Germatranes and carbagermatranes: (hetero)aryl and alkyl coupling partners in Pd-catalyzed cross-coupling reactions
In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corre...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 57; no. 89; pp. 11764 - 11775 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
09.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (
e.g.
base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe
3
.
The synthesis and Pd-catalyzed cross-couplings of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes have been established. |
---|---|
AbstractList | In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (
e.g.
base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe
3
. In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe3. In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation ( e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe 3 . The synthesis and Pd-catalyzed cross-couplings of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes have been established. In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe3.In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe3. In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe₃. |
Author | Xu, Meng-Yu Xiao, Bin |
AuthorAffiliation | Department of Chemistry University of Science and Technology of China |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Meng-Yu surname: Xu fullname: Xu, Meng-Yu – sequence: 2 givenname: Bin surname: Xiao fullname: Xiao, Bin |
BookMark | eNqFkcFLwzAUxoNMcJtevAsFL1OoJkvTJt6k6hQHelDwVtLXdHbr0pmkh_nXm22ywRB8EN4j_N4H7_t6qKMbrRA6JfiKYCquCwKAI5rQ2QHqEhpHIYv4R2c1MxEmNGJHqGftFPsijHeRHSkzl85IrWwgdRGANLmc7D5vgsGncso0F9Is6zUi65mfoGkXdaUnwUIap5WxQaWD1yIE6WS9_FZeyjTWhlvOKAmuarQ9RoelrK06-e199P5w_5Y-huOX0VN6Ow4hItSFwyLPS5xgoCwpCs6AQU6AJDHPGUguscJcEMCCcRwrIIJiFZVDTJIyFmWS0D4abHQXpvlqlXXZvLKg6trf1bQ2G8beIP_i6H-UcUoJ4QJ79HwPnTat0f4QT4kYc05F7KnLDbU2wagyW5hq7i3MCM5WUWV3JE3XUT17GO_BUDm58spnUNV_r5xtVoyFrfQuffoDPvKiZg |
CitedBy_id | crossref_primary_10_1016_j_checat_2023_100826 crossref_primary_10_1021_acs_inorgchem_2c04242 crossref_primary_10_1039_D3RA08926F crossref_primary_10_1002_ange_202310380 crossref_primary_10_1021_acs_orglett_2c00698 crossref_primary_10_1021_acs_joc_4c01456 crossref_primary_10_1016_j_checat_2024_101257 crossref_primary_10_1021_acscatal_2c04571 crossref_primary_10_1002_chem_202401546 crossref_primary_10_1002_anie_202310380 crossref_primary_10_1002_ange_202317284 crossref_primary_10_1002_ange_202314709 crossref_primary_10_1021_acs_orglett_3c02822 crossref_primary_10_1039_D4CC02037E crossref_primary_10_1039_D2CC00751G crossref_primary_10_1039_D2QO01712A crossref_primary_10_6023_cjoc202401014 crossref_primary_10_1002_ange_202115592 crossref_primary_10_1039_D2QO01467J crossref_primary_10_1002_anie_202314709 crossref_primary_10_1021_acscatal_3c01244 crossref_primary_10_1021_acs_orglett_2c00207 crossref_primary_10_1039_D2CC03338K crossref_primary_10_1016_j_checat_2023_100819 crossref_primary_10_1039_D3OB01402A crossref_primary_10_1016_j_xcrp_2023_101550 crossref_primary_10_1039_D4QO01497A crossref_primary_10_1039_D4QO01637H crossref_primary_10_1016_j_xcrp_2022_101116 crossref_primary_10_3390_biomedicines11061535 crossref_primary_10_1021_jacs_3c14386 crossref_primary_10_1021_acs_orglett_4c01431 crossref_primary_10_1002_anie_202317284 crossref_primary_10_1002_adsc_202401069 crossref_primary_10_1002_cjoc_202300276 crossref_primary_10_1016_j_tibtech_2022_06_004 crossref_primary_10_1021_acs_orglett_3c00410 crossref_primary_10_1021_jacs_3c01081 crossref_primary_10_1002_asia_202300277 crossref_primary_10_1002_anie_202115592 |
