Sprouse, Bowen, Rosen, Dang, De Marco, Franko, Tilles, Logue (bib44) 2021; 374 Li, Giorgi, Marichannegowda, Foley, Xiao, Kong, Chen, Gnanakaran, Korber, Gao (bib62) 2020; 6 Wang, Liu, Zhang, Zhao, Lu, Pu, Zhang, Chen, Wang, Li (bib82) 2024; 187 Bepler, Morin, Rapp, Brasch, Shapiro, Noble, Berger (bib92) 2019; 16 McCallum, Czudnochowski, Rosen, Zepeda, Bowen, Walls, Hauser, Joshi, Stewart, Dillen (bib46) 2022 Tegunov, Cramer (bib90) 2019; 16 Shang, Zheng, Yang, Liu, Geng, Tai, Du, Zhou, Zhang, Li (bib47) 2018; 92 Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib21) 2003; 426 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib67) 2020; 367 Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib77) 2016; 23 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib98) 2004; 25 Greaney, Starr, Gilchuk, Zost, Binshtein, Loes, Hilton, Huddleston, Eguia, Crawford (bib54) 2021; 29 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib19) 2020; 181 Wei, Kurti, Budell, Dandey, Potter, Carragher (bib87) 2020; 26 Stott, Sawattrakool, Saeng-Chuto, Tantituvanont, Nilubol (bib109) 2022; 69 DiMaio, Song, Li, Brunner, Xu, Conticello, Egelman, Marlovits, Cheng, Baker (bib103) 2015; 12 Winkler, Gilchuk, Yu, Bailey, Chen, Chong, Zost, Jang, Huang, Allen (bib50) 2021; 184 Fu, Niu, Zhu, Wu, Li (bib113) 2012; 28 Ereño-Orbea, Sicard, Cui, Carson, Hermans, Julien (bib36) 2018; 430 Lempp, Soriaga, Montiel-Ruiz, Benigni, Noack, Park, Bianchi, Walls, Bowen, Zhou (bib40) 2021; 598 Wrobel, Benton, Hussain, Harvey, Martin, Roustan, Rosenthal, Skehel, Gamblin (bib42) 2020; 11 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib11) 2020; 382 Huo, Zhao, Ren, Zhou, Duyvesteyn, Ginn, Carrique, Malinauskas, Ruza, Shah (bib41) 2020; 28 Ma, Liu, Park, Tang, Chen, Xiong, Lee, Stewart, Asarnow, Brown (bib24) 2024 Tortorici, Walls, Lang, Wang, Li, Koerhuis, Boons, Bosch, Rey, de Groot (bib73) 2019; 26 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib38) 2019; 176 Rota, Oberste, Monroe, Nix, Campagnoli, Icenogle, Peñaranda, Bankamp, Maher, Chen (bib7) 2003; 300 Hofmann, Pyrc, van der Hoek, Geier, Berkhout, Pöhlmann (bib22) 2005; 102 Anthony, Gilardi, Menachery, Goldstein, Ssebide, Mbabazi, Navarrete-Macias, Liang, Wells, Hicks (bib60) 2017; 8 Barnes, West, Huey-Tubman, Hoffmann, Sharaf, Hoffman, Koranda, Gristick, Gaebler, Muecksch (bib35) 2020; 182 Vlasova, Diaz, Damtie, Xiu, Toh, Lee, Saif, Gray (bib12) 2021; 74 Woo, Lau, Chu, Chan, Tsoi, Huang, Wong, Poon, Cai, Luk (bib3) 2005; 79 Delmas, Gelfi, L’Haridon, Vogel, Sjöström, Norén, Laude (bib18) 1992; 357 Starr, Greaney, Hilton, Ellis, Crawford, Dingens, Navarro, Bowen, Tortorici, Walls (bib45) 2020; 182 Drosten, Günther, Preiser, van der Werf, Brodt, Becker, Rabenau, Panning, Kolesnikova, Fouchier (bib5) 2003; 348 Arunachalam, Walls, Golden, Atyeo, Fischinger, Li, Aye, Navarro, Lai, Edara (bib31) 2021; 594 Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib72) 2016; 531 Addetia, Stewart, Seo, Sprouse, Asiri, Al-Mozaini, Memish, Alshukairi, Veesler (bib58) 2024; 43 van der Hoek, Pyrc, Jebbink, Vermeulen-Oost, Berkhout, Wolthers, Wertheim-van Dillen, Kaandorp, Spaargaren, Berkhout (bib2) 2004; 10 Hamre, Procknow (bib1) 1966; 121 Mackin, Desai, Whitener, Karl, Liu, Baric, Edwards, Chicz, McNamara, Alter (bib51) 2023; 8 Punjani, Rubinstein, Fleet, Brubaker (bib91) 2017; 14 Menachery, Yount, Sims, Debbink, Agnihothram, Gralinski, Graham, Scobey, Plante, Royal (bib28) 2016; 113 Johnson, Xie, Bailey, Kalveram, Lokugamage, Muruato, Zou, Zhang, Juelich, Smith (bib30) 2021; 591 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib68) 2017; 114 Punjani, Zhang, Fleet (bib93) 2020; 17 Cunningham, Wells (bib56) 1989; 244 He, Ji, He, Dellicour, Wang, Li, Zhang, Gilbert, Zhu, Xing (bib111) 2020; 37 Nguyen, Schmidt, von Haeseler, Minh (bib115) 2015; 32 Sun, Yi, Zhu, Ding, Xia, Chen, Liu, Gu, Lu, Fu (bib83) 2022; 7 Lednicky, Tagliamonte, White, Elbadry, Alam, Stephenson, Bonny, Loeb, Telisma, Chavannes (bib16) 2021; 600 Tolentino, Lytras, Ito, Sato (bib61) 2024; 21 Pronker, Creutznacher, Drulyte, Hulswit, Li, van Kuppeveld, Snijder, Lang, Bosch, Boons (bib78) 2023; 624 Zivanov, Nakane, Scheres (bib97) 2019; 6 Lednicky, Tagliamonte, White, Blohm, Alam, Iovine, Salemi, Mavian, Morris (bib14) 2022; 75 Pinto, Sauer, Czudnochowski, Low, Tortorici, Housley, Noack, Walls, Bowen, Guarino (bib49) 2021; 373 Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib26) 2016; 531 Stamatatos, Czartoski, Wan, Homad, Rubin, Glantz, Neradilek, Seydoux, Jennewein, MacCamy (bib65) 2021; 372 Starr, Greaney, Stewart, Walls, Hannon, Veesler, Bloom (bib116) 2022; 18 Kirchdoerfer, Bhandari, Martini, Sewall, Bangaru, Yoon, Ward (bib106) 2021; 29 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib107) 2010; 66 Ji, Peng, Fang, Li, Li, Xu, Zhao, Li, Chen, Mo (bib48) 2022; 13 Low, Jerak, Tortorici, McCallum, Pinto, Cassotta, Foglierini, Mele, Abdelnabi, Weynand (bib66) 2022 Li, Tomlinson, Wong, Zhou, Desforges, Talbot, Benlekbir, Rubinstein, Rini (bib74) 2019; 8 Greaney, Loes, Gentles, Crawford, Starr, Malone, Chu, Bloom (bib64) 2021; 13 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib9) 2012; 367 Bowen, Park, Stewart, Brown, Sharkey, Walls, Joshi, Sprouse, McCallum, Tortorici (bib63) 2022; 7 Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib69) 2017; 8 McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib34) 2021; 184 Case, Mackin, Errico, Chong, Madden, Whitener, Guarino, Schmid, Rosenthal, Ren (bib52) 2022; 13 McCallum, Park, Stewart, Sprouse, Addetia, Brown, Tortorici, Gibson, Wong, Ieven (bib80) 2024; 187 Fernández, Saunders, Duquerroy, Bolland, Arbabian, Salazar, Blanc, Lafaye, Haouz, Buchrieser (bib81) 2024 Emsley, Lohkamp, Scott, Cowtan (bib100) 2010; 66 Tiller, Meffre, Yurasov, Tsuiji, Nussenzweig, Wardemann (bib85) 2008; 329 Starr, Czudnochowski, Liu, Zatta, Park, Addetia, Pinto, Beltramello, Hernandez, Greaney (bib39) 2021; 597 Wrobel, Benton, Xu, Calder, Borg, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib75) 2021; 12 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib10) 2020; 579 Walls, Tortorici, Snijder, Xiong, Bosch, Rey, Veesler (bib25) 2017; 114 Russo, Passmore (bib86) 2014; 346 Asarnow, Palovcak, Cheng (bib96) 2019 Gietz, Schiestl (bib118) 2007; 2 Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib94) 2018; 7 Rozewicki, Li, Amada, Standley, Katoh (bib114) 2019; 47 Addetia, Piccoli, Case, Park, Beltramello, Guarino, Dang, de Melo, Pinto, Sprouse (bib43) 2023; 621 Wrobel, Benton, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib76) 2020; 27 Park, Liu, Lee, Brown, Ma, Liu, Xiong, Stewart, Addetia, Craig (bib120) 2024 Vlasova (10.1016/j.immuni.2024.10.001_bib12) 2021; 74 Li (10.1016/j.immuni.2024.10.001_bib62) 2020; 6 Starr (10.1016/j.immuni.2024.10.001_bib39) 2021; 597 Low (10.1016/j.immuni.2024.10.001_bib66) 2022 Pinto (10.1016/j.immuni.2024.10.001_bib49) 2021; 373 Asarnow (10.1016/j.immuni.2024.10.001_bib96) 2019 Crawford (10.1016/j.immuni.2024.10.001_bib119) 2019; 4 Hsueh (10.1016/j.immuni.2024.10.001_bib112) 2021; 7 Mackin (10.1016/j.immuni.2024.10.001_bib51) 2023; 8 Case (10.1016/j.immuni.2024.10.001_bib52) 2022; 13 Letko (10.1016/j.immuni.2024.10.001_bib20) 2020; 5 Shang (10.1016/j.immuni.2024.10.001_bib47) 2018; 92 Tegunov (10.1016/j.immuni.2024.10.001_bib90) 2019; 16 Delmas (10.1016/j.immuni.2024.10.001_bib18) 1992; 357 Wrobel (10.1016/j.immuni.2024.10.001_bib42) 2020; 11 Ye (10.1016/j.immuni.2024.10.001_bib110) 2020; 13 Mastronarde (10.1016/j.immuni.2024.10.001_bib89) 2005; 152 Nguyen (10.1016/j.immuni.2024.10.001_bib115) 2015; 32 Walls (10.1016/j.immuni.2024.10.001_bib26) 2016; 531 Punjani (10.1016/j.immuni.2024.10.001_bib93) 2020; 17 Wang (10.1016/j.immuni.2024.10.001_bib102) 2016; 5 Vijgen (10.1016/j.immuni.2024.10.001_bib4) 2005; 79 Tortorici (10.1016/j.immuni.2024.10.001_bib27) 2019; 105 Li (10.1016/j.immuni.2024.10.001_bib21) 2003; 426 Menachery (10.1016/j.immuni.2024.10.001_bib28) 2016; 113 Walls (10.1016/j.immuni.2024.10.001_bib77) 2016; 23 Zaki (10.1016/j.immuni.2024.10.001_bib9) 2012; 367 McCallum (10.1016/j.immuni.2024.10.001_bib44) 2021; 374 Zhou (10.1016/j.immuni.2024.10.001_bib10) 2020; 579 Fu (10.1016/j.immuni.2024.10.001_bib113) 2012; 28 van der Hoek (10.1016/j.immuni.2024.10.001_bib2) 2004; 10 Barnes (10.1016/j.immuni.2024.10.001_bib35) 2020; 182 Ksiazek (10.1016/j.immuni.2024.10.001_bib8) 2003; 348 Arunachalam (10.1016/j.immuni.2024.10.001_bib31) 2021; 594 Woo (10.1016/j.immuni.2024.10.001_bib3) 2005; 79 Walls (10.1016/j.immuni.2024.10.001_bib25) 2017; 114 Emsley (10.1016/j.immuni.2024.10.001_bib100) 2010; 66 Zivanov (10.1016/j.immuni.2024.10.001_bib97) 2019; 6 Tortorici (10.1016/j.immuni.2024.10.001_bib53) 2020; 370 Bepler (10.1016/j.immuni.2024.10.001_bib92) 2019; 16 Drosten (10.1016/j.immuni.2024.10.001_bib5) 2003; 348 Anthony (10.1016/j.immuni.2024.10.001_bib60) 2017; 8 Scheres (10.1016/j.immuni.2024.10.001_bib95) 2012; 180 Xiong (10.1016/j.immuni.2024.10.001_bib23) 2022; 612 Menachery (10.1016/j.immuni.2024.10.001_bib29) 2015; 21 Cunningham (10.1016/j.immuni.2024.10.001_bib56) 1989; 244 Ji (10.1016/j.immuni.2024.10.001_bib48) 2022; 13 Gietz (10.1016/j.immuni.2024.10.001_bib118) 2007; 2 Greaney (10.1016/j.immuni.2024.10.001_bib64) 2021; 13 Yeager (10.1016/j.immuni.2024.10.001_bib17) 1992; 357 DiMaio (10.1016/j.immuni.2024.10.001_bib103) 2015; 12 Rota (10.1016/j.immuni.2024.10.001_bib7) 2003; 300 Wentz (10.1016/j.immuni.2024.10.001_bib117) 2007; 73 Corbett (10.1016/j.immuni.2024.10.001_bib32) 2021; 373 Tortorici (10.1016/j.immuni.2024.10.001_bib73) 2019; 26 Ereño-Orbea (10.1016/j.immuni.2024.10.001_bib36) 2018; 430 Greaney (10.1016/j.immuni.2024.10.001_bib54) 2021; 29 Rozewicki (10.1016/j.immuni.2024.10.001_bib114) 2019; 47 Tiller (10.1016/j.immuni.2024.10.001_bib85) 2008; 329 Sun (10.1016/j.immuni.2024.10.001_bib83) 2022; 7 Piccoli (10.1016/j.immuni.2024.10.001_bib33) 2020; 183 Liu (10.1016/j.immuni.2024.10.001_bib71) 2024; 11 Lednicky (10.1016/j.immuni.2024.10.001_bib14) 2022; 75 Starr (10.1016/j.immuni.2024.10.001_bib55) 2021; 371 Ma (10.1016/j.immuni.2024.10.001_bib24) 2024 Kirchdoerfer (10.1016/j.immuni.2024.10.001_bib72) 2016; 531 Li (10.1016/j.immuni.2024.10.001_bib15) 2018; 115 Park (10.1016/j.immuni.2024.10.001_bib120) 2024 Wrapp (10.1016/j.immuni.2024.10.001_bib67) 2020; 367 Addetia (10.1016/j.immuni.2024.10.001_bib43) 2023; 621 Marra (10.1016/j.immuni.2024.10.001_bib6) 2003; 300 Zhu (10.1016/j.immuni.2024.10.001_bib11) 2020; 382 McCallum (10.1016/j.immuni.2024.10.001_bib34) 2021; 184 McCallum (10.1016/j.immuni.2024.10.001_bib46) 2022 Stott (10.1016/j.immuni.2024.10.001_bib109) 2022; 69 Li (10.1016/j.immuni.2024.10.001_bib74) 2019; 8 McCallum (10.1016/j.immuni.2024.10.001_bib80) 2024; 187 Krissinel (10.1016/j.immuni.2024.10.001_bib108) 2007; 372 Xiong (10.1016/j.immuni.2024.10.001_bib37) 2018; 92 Frenz (10.1016/j.immuni.2024.10.001_bib104) 2019; 27 Walls (10.1016/j.immuni.2024.10.001_bib19) 2020; 181 Wrobel (10.1016/j.immuni.2024.10.001_bib76) 2020; 27 Pallesen (10.1016/j.immuni.2024.10.001_bib68) 2017; 114 Lednicky (10.1016/j.immuni.2024.10.001_bib16) 2021; 600 Addetia (10.1016/j.immuni.2024.10.001_bib58) 2024; 43 Liebschner (10.1016/j.immuni.2024.10.001_bib105) 2019; 75 Suloway (10.1016/j.immuni.2024.10.001_bib88) 2005; 151 Bowen (10.1016/j.immuni.2024.10.001_bib63) 2022; 7 Chen (10.1016/j.immuni.2024.10.001_bib107) 2010; 66 Goddard (10.1016/j.immuni.2024.10.001_bib99) 2018; 27 Pettersen (10.1016/j.immuni.2024.10.001_bib98) 2004; 25 Huo (10.1016/j.immuni.2024.10.001_bib41) 2020; 28 Brochet (10.1016/j.immuni.2024.10.001_bib84) 2008; 36 Wei (10.1016/j.immuni.2024.10.001_bib87) 2020; 26 Tortorici (10.1016/j.immuni.2024.10.001_bib13) 2022; 185 Croll (10.1016/j.immuni.2024.10.001_bib101) 2018; 74 Starr (10.1016/j.immuni.2024.10.001_bib45) 2020; 182 Johnson (10.1016/j.immuni.2024.10.001_bib30) 2021; 591 Hamre (10.1016/j.immuni.2024.10.001_bib1) 1966; 121 Stamatatos (10.1016/j.immuni.2024.10.001_bib65) 2021; 372 Dingens (10.1016/j.immuni.2024.10.001_bib57) 2019; 50 Yuan (10.1016/j.immuni.2024.10.001_bib69) 2017; 8 Saunders (10.1016/j.immuni.2024.10.001_bib79) 2023 Hofmann (10.1016/j.immuni.2024.10.001_bib22) 2005; 102 Pronker (10.1016/j.immuni.2024.10.001_bib78) 2023; 624 Zivanov (10.1016/j.immuni.2024.10.001_bib94) 2018; 7 Kirchdoerfer (10.1016/j.immuni.2024.10.001_bib106) 2021; 29 Russo (10.1016/j.immuni.2024.10.001_bib86) 2014; 346 Wrobel (10.1016/j.immuni.2024.10.001_bib75) 2021; 12 Fernández (10.1016/j.immuni.2024.10.001_bib81) 2024 Wang (10.1016/j.immuni.2024.10.001_bib82) 2024; 187 Punjani (10.1016/j.immuni.2024.10.001_bib91) 2017; 14 Vlasova (10.1016/j.immuni.2024.10.001_bib59) 2022; 11 Tolentino (10.1016/j.immuni.2024.10.001_bib61) 2024; 21 Song (10.1016/j.immuni.2024.10.001_bib70) 2018; 14 He (10.1016/j.immuni.2024.10.001_bib111) 2020; 37 Walls (10.1016/j.immuni.2024.10.001_bib38) 2019; 176 Lempp (10.1016/j.immuni.2024.10.001_bib40) 2021; 598 Starr (10.1016/j.immuni.2024.10.001_bib116) 2022; 18 Winkler (10.1016/j.immuni.2024.10.001_bib50) 2021; 184 38617231 - bioRxiv. 2024 Apr 01:2024.03.27.586411. doi: 10.1101/2024.03.27.586411. |
References_xml | – volume: 74 start-page: 446 year: 2021 end-page: 454 ident: bib12 article-title: Novel Canine Coronavirus Isolated from a Hospitalized Pneumonia Patient, East Malaysia publication-title: Clin. Infect. Dis. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib100 article-title: Features and development of Coot publication-title: Acta Crystallogr. D – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: bib88 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. – volume: 8 year: 2017 ident: bib60 article-title: Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus publication-title: mBio – volume: 374 start-page: 1621 year: 2021 end-page: 1626 ident: bib44 article-title: Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants publication-title: Science – volume: 21 start-page: 84 year: 2024 ident: bib61 article-title: Recombination analysis on the receptor switching event of MERS-CoV and its close relatives: implications for the emergence of MERS-CoV publication-title: Virol. J. – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: bib26 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature – volume: 75 start-page: 861 year: 2019 end-page: 877 ident: bib105 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix publication-title: Acta Crystallogr. D Struct. Biol. – volume: 5 year: 2016 ident: bib102 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: eLife – volume: 69 start-page: 2816 year: 2022 end-page: 2827 ident: bib109 article-title: The phylodynamics of emerging porcine deltacoronavirus in Southeast Asia publication-title: Transbound. Emerg. Dis. – volume: 28 start-page: 445 year: 2020 end-page: 454.e6 ident: bib41 article-title: Neutralisation of SARS-CoV-2 by destruction of the prefusion Spike publication-title: Cell Host Microbe – volume: 244 start-page: 1081 year: 1989 end-page: 1085 ident: bib56 article-title: High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis publication-title: Science – volume: 36 start-page: W503 year: 2008 end-page: W508 ident: bib84 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V–D-J sequence analysis publication-title: Nucleic Acids Res. – volume: 152 start-page: 36 year: 2005 end-page: 51 ident: bib89 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. – volume: 27 start-page: 134 year: 2019 end-page: 139.e3 ident: bib104 article-title: Automatically Fixing Errors in Glycoprotein Structures with Rosetta publication-title: Structure – volume: 373 start-page: 1109 year: 2021 end-page: 1116 ident: bib49 article-title: Broad betacoronavirus neutralization by a stem helix–specific human antibody publication-title: Science – volume: 27 start-page: 763 year: 2020 end-page: 767 ident: bib76 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. – volume: 16 start-page: 1146 year: 2019 end-page: 1152 ident: bib90 article-title: Real-time cryo-electron microscopy data preprocessing with Warp publication-title: Nat. Methods – volume: 10 start-page: 368 year: 2004 end-page: 373 ident: bib2 article-title: Identification of a new human coronavirus publication-title: Nat. Med. – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib91 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 29 start-page: 385 year: 2021 end-page: 392.e5 ident: bib106 article-title: Structure and immune recognition of the porcine epidemic diarrhea virus spike protein publication-title: Structure – volume: 7 year: 2022 ident: bib63 article-title: SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines publication-title: Sci. Immunol. – volume: 357 start-page: 420 year: 1992 end-page: 422 ident: bib17 article-title: Human aminopeptidase N is a receptor for human coronavirus 229E publication-title: Nature – volume: 8 year: 2017 ident: bib69 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. – volume: 6 year: 2020 ident: bib62 article-title: Emergence of SARS-CoV-2 through recombination and strong purifying selection publication-title: Sci. Adv. – volume: 47 start-page: W5 year: 2019 end-page: W10 ident: bib114 article-title: MAFFT-DASH: integrated protein sequence and structural alignment publication-title: Nucleic Acids Res. – volume: 4 year: 2019 ident: bib119 article-title: alignparse: A Python package for parsing complex features from high-throughput long-read sequencing publication-title: J. Open Source Softw. – volume: 591 start-page: 293 year: 2021 end-page: 299 ident: bib30 article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis publication-title: Nature – volume: 185 start-page: 2279 year: 2022 end-page: 2291.e17 ident: bib13 article-title: Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein publication-title: Cell – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: bib99 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: bib9 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. – year: 2024 ident: bib81 article-title: Structural basis of TMPRSS2 zymogen activation and recognition by the HKU1 seasonal coronavirus publication-title: bioRxiv – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib19 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell – year: 2022 ident: bib46 article-title: Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement publication-title: Science – volume: 8 year: 2019 ident: bib74 article-title: The human coronavirus HCoV-229E S-protein structure and receptor binding publication-title: eLife – volume: 371 start-page: 850 year: 2021 end-page: 854 ident: bib55 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 publication-title: Science – volume: 26 start-page: 334 year: 2020 end-page: 335 ident: bib87 article-title: Optimizing Self-wicking Grids for Chameleon publication-title: Microsc. Microanal. – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: bib95 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 11 start-page: 699 year: 2022 end-page: 702 ident: bib59 article-title: Animal alphacoronaviruses found in human patients with acute respiratory illness in different countries publication-title: Emerg. Microbes Infect. – volume: 176 start-page: 1026 year: 2019 end-page: 1039.e15 ident: bib38 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell – volume: 7 year: 2018 ident: bib94 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife – volume: 32 start-page: 268 year: 2015 end-page: 274 ident: bib115 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol. Biol. Evol. – volume: 357 start-page: 417 year: 1992 end-page: 420 ident: bib18 article-title: Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV publication-title: Nature – volume: 113 start-page: 3048 year: 2016 end-page: 3053 ident: bib28 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA – volume: 598 start-page: 342 year: 2021 end-page: 347 ident: bib40 article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies publication-title: Nature – volume: 13 start-page: 2246 year: 2020 end-page: 2253 ident: bib110 article-title: Cross-species transmission of deltacoronavirus and the origin of porcine deltacoronavirus publication-title: Evol. Appl. – volume: 43 year: 2024 ident: bib58 article-title: Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans publication-title: Cell Rep. – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: bib25 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 1063 year: 2022 end-page: 1074 ident: bib83 article-title: Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2 publication-title: Nat. Microbiol. – volume: 430 start-page: 322 year: 2018 end-page: 336 ident: bib36 article-title: Structural basis of enhanced crystallizability induced by a molecular chaperone for antibody antigen-binding fragments publication-title: J. Mol. Biol. – volume: 75 start-page: e1184 year: 2022 end-page: e1187 ident: bib14 article-title: Isolation of a novel recombinant canine Coronavirus from a visitor to Haiti: Further evidence of transmission of coronaviruses of zoonotic origin to humans publication-title: Clin. Infect. Dis. – volume: 92 year: 2018 ident: bib37 article-title: Glycan shield and fusion activation of a Deltacoronavirus Spike glycoprotein fine-tuned for enteric infections publication-title: J. Virol. – volume: 102 start-page: 7988 year: 2005 end-page: 7993 ident: bib22 article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry publication-title: Proc. Natl. Acad. Sci. USA – volume: 183 start-page: 1024 year: 2020 end-page: 1042.e21 ident: bib33 article-title: Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology publication-title: Cell – volume: 187 start-page: 4261 year: 2024 end-page: 4271.e17 ident: bib82 article-title: TMPRSS2 and glycan receptors synergistically facilitate coronavirus entry publication-title: Cell – volume: 79 start-page: 884 year: 2005 end-page: 895 ident: bib3 article-title: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia publication-title: J. Virol. – volume: 329 start-page: 112 year: 2008 end-page: 124 ident: bib85 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J. Immunol. Methods – volume: 14 year: 2018 ident: bib70 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – volume: 11 year: 2024 ident: bib71 article-title: Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity publication-title: Natl. Sci. Rev. – volume: 79 start-page: 1595 year: 2005 end-page: 1604 ident: bib4 article-title: Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event publication-title: J. Virol. – volume: 50 start-page: 520 year: 2019 end-page: 532.e3 ident: bib57 article-title: An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes publication-title: Immunity – volume: 300 start-page: 1399 year: 2003 end-page: 1404 ident: bib6 article-title: The Genome sequence of the SARS-associated coronavirus publication-title: Science – volume: 182 start-page: 828 year: 2020 end-page: 842.e16 ident: bib35 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell – volume: 26 start-page: 481 year: 2019 end-page: 489 ident: bib73 article-title: Structural basis for human coronavirus attachment to sialic acid receptors publication-title: Nat. Struct. Mol. Biol. – volume: 182 start-page: 1295 year: 2020 end-page: 1310.e20 ident: bib45 article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding publication-title: Cell – volume: 17 start-page: 1214 year: 2020 end-page: 1221 ident: bib93 article-title: Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction publication-title: Nat. Methods – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: bib20 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. – volume: 594 start-page: 253 year: 2021 end-page: 258 ident: bib31 article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity publication-title: Nature – volume: 7 year: 2021 ident: bib112 article-title: Phylodynamic analysis and spike protein mutations in porcine deltacoronavirus with a new variant introduction in Taiwan publication-title: Virus Evol. – volume: 11 year: 2020 ident: bib42 article-title: Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein publication-title: Nat. Commun. – volume: 187 start-page: 4231 year: 2024 end-page: 4245.e13 ident: bib80 article-title: Human coronavirus HKU1 recognition of the TMPRSS2 host receptor publication-title: Cell – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib107 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 346 start-page: 1377 year: 2014 end-page: 1380 ident: bib86 article-title: Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy publication-title: Science – volume: 105 start-page: 93 year: 2019 end-page: 116 ident: bib27 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. – volume: 73 start-page: 1189 year: 2007 end-page: 1198 ident: bib117 article-title: A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins publication-title: Appl. Environ. Microbiol. – volume: 13 year: 2021 ident: bib64 article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection publication-title: Sci. Transl. Med. – volume: 372 start-page: 1413 year: 2021 end-page: 1418 ident: bib65 article-title: mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Science – volume: 612 start-page: 748 year: 2022 end-page: 757 ident: bib23 article-title: Close relatives of MERS-CoV in bats use ACE2 as their functional receptors publication-title: Nature – volume: 16 start-page: 1153 year: 2019 end-page: 1160 ident: bib92 article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs publication-title: Nat. Methods – volume: 184 start-page: 2332 year: 2021 end-page: 2347.e16 ident: bib34 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell – volume: 18 year: 2022 ident: bib116 article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains publication-title: PLoS Pathog. – year: 2024 ident: bib120 article-title: Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses publication-title: Preprint at bioRxiv. – volume: 184 start-page: 1804 year: 2021 end-page: 1820.e16 ident: bib50 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell – year: 2024 ident: bib24 article-title: Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses publication-title: bioRxiv – volume: 621 start-page: 592 year: 2023 end-page: 601 ident: bib43 article-title: Neutralization, effector function and immune imprinting of Omicron variants publication-title: Nature – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bib108 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 373 start-page: eabj0299 year: 2021 ident: bib32 article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: Science – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: bib97 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ – volume: 28 start-page: 3150 year: 2012 end-page: 3152 ident: bib113 article-title: CD-HIT: accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib68 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 600 start-page: 133 year: 2021 end-page: 137 ident: bib16 article-title: Independent infections of porcine deltacoronavirus among Haitian children publication-title: Nature – volume: 21 start-page: 1508 year: 2015 end-page: 1513 ident: bib29 article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence publication-title: Nat. Med. – year: 2022 ident: bib66 article-title: ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies publication-title: Science – volume: 597 start-page: 97 year: 2021 end-page: 102 ident: bib39 article-title: SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape publication-title: Nature – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: bib21 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature – volume: 348 start-page: 1967 year: 2003 end-page: 1976 ident: bib5 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. – volume: 13 year: 2022 ident: bib48 article-title: Structures of a deltacoronavirus spike protein bound to porcine and human receptors publication-title: Nat. Commun. – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib10 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 121 start-page: 190 year: 1966 end-page: 193 ident: bib1 article-title: A new virus isolated from the human respiratory tract publication-title: Proc. Soc. Exp. Biol. Med. – volume: 23 start-page: 899 year: 2016 end-page: 905 ident: bib77 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. – volume: 115 start-page: E5135 year: 2018 end-page: E5143 ident: bib15 article-title: Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility publication-title: Proc. Natl. Acad. Sci. USA – year: 2019 ident: bib96 article-title: UCSF pyem v0. 5 – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib98 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 300 start-page: 1394 year: 2003 end-page: 1399 ident: bib7 article-title: Characterization of a novel coronavirus associated with severe acute respiratory syndrome publication-title: Science – year: 2023 ident: bib79 article-title: TMPRSS2 is a functional receptor for human coronavirus HKU1 publication-title: Nature – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib67 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 531 start-page: 118 year: 2016 end-page: 121 ident: bib72 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature – volume: 74 start-page: 519 year: 2018 end-page: 530 ident: bib101 article-title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps publication-title: Acta Crystallogr. D Struct. Biol. – volume: 92 year: 2018 ident: bib47 article-title: Cryo-electron microscopy structure of porcine Deltacoronavirus spike protein in the prefusion state publication-title: J. Virol. – volume: 12 start-page: 361 year: 2015 end-page: 365 ident: bib103 article-title: Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement publication-title: Nat. Methods – volume: 37 start-page: 2641 year: 2020 end-page: 2654 ident: bib111 article-title: Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus publication-title: Mol. Biol. Evol. – volume: 370 start-page: 950 year: 2020 end-page: 957 ident: bib53 article-title: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms publication-title: Science – volume: 348 start-page: 1953 year: 2003 end-page: 1966 ident: bib8 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. – volume: 12 year: 2021 ident: bib75 article-title: Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2 publication-title: Nat. Commun. – volume: 8 start-page: 569 year: 2023 end-page: 580 ident: bib51 article-title: Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2 publication-title: Nat. Microbiol. – volume: 2 start-page: 38 year: 2007 end-page: 41 ident: bib118 article-title: Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat. Protoc. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib11 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 13 year: 2022 ident: bib52 article-title: Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains publication-title: Nat. Commun. – volume: 29 start-page: 44 year: 2021 end-page: 57.e9 ident: bib54 article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition publication-title: Cell Host Microbe – volume: 624 start-page: 201 year: 2023 end-page: 206 ident: bib78 article-title: Sialoglycan binding triggers spike opening in a human coronavirus publication-title: Nature – volume: 300 start-page: 1394 year: 2003 ident: 10.1016/j.immuni.2024.10.001_bib7 article-title: Characterization of a novel coronavirus associated with severe acute respiratory syndrome publication-title: Science doi: 10.1126/science.1085952 – volume: 8 year: 2017 ident: 10.1016/j.immuni.2024.10.001_bib69 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 11 start-page: 699 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib59 article-title: Animal alphacoronaviruses found in human patients with acute respiratory illness in different countries publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2022.2040341 – volume: 372 start-page: 1413 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib65 article-title: mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Science doi: 10.1126/science.abg9175 – volume: 531 start-page: 118 year: 2016 ident: 10.1016/j.immuni.2024.10.001_bib72 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature doi: 10.1038/nature17200 – volume: 183 start-page: 1024 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib33 article-title: Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology publication-title: Cell doi: 10.1016/j.cell.2020.09.037 – volume: 357 start-page: 417 year: 1992 ident: 10.1016/j.immuni.2024.10.001_bib18 article-title: Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV publication-title: Nature doi: 10.1038/357417a0 – volume: 187 start-page: 4261 year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib82 article-title: TMPRSS2 and glycan receptors synergistically facilitate coronavirus entry publication-title: Cell doi: 10.1016/j.cell.2024.06.016 – volume: 73 start-page: 1189 year: 2007 ident: 10.1016/j.immuni.2024.10.001_bib117 article-title: A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02427-06 – volume: 185 start-page: 2279 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib13 article-title: Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2022.05.019 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.immuni.2024.10.001_bib98 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 187 start-page: 4231 year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib80 article-title: Human coronavirus HKU1 recognition of the TMPRSS2 host receptor publication-title: Cell doi: 10.1016/j.cell.2024.06.006 – volume: 27 start-page: 14 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib99 article-title: UCSF ChimeraX: Meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 79 start-page: 1595 year: 2005 ident: 10.1016/j.immuni.2024.10.001_bib4 article-title: Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event publication-title: J. Virol. doi: 10.1128/JVI.79.3.1595-1604.2005 – volume: 624 start-page: 201 year: 2023 ident: 10.1016/j.immuni.2024.10.001_bib78 article-title: Sialoglycan binding triggers spike opening in a human coronavirus publication-title: Nature doi: 10.1038/s41586-023-06599-z – volume: 114 start-page: 11157 year: 2017 ident: 10.1016/j.immuni.2024.10.001_bib25 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 74 start-page: 446 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib12 article-title: Novel Canine Coronavirus Isolated from a Hospitalized Pneumonia Patient, East Malaysia publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab456 – volume: 5 start-page: 562 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib20 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – year: 2023 ident: 10.1016/j.immuni.2024.10.001_bib79 article-title: TMPRSS2 is a functional receptor for human coronavirus HKU1 publication-title: Nature doi: 10.1038/s41586-023-06761-7 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.immuni.2024.10.001_bib108 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 18 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib116 article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010951 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib10 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 300 start-page: 1399 year: 2003 ident: 10.1016/j.immuni.2024.10.001_bib6 article-title: The Genome sequence of the SARS-associated coronavirus publication-title: Science doi: 10.1126/science.1085953 – volume: 12 start-page: 361 year: 2015 ident: 10.1016/j.immuni.2024.10.001_bib103 article-title: Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement publication-title: Nat. Methods doi: 10.1038/nmeth.3286 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.immuni.2024.10.001_bib68 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 5 year: 2016 ident: 10.1016/j.immuni.2024.10.001_bib102 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: eLife doi: 10.7554/eLife.17219 – volume: 600 start-page: 133 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib16 article-title: Independent infections of porcine deltacoronavirus among Haitian children publication-title: Nature doi: 10.1038/s41586-021-04111-z – volume: 92 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib47 article-title: Cryo-electron microscopy structure of porcine Deltacoronavirus spike protein in the prefusion state publication-title: J. Virol. doi: 10.1128/JVI.01556-17 – volume: 7 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib112 article-title: Phylodynamic analysis and spike protein mutations in porcine deltacoronavirus with a new variant introduction in Taiwan publication-title: Virus Evol. doi: 10.1093/ve/veab096 – volume: 16 start-page: 1146 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib90 article-title: Real-time cryo-electron microscopy data preprocessing with Warp publication-title: Nat. Methods doi: 10.1038/s41592-019-0580-y – year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib81 article-title: Structural basis of TMPRSS2 zymogen activation and recognition by the HKU1 seasonal coronavirus publication-title: bioRxiv – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.immuni.2024.10.001_bib100 article-title: Features and development of Coot publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 – volume: 21 start-page: 1508 year: 2015 ident: 10.1016/j.immuni.2024.10.001_bib29 article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence publication-title: Nat. Med. doi: 10.1038/nm.3985 – volume: 2 start-page: 38 year: 2007 ident: 10.1016/j.immuni.2024.10.001_bib118 article-title: Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.15 – volume: 13 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib64 article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abi9915 – volume: 182 start-page: 828 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib35 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 102 start-page: 7988 year: 2005 ident: 10.1016/j.immuni.2024.10.001_bib22 article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409465102 – volume: 69 start-page: 2816 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib109 article-title: The phylodynamics of emerging porcine deltacoronavirus in Southeast Asia publication-title: Transbound. Emerg. Dis. doi: 10.1111/tbed.14434 – volume: 8 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib74 article-title: The human coronavirus HCoV-229E S-protein structure and receptor binding publication-title: eLife doi: 10.7554/eLife.51230 – volume: 17 start-page: 1214 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib93 article-title: Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction publication-title: Nat. Methods doi: 10.1038/s41592-020-00990-8 – year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib120 article-title: Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses publication-title: Preprint at bioRxiv. – volume: 10 start-page: 368 year: 2004 ident: 10.1016/j.immuni.2024.10.001_bib2 article-title: Identification of a new human coronavirus publication-title: Nat. Med. doi: 10.1038/nm1024 – volume: 374 start-page: 1621 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib44 article-title: Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants publication-title: Science doi: 10.1126/science.abl8506 – volume: 7 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib94 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 36 start-page: W503 year: 2008 ident: 10.1016/j.immuni.2024.10.001_bib84 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V–D-J sequence analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn316 – volume: 11 year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib71 article-title: Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwae206 – volume: 27 start-page: 763 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib76 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0468-7 – volume: 329 start-page: 112 year: 2008 ident: 10.1016/j.immuni.2024.10.001_bib85 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2007.09.017 – volume: 75 start-page: e1184 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib14 article-title: Isolation of a novel recombinant canine Coronavirus from a visitor to Haiti: Further evidence of transmission of coronaviruses of zoonotic origin to humans publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab924 – volume: 32 start-page: 268 year: 2015 ident: 10.1016/j.immuni.2024.10.001_bib115 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu300 – volume: 13 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib48 article-title: Structures of a deltacoronavirus spike protein bound to porcine and human receptors publication-title: Nat. Commun. doi: 10.1038/s41467-022-29062-5 – volume: 29 start-page: 385 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib106 article-title: Structure and immune recognition of the porcine epidemic diarrhea virus spike protein publication-title: Structure doi: 10.1016/j.str.2020.12.003 – volume: 426 start-page: 450 year: 2003 ident: 10.1016/j.immuni.2024.10.001_bib21 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 79 start-page: 884 year: 2005 ident: 10.1016/j.immuni.2024.10.001_bib3 article-title: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia publication-title: J. Virol. doi: 10.1128/JVI.79.2.884-895.2005 – volume: 8 year: 2017 ident: 10.1016/j.immuni.2024.10.001_bib60 article-title: Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus publication-title: mBio doi: 10.1128/mBio.00373-17 – volume: 348 start-page: 1967 year: 2003 ident: 10.1016/j.immuni.2024.10.001_bib5 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030747 – volume: 182 start-page: 1295 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib45 article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.immuni.2024.10.001_bib107 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 184 start-page: 2332 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib34 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – volume: 75 start-page: 861 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib105 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798319011471 – volume: 12 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib75 article-title: Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21006-9 – year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib24 article-title: Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses publication-title: bioRxiv – volume: 346 start-page: 1377 year: 2014 ident: 10.1016/j.immuni.2024.10.001_bib86 article-title: Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy publication-title: Science doi: 10.1126/science.1259530 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.immuni.2024.10.001_bib95 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 13 start-page: 2246 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib110 article-title: Cross-species transmission of deltacoronavirus and the origin of porcine deltacoronavirus publication-title: Evol. Appl. doi: 10.1111/eva.12997 – volume: 7 start-page: 1063 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib83 article-title: Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01155-3 – volume: 244 start-page: 1081 year: 1989 ident: 10.1016/j.immuni.2024.10.001_bib56 article-title: High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis publication-title: Science doi: 10.1126/science.2471267 – volume: 13 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib52 article-title: Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains publication-title: Nat. Commun. doi: 10.1038/s41467-022-31615-7 – volume: 28 start-page: 445 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib41 article-title: Neutralisation of SARS-CoV-2 by destruction of the prefusion Spike publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.010 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib67 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 92 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib37 article-title: Glycan shield and fusion activation of a Deltacoronavirus Spike glycoprotein fine-tuned for enteric infections publication-title: J. Virol. doi: 10.1128/JVI.01628-17 – volume: 367 start-page: 1814 year: 2012 ident: 10.1016/j.immuni.2024.10.001_bib9 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 74 start-page: 519 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib101 article-title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318002425 – volume: 23 start-page: 899 year: 2016 ident: 10.1016/j.immuni.2024.10.001_bib77 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3293 – volume: 348 start-page: 1953 year: 2003 ident: 10.1016/j.immuni.2024.10.001_bib8 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030781 – volume: 115 start-page: E5135 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib15 article-title: Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility publication-title: Proc. Natl. Acad. Sci. USA – volume: 621 start-page: 592 year: 2023 ident: 10.1016/j.immuni.2024.10.001_bib43 article-title: Neutralization, effector function and immune imprinting of Omicron variants publication-title: Nature doi: 10.1038/s41586-023-06487-6 – volume: 28 start-page: 3150 year: 2012 ident: 10.1016/j.immuni.2024.10.001_bib113 article-title: CD-HIT: accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – volume: 7 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib63 article-title: SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.adf1421 – volume: 105 start-page: 93 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib27 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2019.08.002 – volume: 152 start-page: 36 year: 2005 ident: 10.1016/j.immuni.2024.10.001_bib89 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 6 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib62 article-title: Emergence of SARS-CoV-2 through recombination and strong purifying selection publication-title: Sci. Adv. – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.immuni.2024.10.001_bib91 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 16 start-page: 1153 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib92 article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs publication-title: Nat. Methods doi: 10.1038/s41592-019-0575-8 – volume: 612 start-page: 748 year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib23 article-title: Close relatives of MERS-CoV in bats use ACE2 as their functional receptors publication-title: Nature doi: 10.1038/s41586-022-05513-3 – volume: 370 start-page: 950 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib53 article-title: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms publication-title: Science doi: 10.1126/science.abe3354 – volume: 594 start-page: 253 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib31 article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity publication-title: Nature doi: 10.1038/s41586-021-03530-2 – volume: 184 start-page: 1804 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib50 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 27 start-page: 134 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib104 article-title: Automatically Fixing Errors in Glycoprotein Structures with Rosetta publication-title: Structure doi: 10.1016/j.str.2018.09.006 – volume: 591 start-page: 293 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib30 article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis publication-title: Nature doi: 10.1038/s41586-021-03237-4 – volume: 531 start-page: 114 year: 2016 ident: 10.1016/j.immuni.2024.10.001_bib26 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 26 start-page: 334 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib87 article-title: Optimizing Self-wicking Grids for Chameleon publication-title: Microsc. Microanal. doi: 10.1017/S1431927620014282 – volume: 37 start-page: 2641 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib111 article-title: Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa117 – volume: 176 start-page: 1026 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib38 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 6 start-page: 5 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib97 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 113 start-page: 3048 year: 2016 ident: 10.1016/j.immuni.2024.10.001_bib28 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517719113 – year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib46 article-title: Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement publication-title: Science doi: 10.1126/science.abn8652 – volume: 21 start-page: 84 year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib61 article-title: Recombination analysis on the receptor switching event of MERS-CoV and its close relatives: implications for the emergence of MERS-CoV publication-title: Virol. J. doi: 10.1186/s12985-024-02358-2 – volume: 373 start-page: 1109 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib49 article-title: Broad betacoronavirus neutralization by a stem helix–specific human antibody publication-title: Science doi: 10.1126/science.abj3321 – volume: 8 start-page: 569 year: 2023 ident: 10.1016/j.immuni.2024.10.001_bib51 article-title: Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-023-01359-1 – volume: 29 start-page: 44 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib54 article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.007 – volume: 151 start-page: 41 year: 2005 ident: 10.1016/j.immuni.2024.10.001_bib88 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – year: 2022 ident: 10.1016/j.immuni.2024.10.001_bib66 article-title: ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies publication-title: Science doi: 10.1126/science.abq2679 – year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib96 – volume: 357 start-page: 420 year: 1992 ident: 10.1016/j.immuni.2024.10.001_bib17 article-title: Human aminopeptidase N is a receptor for human coronavirus 229E publication-title: Nature doi: 10.1038/357420a0 – volume: 11 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib42 article-title: Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein publication-title: Nat. Commun. doi: 10.1038/s41467-020-19146-5 – volume: 121 start-page: 190 year: 1966 ident: 10.1016/j.immuni.2024.10.001_bib1 article-title: A new virus isolated from the human respiratory tract publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.3181/00379727-121-30734 – volume: 43 year: 2024 ident: 10.1016/j.immuni.2024.10.001_bib58 article-title: Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans publication-title: Cell Rep. doi: 10.1016/j.celrep.2024.114530 – volume: 4 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib119 article-title: alignparse: A Python package for parsing complex features from high-throughput long-read sequencing publication-title: J. Open Source Softw. – volume: 373 start-page: eabj0299 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib32 article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: Science doi: 10.1126/science.abj0299 – volume: 597 start-page: 97 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib39 article-title: SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape publication-title: Nature doi: 10.1038/s41586-021-03807-6 – volume: 598 start-page: 342 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib40 article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-03925-1 – volume: 371 start-page: 850 year: 2021 ident: 10.1016/j.immuni.2024.10.001_bib55 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 publication-title: Science doi: 10.1126/science.abf9302 – volume: 26 start-page: 481 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib73 article-title: Structural basis for human coronavirus attachment to sialic acid receptors publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0233-y – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib11 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 430 start-page: 322 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib36 article-title: Structural basis of enhanced crystallizability induced by a molecular chaperone for antibody antigen-binding fragments publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.12.010 – volume: 50 start-page: 520 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib57 article-title: An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes publication-title: Immunity doi: 10.1016/j.immuni.2018.12.017 – volume: 14 year: 2018 ident: 10.1016/j.immuni.2024.10.001_bib70 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.immuni.2024.10.001_bib19 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 47 start-page: W5 year: 2019 ident: 10.1016/j.immuni.2024.10.001_bib114 article-title: MAFFT-DASH: integrated protein sequence and structural alignment publication-title: Nucleic Acids Res. – reference: 38617231 - bioRxiv. 2024 Apr 01:2024.03.27.586411. doi: 10.1101/2024.03.27.586411. |
SSID | ssj0014590 |
Score | 2.4664757 |
Snippet | Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no... Porcine deltacoronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent coronaviruses. To... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2914 |
SubjectTerms | Animals Antibodies, Monoclonal - immunology Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Broadly Neutralizing Antibodies - immunology cryo-EM structures Cryoelectron Microscopy deep mutational scanning Epitope Mapping - methods Epitopes - immunology Humans Mice neutralizing antibodies PDCoV porcine deltacoronavirus spike glycoprotein Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology zoonosis |
Title | Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses |
URI | https://dx.doi.org/10.1016/j.immuni.2024.10.001 https://www.ncbi.nlm.nih.gov/pubmed/39488210 https://www.proquest.com/docview/3123551330 https://pubmed.ncbi.nlm.nih.gov/PMC12279085 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJqa9IBgwyk1G4q1KlDhXP04TaBcVTVMRe4uc2NkybWmVC2L9PfxQji9JU1YE7KVq3SR18n09Pra_cw5CH8FFyIKAU8tnTmz5GQ2sNGPwUcDUx6MijnIZjTz9Eh599U8ugovR6OdAtdQ2qZ0tN8aVPARVaANcZZTsfyDbXxQa4D3gC6-AMLz-E8bHcHkNoFz-FrUUM01u2WJhpMxpNWf85m5SilYtaCx1RGJTpHMpHpywS1aAeziRQcKqWBEXNw2zMpnVgH0vqrY2CkPjvR6rYJJGCQT6YC8d8VPX9mBR4Vz8uIJxThdNFpdFT6uaVaXeTdKx7SvLXFXtcsn0MkHdjxVnRsqtjJJ10pbDVQqiciEavao2rEr3Geq4U1uYNhpZvqsrOXXWWKer7lhHhraV6nBTM04TSiJbRBuHAb0icW0X6rHYskO20vC5w8MBzMWtooZHwY4R09_19Ntn00NXZlkE1_QR2iYwGQFrun1wev7ttN-t8gPq9NpWuMcuRFPpCO_3YRftdD_4J2_o_mznd9HuwAuaPUVPzPQFH2guPkMjUe6hx7qg6d0e2pkaqcZzxHtyYiAn1uTEhpx4nmNDTjwkJ16RExty4o6ceAM5X6DZ50-zwyPLlPSwMvCWGssLGac0IFRk1CeZ4wUsiL2IEZr7hIdqUz1ngkTMZy7hQcx4zOGWBSNOHvjeS7RVzkvxCuGQcCenlGU5D_zUy6mbu5kjS0llvuBxOEZW92SThU7cknSKxutEg5JIUGQrgDJGUff4E-N8aqcyAVL95cwPHVoJ2Ga54cZKMW_rxJOB6LKAkjNG-xq9vi8dA8YoXsO1P0DmfV__piyuVP73jo-vH37qG7S7-pe-RVtN1Yp34F036XtD7l9TDtRQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolation+and+escape+mapping+of+broadly+neutralizing+antibodies+against+emerging+delta-coronaviruses&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Rexhepaj%2C+Megi&rft.au=Asarnow%2C+Daniel&rft.au=Perruzza%2C+Lisa&rft.au=Park%2C+Young-Jun&rft.date=2024-12-10&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=57&rft.issue=12&rft.spage=2914&rft.epage=2927.e7&rft_id=info:doi/10.1016%2Fj.immuni.2024.10.001&rft_id=info%3Apmid%2F39488210&rft.externalDocID=PMC12279085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |