Applying Dalton’s law of potential evaporation rate over the territory of Russia and neighboring countries using long-term observation data

Parameters of the relationship between wind speed W and conductance G , used in Dalton’s law for potential evaporation rate, were estimated from the long-term field monitoring data on potential evaporation at 81 stations of the State Hydrological Institute. Linear dependence on W was assumed, that i...

Full description

Saved in:
Bibliographic Details
Published inRussian meteorology and hydrology Vol. 36; no. 12; pp. 786 - 793
Main Authors Korzukhin, M. D., Kolosov, P. A., Semenov, S. M.
Format Journal Article
LanguageEnglish
Published Heidelberg Allerton Press, Inc 01.12.2011
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parameters of the relationship between wind speed W and conductance G , used in Dalton’s law for potential evaporation rate, were estimated from the long-term field monitoring data on potential evaporation at 81 stations of the State Hydrological Institute. Linear dependence on W was assumed, that is, G ( W ) = g 1 + g 2 W . The estimation yielded g 1 = 165.2 and g 2 = 99.9. These parameters were employed for computation of potential evaporation rate from routine meteorological data for locations of 2460 meteorological stations of the former USSR territory. The computed estimates were then compared with some published calculated values and with the data of direct potential evaporation rate measurements at 254 geographical points. The comparison yielded satisfactory results.
AbstractList Parameters of the relationship between wind speed W and conductance G, used in Dalton's law for potential evaporation rate, were estimated from the long-term field monitoring data on potential evaporation at 81 stations of the State Hydrological Institute. Linear dependence onWwas assumed, that is, G(W) = g ^sub 1^ + g ^sub 2^ W. The estimation yielded g ^sub 1^ = 165.2 and g ^sub 2^ = 99.9. These parameters were employed for computation of potential evaporation rate from routine meteorological data for locations of 2460 meteorological stations of the former USSR territory. The computed estimates were then compared with some published calculated values and with the data of direct potential evaporation rate measurements at 254 geographical points. The comparison yielded satisfactory results.[PUBLICATION ABSTRACT]
Parameters of the relationship between wind speed W and conductance G , used in Dalton’s law for potential evaporation rate, were estimated from the long-term field monitoring data on potential evaporation at 81 stations of the State Hydrological Institute. Linear dependence on W was assumed, that is, G ( W ) = g 1 + g 2 W . The estimation yielded g 1 = 165.2 and g 2 = 99.9. These parameters were employed for computation of potential evaporation rate from routine meteorological data for locations of 2460 meteorological stations of the former USSR territory. The computed estimates were then compared with some published calculated values and with the data of direct potential evaporation rate measurements at 254 geographical points. The comparison yielded satisfactory results.
Parameters of the relationship between wind speed W and conductance G, used in Dalton's law for potential evaporation rate, were estimated from the long-term field monitoring data on potential evaporation at 81 stations of the State Hydrological Institute. Linear dependence onWwas assumed, that is, G(W) = g sub(1) + g sub(2) W. The estimation yielded g sub(1) = 165.2 and g sub(2) = 99.9. These parameters were employed for computation of potential evaporation rate from routine meteorological data for locations of 2460 meteorological stations of the former USSR territory. The computed estimates were then compared with some published calculated values and with the data of direct potential evaporation rate measurements at 254 geographical points. The comparison yielded satisfactory results.
Author Korzukhin, M. D.
Semenov, S. M.
Kolosov, P. A.
Author_xml – sequence: 1
  givenname: M. D.
  surname: Korzukhin
  fullname: Korzukhin, M. D.
  organization: Institute of Global Climate and Ecology, Roshydromet and Russian Academy of Sciences
– sequence: 2
  givenname: P. A.
  surname: Kolosov
  fullname: Kolosov, P. A.
  organization: Institute of Global Climate and Ecology, Roshydromet and Russian Academy of Sciences
– sequence: 3
  givenname: S. M.
  surname: Semenov
  fullname: Semenov, S. M.
  organization: Institute of Global Climate and Ecology, Roshydromet and Russian Academy of Sciences
BookMark eNp1kUtqHDEQhkWwIX7kANmJbLJqR48etbQ0fgYMgdheN9Xd1TMaeqS2pB4zu1zAB8j1cpKomYDBwauq4v-_n6LqmBw475CQz5ydSc7kt3vOlJaVNJxzwZjQH8gRN7IsNDPqIPdZLmb9IzmOcc3YQomyOiIv5-M47Kxb0ksYknd_fv2OdIBn6ns6-oQuWRgobmH0AZL1juaC1G8x0LRCmjAEm3zYzcDPKUYLFFxHHdrlqvFhTm795FKwGOkU53nwbllkcEN9EzFs97kdJDglhz0MET_9qyfk8frq4eK2uPtx8_3i_K5oSy5TIXph-kbKzpQKq0XTgO40cNE22lSCIVQ838FURjUc2rKERrUKOwHQZ6bv5Qn5us8dg3-aMKZ6Y2OLwwAO_RRrsyiVKo3R2fnljXPtp-DycrXhlRKa69nE96Y2-BgD9vUY7AbCruasnt9T__eezIg9E8f5SBheg9-H_gKvBJes
CitedBy_id crossref_primary_10_1007_s40333_021_0026_0
crossref_primary_10_1016_j_conbuildmat_2022_129744
crossref_primary_10_1007_s00704_017_2281_8
crossref_primary_10_3178_hrl_14_143
Cites_doi 10.1016/0168-1923(94)02178-M
10.1134/S0097807806060030
10.1098/rspa.1948.0037
10.5194/adgeo-18-15-2008
ContentType Journal Article
Copyright Allerton Press, Inc. 2011
Copyright_xml – notice: Allerton Press, Inc. 2011
DBID AAYXX
CITATION
3V.
7QH
7TG
7UA
7XB
88F
88I
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.3103/S1068373911120028
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1934-8096
EndPage 793
ExternalDocumentID 2569893871
10_3103_S1068373911120028
Genre Feature
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5VS
67M
6NX
7XC
88I
8CJ
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACCUX
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATCPS
AXYYD
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
D1J
D1K
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~02
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
SJYHP
7QH
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c413t-2f29fb33d946e75bba8d8a12cb89720ea719119796b1ac44ab6c6ed2aaf3d9ff3
IEDL.DBID BENPR
ISSN 1068-3739
IngestDate Fri Oct 25 01:14:09 EDT 2024
Thu Oct 10 21:00:38 EDT 2024
Sat Oct 19 02:16:13 EDT 2024
Sat Dec 16 12:02:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords RUSSIAN Meteorology
State Hydrological Institute
United Nations Food
Global Telecommunication System
Potential Evaporation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-2f29fb33d946e75bba8d8a12cb89720ea719119796b1ac44ab6c6ed2aaf3d9ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 917628188
PQPubID 60271
PageCount 8
ParticipantIDs proquest_miscellaneous_954664998
proquest_journals_917628188
crossref_primary_10_3103_S1068373911120028
springer_journals_10_3103_S1068373911120028
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Russian meteorology and hydrology
PublicationTitleAbbrev Russ. Meteorol. Hydrol
PublicationYear 2011
Publisher Allerton Press, Inc
Springer Nature B.V
Publisher_xml – name: Allerton Press, Inc
– name: Springer Nature B.V
References D. D. Baldocchi and K. B. Wilson, “Modeling CO2 and Water Vapor Exchange of a Temperate Broadleaved Forest Across Hourly to Decadal Time Scales,” Ecological Modelling, Nos. 2–3, 142 (2001).
M. Weiβ and L. Menzel, “A Global Comparison of Four Potential Evapotranspiration Equations and Their Relevance to Stream Flow Modelling in Semi-arid Environments,” Adv. Geosci., 18 (2008).
BrutsaertW. H.DubovA. S.Evaporation into the Atmosphere: Theory, History and Applications1985LeningradGidrometeoizdat
UNEP. World Atlas of Desertification (Edward Arnold, London, 1992).
E. M. Gusev, O. N. Nasonova, and E. A. Kovalev, “The Simulation of Heat and Water Exchange Components at the Land Surface on Global Scale,” Vodnye Resursy, No. 6, 33 (2006) [Water Resources, No. 6, 33 (2006)].
C. W. Thornthwaite, “An Approach Toward a Rational Classification of Climate,” Geographical Review, No. 1, 38 (1948).
ZubenokL. I.Evaporation on Continents1976LeningradGidrometeoizdat
O. N. Nasonova, E.M. Gusev, and E. A. Kovalev, “Global Estimates of Heat and Water Exchange Components of Land,” Izv. Akad. Nauk, Ser. Geogr., No. 1 (2008) [Izv., Russ. Acad. Sci., Ser. Geography, No. 1 (2008).
F. M. Kelliher, R. Leuning, M. R. Raupach, and E.-D. Schulze, “Maximum Conductances for Evaporation from Global Vegetation Types,” Agricultural and Forest Meteorol., 73 (1995).
AllenR. G.PereiraL. S.RaesD.SmithM.Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements1998Italy, RomeUnited Nations Food and Agriculture Organization, Irrigation and Drainage
H. L. Penman, “Natural Evaporation from Open Water, Bare Soil, and Grass,” Proc. Roy. Soc., Ser. A, 193 (1948).
KolosovaL. N.Geographical Atlas1982MoscowGUGK SM SSSR
BudykoM. I.Heat Balance of Earth Surface1956LeningradGidrometeoizdat
GusevE. M.NasonovaO. N.Modeling of Heat and Water Exchange between the Land Surface and the Atmosphere2010MoscowNauka
P. A. Bartlett, J. H. McCaughey, P. M. Lafleur, and D. L. Verseghy, “Modelling Evapotranspiration at Three Boreal Forest Stands Using the CLASS: Tests of Parameterizations for Canopy Conductance and Soil Evaporation,” Int. J. Climatology, No. 4, 23 (2003).
FAO, Global Map of Monthly Reference Evapotranspiration, GeoNetwork, 2000, http://www.fao.org/geonetwork/srv/en/metadata/.
9329_CR12
9329_CR13
9329_CR10
9329_CR11
L. I. Zubenok (9329_CR6) 1976
W. H. Brutsaert (9329_CR1) 1985
9329_CR7
9329_CR5
9329_CR9
M. I. Budyko (9329_CR2) 1956
R. G. Allen (9329_CR8) 1998
(9329_CR3) 1982
9329_CR16
9329_CR14
E. M. Gusev (9329_CR4) 2010
9329_CR15
References_xml – volume-title: Evaporation into the Atmosphere: Theory, History and Applications
  year: 1985
  ident: 9329_CR1
  contributor:
    fullname: W. H. Brutsaert
– volume-title: Modeling of Heat and Water Exchange between the Land Surface and the Atmosphere
  year: 2010
  ident: 9329_CR4
  contributor:
    fullname: E. M. Gusev
– ident: 9329_CR15
– ident: 9329_CR14
– volume-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements
  year: 1998
  ident: 9329_CR8
  contributor:
    fullname: R. G. Allen
– volume-title: Evaporation on Continents
  year: 1976
  ident: 9329_CR6
  contributor:
    fullname: L. I. Zubenok
– ident: 9329_CR12
  doi: 10.1016/0168-1923(94)02178-M
– ident: 9329_CR5
  doi: 10.1134/S0097807806060030
– ident: 9329_CR10
– ident: 9329_CR11
– ident: 9329_CR13
  doi: 10.1098/rspa.1948.0037
– volume-title: Geographical Atlas
  year: 1982
  ident: 9329_CR3
– ident: 9329_CR7
– ident: 9329_CR9
– volume-title: Heat Balance of Earth Surface
  year: 1956
  ident: 9329_CR2
  contributor:
    fullname: M. I. Budyko
– ident: 9329_CR16
  doi: 10.5194/adgeo-18-15-2008
SSID ssj0056247
Score 1.8907436
Snippet Parameters of the relationship between wind speed W and conductance G , used in Dalton’s law for potential evaporation rate, were estimated from the long-term...
Parameters of the relationship between wind speed W and conductance G, used in Dalton's law for potential evaporation rate, were estimated from the long-term...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 786
SubjectTerms Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Environmental monitoring
Evaporation
Evaporation rate
Meteorology
Wind speed
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDI1YLlwQqxg2-YA4gAozbZq2R8QihAQHYCRuldMkCDFqR9CBKz_AB_B7fAl2ZjqI7cCxipNKdZy8Z7u2EFsy60S0DdJAFpZbmMUmQM3tXjIZFknsZOx7Rp5fqNOuPLuJbyZEOHZdlPd7TUTSH9SeVraj_SviLkSmIjZOTixIJ8U0YQfJaVzd8KA5fek6903FWDpg8WEk8_clvt5FnwDzW0zUXzUnc2J2hBHhYKjUeTFhywXROid4Wz14Lzhsw2HvjrCmf1oUr4wl-X8lOELuEv3-8vYIPXyGykG_qjkhiNazT9gfKRy4QARw9iYQAISayzNytJ0nXA7ITBCwNFCy31T7FD3wTSWYVwOnyt9CrypvAz7XodJjzy5wwumS6J4cXx-eBqM-C0FBV1gdhC7MnI4ik0llk1hrTE2KnbDQaZaEbYsJkbpOlmRKd7CQErUqlDUhoqM5zkXLYqqsSrsiQHI9-kiZxKSEs7iWFraNIRGFTsUOW2Kn-eJ5f1hOIycawurJf6inJdYaneQjy3rMiV4qrmBFozAeJZPgOAeWthqQSMw184lHtsRuo8nPBf583eq_pNfEjHcv-8yWdTFVPwzsBuGTWm_6DfkBMtXewQ
  priority: 102
  providerName: Springer Nature
Title Applying Dalton’s law of potential evaporation rate over the territory of Russia and neighboring countries using long-term observation data
URI https://link.springer.com/article/10.3103/S1068373911120028
https://www.proquest.com/docview/917628188
https://search.proquest.com/docview/954664998
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9oUXBANEGFT3gEACRVsdx0mepm7rmDZtQoNK4ymyY3uaVCVlTeGP2D-9OzfpBAge4_hDyvns-_jlfgDvZDFOaBvksawcU5ilNtaG6V4KKaos9TINnJHnF-pkJk-v0qsOm7PsYJX9mRgOattUHCPfJbdCceWifH_xI2bSKE6udgwaWzAU5CiIAQwPphdfLvujmO72wDBGbk9OmpQU67QmU2vtfuVGbiNlZ6BC_vvF9GBt_pEgDffO8VN40hmMOFlL-Bk8cvU2ROdk6za3ISSO7_FwfkOGZ3h6DndsWPLPS3ikmTL6wxLn-hc2HhdNy9ggms391ItO9si1IpCBnEi2ILZcqZET7zzgckUao1HXFmsOoZqA1sPAL8EuNjJq_hrnTX0d8xGPjdkEeZGxpy9gdjz9dngSd5QLcUW3WRsLLwpvksQWUrksNUbnNtdjUZm8yMSe0xn5d-MiK5QZ60pKbVSlnBVaexrjffISBnVTu1eAkkvTJ8pmNieTi8tq6T1rqYvSXqVeR_Cx_97lYl1ZoySPhIVT_iWcCHZ6iZSdki3LzZaIADdvSTs45aFr16yoS8rl88mljOBTL8eHCf653Ov_LrcDj0NkOYBa3sCgvV25t2SatGYEw8nn72fTUbcRR7A1E5N7Ax3lDw
link.rule.ids 315,783,787,21402,27938,27939,33758,33759,41095,41537,42164,42606,43819,52125,52248
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ALKi8RWsocEEigqN3EcZIToqXVAt0VKq3UWzSO7QpplSzdbPsj-NPMeJOtAMExjh9SxmPP48t8AK9UOUp5GxSxqp1QmGU2JiN0L6VK6jzzKguckZOpHp-rzxfZRY_NWfSwyuFMDAe1bWuJke-xW6GlclHxfv4jFtIoSa72DBp3YVMqVfGm3jw4mn49HY5ivtsDwxi7PQVrUlqu0ppCrbX3TRqljZVdgArF7xfTrbX5R4I03DvHW_CgNxjxw0rCD-GOax5BNGFbt70KIXF8jYez72x4hqfH8FMMS_l5CT-SUEa_WeCMbrD1OG87wQbxbO6a5r3sUWpFoAA5kW1B7KRSoyTeZcDpkjWGkBqLjYRQTUDrYeCXEBcbBTV_ibO2uYzliMfWrIO8KNjTJ3B-fHR2OI57yoW45tusixOflN6kqS2VdnlmDBW2oFFSm6LMk31HOft3ozIvtRlRrRQZXWtnEyLPY7xPn8JG0zbuGaCS0vSptrkt2OSSslq0by130eR15imCt8P3ruaryhoVeyQinOov4USwPUik6pVsUa23RAS4fsvaISkPaly75C6ZlM9nlzKCd4Mcbyf453LP_7vcS7g3PpucVCefpl-24X6IMgeAyw5sdFdL94LNlM7s9pvxF3X75Yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrYS4AC0glhaYA-IASneTOE5yrNouhf4IAZXKKdixXSFWyaqbBaknXoAH4PV4EmacpFVbOCCOkf8S25P5xjP-BuCZyMOYtkEWiNJyCrPEBEpzupdcRGWaOJH4nJEHh3L3SLw5To67PKfzPtq9d0m2dxqYpalqRjPjRt7GHMej92TIkGUVs6RylEF2A5ZFSGhhAMubrz7u7fQ_Y9LuPscY1w-4QevY_HMnl1XTBd684iL1mmdyBz7179wGnHzZWDR6ozy7Quf4Hx91F253qBQ32220Aku2WoXhAQHq-tSfu-Nz3Jp-JnTrn-7BD0avfEMKtxXnpf71_eccp-ob1g5nNQ9K-xrtVzXrthgyJQVyvCgS5MSGCSHZv88N3i1IMBWqymDFJ7XaBwWiT2PBljxycP4JTuvqJGBNgrU-P0tGDnG9D0eTnQ9bu0GX2SEoSWk2QeSi3Ok4NrmQNk20VpnJVBiVOsvTaGxVSmZkmKe51KEqhVBaltKaSClHbZyLH8Cgqiv7EFAwA34sTWoyQnbM3qXGxlAVqZxMnBrCi35Ri1lL4FGQ4cMzXlyb8SGs9ctedLI8L8iglcyZRaV4XkpCyJ4VVdl6QVUSZukny3UIL_t1vujgr8M9-qfaT-Hm2-1Jsf_6cG8NbvmzbR9Wsw6D5nRhHxM4avSTTgB-A17DB8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+Dalton%27s+law+of+potential+evaporation+rate+over+the+territory+of+Russia+and+neighboring+countries+using+long-term+observation+data&rft.jtitle=Russian+meteorology+and+hydrology&rft.au=Korzukhin%2C+M+D&rft.au=Kolosov%2C+P+A&rft.au=Semenov%2C+S+M&rft.date=2011-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1068-3739&rft.eissn=1934-8096&rft.volume=36&rft.issue=12&rft.spage=786&rft_id=info:doi/10.3103%2FS1068373911120028&rft.externalDocID=2569893871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-3739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-3739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-3739&client=summon