Cites_doi | 10.1021/acscatal.8b02661 10.1039/c0cs00201a 10.1002/anie.201609930 10.1038/nchem.1652 10.1021/acscatal.8b04163 10.1021/ol026613t 10.1002/aoc.1270 10.1002/anie.199701191 10.1021/cr100327p 10.1021/ol005641d 10.1021/ja00177a048 10.1021/jo4005052 10.1016/0040-4039(88)80026-1 10.1016/S0968-0896(99)00162-5 10.1021/om00114a006 10.1126/science.aan3679 10.1038/s41570-020-00222-9 10.1021/jacs.9b02776 10.1039/C1CS15181A 10.1021/ol9028918 10.1021/ic00053a013 10.1002/adsc.201901633 10.1021/ja037409j 10.1021/cr940337h 10.1021/acs.chemrev.9b00079 10.1021/ja00106a018 10.1021/acs.orglett.1c01289 10.1021/ol0604670 10.1039/C4OB02436B 10.1021/acs.chemrev.0c00736 10.2174/1570179043366765 10.1039/b707517k 10.1021/acs.inorgchem.6b01185 10.1039/C7QO00164A 10.1021/ar00033a005 10.1021/jo047773g 10.1021/acs.accounts.5b00128 10.1002/anie.200604246 10.1002/adsc.200700002 10.1021/jacs.0c02860 10.1002/anie.201706611 10.1126/science.aam7355 10.1021/acs.chemrev.5b00162 10.1021/om020578c 10.1021/acs.accounts.0c00527 10.1021/jo034809g 10.1021/acscatal.6b02374 10.1002/anie.201504963 10.1002/anie.202008482 10.1021/ja00042a044 10.1021/acscatal.5b00448 10.1016/0022-328X(95)05840-L 10.1002/anie.201910060 10.1002/anie.201500983 10.1002/adsc.200404187 10.1016/j.tetlet.2009.05.035 10.1002/adsc.201100627 10.1039/C9SC04288A 10.1021/acscatal.9b02841 10.1039/D1CC02930D 10.1039/C6OB01675H 10.1021/ja310153v 10.1021/acs.accounts.6b00214 10.1021/jacs.5b10963 10.1016/0022-328X(86)80508-3 10.1021/ja9044357 10.1021/acs.accounts.6b00165 10.1021/jo101848f 10.1016/j.tetlet.2016.10.006 10.1016/j.bmcl.2005.11.012 10.1002/chem.201202299 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d1cc04373k |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 11775 |
ExternalDocumentID | 10_1039_D1CC04373K d1cc04373k |
GroupedDBID | - 0-7 0R 1TJ 29B 4.4 53G 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ IH2 J3I JG M4U N9A O9- P2P R7B R7C R7D RCNCU RIG RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X X7L --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c413t-2dbbf070c357dd85c5cb1c1768b5ca8a0e0891c095806ec1930e4f2017f69f773 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 03:39:45 EDT 2025 Thu Jul 10 23:48:16 EDT 2025 Mon Jun 30 05:38:10 EDT 2025 Tue Jul 01 04:09:32 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Mon Apr 11 04:40:46 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 89 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-2dbbf070c357dd85c5cb1c1768b5ca8a0e0891c095806ec1930e4f2017f69f773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1200-6819 |
PQID | 2596088396 |
PQPubID | 2047502 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d1cc04373k proquest_journals_2596088396 proquest_miscellaneous_2636463664 proquest_miscellaneous_2583311890 crossref_primary_10_1039_D1CC04373K crossref_citationtrail_10_1039_D1CC04373K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-09 |
PublicationDateYYYYMMDD | 2021-11-09 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Spivey (D1CC04373K/cit4) 2004; 1 Kosugi (D1CC04373K/cit5) 1996; 508 Song (D1CC04373K/cit8) 2018; 8 Xu (D1CC04373K/cit9) 2019; 141 Wan (D1CC04373K/cit16c) 1995; 117 Ma (D1CC04373K/cit33b) 2020; 4 Czakó (D1CC04373K/cit1b) 2005 Evans (D1CC04373K/cit40) 1999; 7 Gudat (D1CC04373K/cit16b) 1989; 8 Hicks (D1CC04373K/cit25) 2009; 131 Fawcett (D1CC04373K/cit26c) 2017; 357 Wang (D1CC04373K/cit35c) 2019; 119 Hatanaka (D1CC04373K/cit2a) 1988; 29 Komiyama (D1CC04373K/cit2b) 2017; 7 Faller (D1CC04373K/cit6) 2002; 21 Wilson (D1CC04373K/cit37) 2016; 57 Zhang (D1CC04373K/cit7g) 2010; 12 Dutheuil (D1CC04373K/cit31a) 2007; 46 Montel (D1CC04373K/cit10a) 2006; 8 Wang (D1CC04373K/cit24b) 2017; 56 Li (D1CC04373K/cit22) 2015; 48 Vedejs (D1CC04373K/cit14) 1992; 114 Fricke (D1CC04373K/cit11b) 2019; 58 Corce (D1CC04373K/cit41b) 2015; 54 Theddu (D1CC04373K/cit23c) 2013; 78 Kakimoto (D1CC04373K/cit17) 1986; 316 Cherney (D1CC04373K/cit33a) 2015; 115 Zhang (D1CC04373K/cit36b) 2018; 8 Wang (D1CC04373K/cit30) 2021; 23 Nakamura (D1CC04373K/cit7a) 2002; 4 Torres (D1CC04373K/cit10b) 2009; 50 Cordovilla (D1CC04373K/cit3) 2015; 5 Chen (D1CC04373K/cit29a) 2015; 13 Dupuy (D1CC04373K/cit12c) 2012; 18 Wang (D1CC04373K/cit7c) 2005; 70 Li (D1CC04373K/cit26a) 2017; 356 Jensen (D1CC04373K/cit15) 2000; 2 Pamies (D1CC04373K/cit32) 2021; 121 Endo (D1CC04373K/cit7d) 2007; 349 Pitteloud (D1CC04373K/cit7h) 2010; 75 Kavoosi (D1CC04373K/cit13c) 2015; 54 Fawcett (D1CC04373K/cit26b) 2017; 357 Yang (D1CC04373K/cit28) 2021; 57 Wan (D1CC04373K/cit16a) 1993; 32 (D1CC04373K/cit1a) 2005 Jana (D1CC04373K/cit1c) 2011; 111 Jiang (D1CC04373K/cit27) 2020; 11 Sore (D1CC04373K/cit2c) 2012; 41 Simidzija (D1CC04373K/cit13b) 2016; 55 Landelle (D1CC04373K/cit31b) 2011; 40 Fricke (D1CC04373K/cit12b) 2019; 9 Jung (D1CC04373K/cit19) 2005; 105 Spivey (D1CC04373K/cit7e) 2007 Matsumoto (D1CC04373K/cit10c) 2012; 354 Wang (D1CC04373K/cit20) 2012; 134 Verkade (D1CC04373K/cit13a) 1993; 26 Jouffroy (D1CC04373K/cit41c) 2016; 138 Xie (D1CC04373K/cit39) 2021 Spivey (D1CC04373K/cit7f) 2007; 21 Xue (D1CC04373K/cit26d) 2017; 56 Jiang (D1CC04373K/cit38) 2020; 59 Fillion (D1CC04373K/cit23a) 2003; 125 Enokido (D1CC04373K/cit7b) 2004; 346 Hatanaka (D1CC04373K/cit34) 1990; 112 Fricke (D1CC04373K/cit11a) 2020; 53 Xu (D1CC04373K/cit21) 2020; 362 Dahiya (D1CC04373K/cit12a) 2020; 142 Li (D1CC04373K/cit24a) 2013; 5 Della Ca (D1CC04373K/cit35b) 2016; 49 Tellis (D1CC04373K/cit41a) 2016; 49 Catellani (D1CC04373K/cit35a) 1997; 36 Zhang (D1CC04373K/cit36a) 2017; 4 Lian (D1CC04373K/cit29b) 2016; 14 Jones (D1CC04373K/cit23b) 2006; 16 Riggleman (D1CC04373K/cit18) 2003; 68 |
References_xml | – issn: 2005 publication-title: Strategic applications of named reactions in organic synthesis doi: Czakó Kürti – issn: 2005 publication-title: Handbook of Functionalized Organometallics: Applications in Synthesis – volume: 8 start-page: 9287 year: 2018 ident: D1CC04373K/cit8 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02661 – volume: 40 start-page: 2867 year: 2011 ident: D1CC04373K/cit31b publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00201a – volume: 56 start-page: 856 year: 2017 ident: D1CC04373K/cit24b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609930 – volume: 5 start-page: 607 year: 2013 ident: D1CC04373K/cit24a publication-title: Nat. Chem. doi: 10.1038/nchem.1652 – volume: 8 start-page: 11827 year: 2018 ident: D1CC04373K/cit36b publication-title: ACS Catal. doi: 10.1021/acscatal.8b04163 – volume: 4 start-page: 3165 year: 2002 ident: D1CC04373K/cit7a publication-title: Org. Lett. doi: 10.1021/ol026613t – volume: 21 start-page: 572 year: 2007 ident: D1CC04373K/cit7f publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.1270 – volume: 36 start-page: 119 year: 1997 ident: D1CC04373K/cit35a publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199701191 – volume: 111 start-page: 1417 year: 2011 ident: D1CC04373K/cit1c publication-title: Chem. Rev. doi: 10.1021/cr100327p – start-page: 2819 year: 2021 ident: D1CC04373K/cit39 publication-title: Synthesis – volume: 2 start-page: 1081 year: 2000 ident: D1CC04373K/cit15 publication-title: Org. Lett. doi: 10.1021/ol005641d – volume: 112 start-page: 7793 year: 1990 ident: D1CC04373K/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00177a048 – volume: 78 start-page: 5061 year: 2013 ident: D1CC04373K/cit23c publication-title: J. Org. Chem. doi: 10.1021/jo4005052 – volume: 29 start-page: 97 year: 1988 ident: D1CC04373K/cit2a publication-title: Tetrahedron Lett. doi: 10.1016/0040-4039(88)80026-1 – volume: 7 start-page: 1953 year: 1999 ident: D1CC04373K/cit40 publication-title: Bioorg. Med. Chem. doi: 10.1016/S0968-0896(99)00162-5 – volume: 8 start-page: 2772 year: 1989 ident: D1CC04373K/cit16b publication-title: Organometallics doi: 10.1021/om00114a006 – volume: 357 start-page: 283 year: 2017 ident: D1CC04373K/cit26b publication-title: Science doi: 10.1126/science.aan3679 – volume: 4 start-page: 584 year: 2020 ident: D1CC04373K/cit33b publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-00222-9 – volume: 141 start-page: 7582 year: 2019 ident: D1CC04373K/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02776 – volume: 41 start-page: 1845 year: 2012 ident: D1CC04373K/cit2c publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15181A – volume: 12 start-page: 816 year: 2010 ident: D1CC04373K/cit7g publication-title: Org. Lett. doi: 10.1021/ol9028918 – volume: 32 start-page: 79 year: 1993 ident: D1CC04373K/cit16a publication-title: Inorg. Chem. doi: 10.1021/ic00053a013 – volume: 362 start-page: 1706 year: 2020 ident: D1CC04373K/cit21 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201901633 – volume: 125 start-page: 12700 year: 2003 ident: D1CC04373K/cit23a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037409j – volume: 105 start-page: 1735 year: 2005 ident: D1CC04373K/cit19 publication-title: Chem. Rev. doi: 10.1021/cr940337h – volume: 119 start-page: 7478 year: 2019 ident: D1CC04373K/cit35c publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00079 – volume: 117 start-page: 141 year: 1995 ident: D1CC04373K/cit16c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00106a018 – volume: 23 start-page: 4593 year: 2021 ident: D1CC04373K/cit30 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c01289 – volume: 8 start-page: 1905 year: 2006 ident: D1CC04373K/cit10a publication-title: Org. Lett. doi: 10.1021/ol0604670 – volume: 13 start-page: 3236 year: 2015 ident: D1CC04373K/cit29a publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB02436B – volume: 121 start-page: 4373 year: 2021 ident: D1CC04373K/cit32 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00736 – volume-title: Strategic applications of named reactions in organic synthesis year: 2005 ident: D1CC04373K/cit1b – volume: 1 start-page: 211 year: 2004 ident: D1CC04373K/cit4 publication-title: Curr. Org. Synth. doi: 10.2174/1570179043366765 – start-page: 2926 year: 2007 ident: D1CC04373K/cit7e publication-title: Chem. Commun. doi: 10.1039/b707517k – volume: 55 start-page: 9579 year: 2016 ident: D1CC04373K/cit13b publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01185 – volume: 4 start-page: 1376 year: 2017 ident: D1CC04373K/cit36a publication-title: Org. Chem. Front. doi: 10.1039/C7QO00164A – volume: 26 start-page: 483 year: 1993 ident: D1CC04373K/cit13a publication-title: Acc. Chem. Res. doi: 10.1021/ar00033a005 – volume: 70 start-page: 3281 year: 2005 ident: D1CC04373K/cit7c publication-title: J. Org. Chem. doi: 10.1021/jo047773g – volume: 48 start-page: 2297 year: 2015 ident: D1CC04373K/cit22 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00128 – volume: 46 start-page: 1290 year: 2007 ident: D1CC04373K/cit31a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604246 – volume: 357 start-page: 283 year: 2017 ident: D1CC04373K/cit26c publication-title: Science doi: 10.1126/science.aan3679 – volume: 349 start-page: 1025 year: 2007 ident: D1CC04373K/cit7d publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200700002 – volume: 142 start-page: 7754 year: 2020 ident: D1CC04373K/cit12a publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02860 – volume: 56 start-page: 11649 year: 2017 ident: D1CC04373K/cit26d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706611 – volume: 356 start-page: eaam7355 year: 2017 ident: D1CC04373K/cit26a publication-title: Science doi: 10.1126/science.aam7355 – volume: 115 start-page: 9587 year: 2015 ident: D1CC04373K/cit33a publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00162 – volume: 21 start-page: 5911 year: 2002 ident: D1CC04373K/cit6 publication-title: Organometallics doi: 10.1021/om020578c – volume: 53 start-page: 2715 year: 2020 ident: D1CC04373K/cit11a publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00527 – volume: 68 start-page: 8106 year: 2003 ident: D1CC04373K/cit18 publication-title: J. Org. Chem. doi: 10.1021/jo034809g – volume: 7 start-page: 631 year: 2017 ident: D1CC04373K/cit2b publication-title: ACS Catal. doi: 10.1021/acscatal.6b02374 – volume: 54 start-page: 11414 year: 2015 ident: D1CC04373K/cit41b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504963 – volume: 59 start-page: 20450 year: 2020 ident: D1CC04373K/cit38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008482 – volume: 114 start-page: 6556 year: 1992 ident: D1CC04373K/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00042a044 – volume: 5 start-page: 3040 year: 2015 ident: D1CC04373K/cit3 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00448 – volume: 508 start-page: 255 year: 1996 ident: D1CC04373K/cit5 publication-title: J. Organomet. Chem. doi: 10.1016/0022-328X(95)05840-L – volume: 58 start-page: 17788 year: 2019 ident: D1CC04373K/cit11b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201910060 – volume: 54 start-page: 5488 year: 2015 ident: D1CC04373K/cit13c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500983 – volume-title: Handbook of Functionalized Organometallics: Applications in Synthesis year: 2005 ident: D1CC04373K/cit1a – volume: 346 start-page: 1685 year: 2004 ident: D1CC04373K/cit7b publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200404187 – volume: 50 start-page: 4407 year: 2009 ident: D1CC04373K/cit10b publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.05.035 – volume: 354 start-page: 642 year: 2012 ident: D1CC04373K/cit10c publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100627 – volume: 11 start-page: 488 year: 2020 ident: D1CC04373K/cit27 publication-title: Chem. Sci. doi: 10.1039/C9SC04288A – volume: 9 start-page: 9231 year: 2019 ident: D1CC04373K/cit12b publication-title: ACS Catal. doi: 10.1021/acscatal.9b02841 – volume: 57 start-page: 8143 year: 2021 ident: D1CC04373K/cit28 publication-title: Chem. Commun. doi: 10.1039/D1CC02930D – volume: 14 start-page: 10090 year: 2016 ident: D1CC04373K/cit29b publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB01675H – volume: 134 start-page: 19592 year: 2012 ident: D1CC04373K/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310153v – volume: 49 start-page: 1429 year: 2016 ident: D1CC04373K/cit41a publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00214 – volume: 138 start-page: 475 year: 2016 ident: D1CC04373K/cit41c publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10963 – volume: 316 start-page: C17 year: 1986 ident: D1CC04373K/cit17 publication-title: J. Organomet. Chem. doi: 10.1016/0022-328X(86)80508-3 – volume: 131 start-page: 16720 year: 2009 ident: D1CC04373K/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9044357 – volume: 49 start-page: 1389 year: 2016 ident: D1CC04373K/cit35b publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00165 – volume: 75 start-page: 8199 year: 2010 ident: D1CC04373K/cit7h publication-title: J. Org. Chem. doi: 10.1021/jo101848f – volume: 57 start-page: 5053 year: 2016 ident: D1CC04373K/cit37 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.10.006 – volume: 16 start-page: 872 year: 2006 ident: D1CC04373K/cit23b publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2005.11.012 – volume: 18 start-page: 14923 year: 2012 ident: D1CC04373K/cit12c publication-title: Chem. – Eur. J. doi: 10.1002/chem.201202299 |
SSID | ssj0000158 |
Score | 2.5432355 |
SecondaryResourceType | review_article |
Snippet | In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11764 |
SubjectTerms | Aromatic compounds Chemical reactions Couplings Cross coupling cross-coupling reactions derivatization Germanium Lewis bases Nucleophiles Organometallic compounds Palladium Reagents |
Title | Germatranes and carbagermatranes: (hetero)aryl and alkyl coupling partners in Pd-catalyzed cross-coupling reactions |
URI | https://www.proquest.com/docview/2596088396 https://www.proquest.com/docview/2583311890 https://www.proquest.com/docview/2636463664 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QAXxNdEYSAjOLCDRxInTsxtlMH4PHVSOUWO42zVpnTqkkN33_-9568kGxUaVGpUuU6a5v3yvpz3ewi9VUJ72hUnMkk5iVlGiZAKNmBqE1aCgYh0gfPPX-zwKP42S2aj0dXgqaW2Kfbk5dq6kv-RKoyBXHWV7D9ItjsoDMBnkC9sQcKwvZOMv2i12oC1UZZpWerFg-N-UIf74EGe6EdeFhDzi-XKMgOIs9OV5gVpz201Ohy71pW8c9CIJTEpndUluKLGhpJuHjiYsk_weX4DTzkgh7UmJpnbFYQZjWvbhQxSD7PWpGNVfUx-t93gXJjs7UdHCe4yElFoSvP4QInShJOUWprIPeXGWEwgOpoNNa-lpnYIs52EnB4Nw9SSmzujrJeWk7UaP6CaMPVTOJkYlqbvvV3za_m3zF33EKJZfqc87_fdQFsRRBugLrf2D6Zffwx4yEyj1-6PeZ5byt_3e9_0bPpwZWPpe8kYn2X6ED1wwQbet8h5hEaqfozuTXyPvyfoYoAgDMLBtxH0Ab-z6NnV2DFTDHawxwT22MHzGg-xg29iB3fYeYqOPh9MJ4fEteEgEjychkRlUVRgGSRN0hLuXpnIIpQgoKxIpMhEoIKMhxJ89SxgSkJEEKi4AscyrRiv0pRuo816UatnCOvwWbCgZEIH8krAK0lFlCmYKAKajtGuv4S5dBz1ulXKWf6nsMboTTf33DKzrJ214yWRuzv3IoeQn4F1pZyN0evua7j0erEMLu6i1XMySiH65sFf5jBANbxZPEbbIOXuPMpQSvP7p8_vdJYv0P3-RtpBm82yVS_B2W2KVw6K1w4aqWc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Germatranes+and+carbagermatranes%3A+%28hetero%29aryl+and+alkyl+coupling+partners+in+Pd-catalyzed+cross-coupling+reactions&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Xu%2C+Meng-Yu&rft.au=Xiao%2C+Bin&rft.date=2021-11-09&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=57&rft.issue=89&rft.spage=11764&rft.epage=11775&rft_id=info:doi/10.1039%2FD1CC04373K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CC04373K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |