Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators
Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, c...
Saved in:
Published in | Smart materials and structures Vol. 26; no. 12; pp. 125022 - 125038 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 m have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V m−1 and also up to 130 V m−1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput. |
---|---|
AbstractList | Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 m have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V m−1 and also up to 130 V m−1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput. |
Author | Shea, Herbert McCoul, David Rosset, Samuel Schlatter, Samuel |
Author_xml | – sequence: 1 givenname: David surname: McCoul fullname: McCoul, David organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland – sequence: 2 givenname: Samuel surname: Rosset fullname: Rosset, Samuel organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland – sequence: 3 givenname: Samuel surname: Schlatter fullname: Schlatter, Samuel organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland – sequence: 4 givenname: Herbert orcidid: 0000-0003-3527-3036 surname: Shea fullname: Shea, Herbert email: herbert.shea@epfl.ch organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland |
BookMark | eNp9kEtLAzEQgINUsK3ePebowbV5bNLNUeqrUPBixVtMsxNN3d2UJD34791SURApDAzMzDfDfCM06EIHCJ1TckVJVU0ol7SQUrxMjFFSiSM0_CkN0JAoWRZ0yuQJGqW0JoTSitMhep13H2vImN_gTfRd9t0bDg4vn7HpapzfIbamwXYbASffeNsfxdCYlEMLMWEXIq49NGBz9Pa3g43NW5NDTKfo2Jkmwdl3HqPl3e3T7KFYPN7PZ9eLwpaU54LVXFAmwKmaCa4YgBJqVdaVXSlZ1VaB4-CgJJQYS4VgzFjODZtKagwtOR8jud9rY0gpgtPWZ5N96HI0vtGU6J0nvZOid1L03lMPkj9gL6I18fMQcrlHfNjoddjGrv_s0PjFP-OpTZpJTVkfgjCmN7XjX1saiYU |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_3390_mi13040642 crossref_primary_10_1063_5_0043959 crossref_primary_10_1007_s42464_024_00241_x crossref_primary_10_1126_sciadv_abq3917 crossref_primary_10_1016_j_ijnonlinmec_2020_103546 crossref_primary_10_1002_aisy_202000125 crossref_primary_10_1016_j_jmbbm_2020_103971 crossref_primary_10_1038_s41467_022_29432_z crossref_primary_10_1016_j_recm_2022_09_001 crossref_primary_10_1002_advs_202206094 crossref_primary_10_1002_pc_28626 crossref_primary_10_1108_RPJ_10_2018_0279 crossref_primary_10_1002_adem_201800241 crossref_primary_10_1088_2399_7532_ac4836 crossref_primary_10_1016_j_bea_2025_100158 crossref_primary_10_1002_admt_202000148 crossref_primary_10_1088_2752_5724_ad22cf crossref_primary_10_1089_3dp_2021_0105 crossref_primary_10_1016_j_jcomc_2021_100143 crossref_primary_10_1016_j_ultsonch_2023_106469 crossref_primary_10_1002_aisy_202000013 crossref_primary_10_1002_aisy_202000136 crossref_primary_10_1515_teme_2024_0019 crossref_primary_10_1021_acsami_9b03156 crossref_primary_10_1016_j_apmt_2021_101306 crossref_primary_10_1146_annurev_control_061022_012035 crossref_primary_10_3390_ma14164521 crossref_primary_10_1007_s40964_022_00373_9 crossref_primary_10_1007_s11431_019_1443_1 crossref_primary_10_1039_C9TC03391B crossref_primary_10_1016_j_polymer_2023_126222 crossref_primary_10_1109_ACCESS_2018_2820902 crossref_primary_10_1016_j_addma_2019_100793 crossref_primary_10_3390_jmmp2020024 crossref_primary_10_3390_act7040073 crossref_primary_10_1080_19475411_2019_1591541 crossref_primary_10_1177_00219983221131614 crossref_primary_10_1002_pen_26318 crossref_primary_10_1016_j_matpr_2020_07_335 crossref_primary_10_1080_17452759_2024_2346821 crossref_primary_10_1021_acsami_9b19632 crossref_primary_10_1002_aesr_202000111 crossref_primary_10_1016_j_addma_2022_103270 crossref_primary_10_1016_j_mtcomm_2022_105178 crossref_primary_10_1016_j_cej_2022_134843 crossref_primary_10_1002_chem_201903658 crossref_primary_10_1002_adma_202402301 crossref_primary_10_1016_j_cej_2021_128675 crossref_primary_10_1002_marc_202200023 crossref_primary_10_1108_RPJ_06_2022_0179 crossref_primary_10_1007_s40964_020_00143_5 crossref_primary_10_1016_j_addma_2020_101330 crossref_primary_10_1016_j_addma_2021_102320 crossref_primary_10_1016_j_compositesb_2020_108220 crossref_primary_10_1016_j_rser_2019_109430 crossref_primary_10_1108_RPJ_08_2021_0198 crossref_primary_10_1177_08927057241248028 crossref_primary_10_1002_admt_202400423 crossref_primary_10_1007_s43939_022_00033_3 crossref_primary_10_1002_admt_202300099 crossref_primary_10_1108_RPJ_10_2019_0255 crossref_primary_10_1007_s40964_019_00097_3 crossref_primary_10_1515_revce_2021_0089 crossref_primary_10_1089_soro_2018_0046 crossref_primary_10_1016_j_sna_2022_113977 crossref_primary_10_1108_RPJ_11_2019_0302 crossref_primary_10_1016_j_addma_2020_101681 crossref_primary_10_1016_j_cej_2019_01_150 crossref_primary_10_1109_TIE_2021_3071680 crossref_primary_10_3390_s22062332 crossref_primary_10_1038_s41598_019_52168_8 crossref_primary_10_1088_1361_665X_ad4cac crossref_primary_10_3390_polym15163361 crossref_primary_10_1088_2631_8695_ac342e crossref_primary_10_1016_j_addma_2018_10_002 crossref_primary_10_1002_admt_201800232 crossref_primary_10_1002_adfm_202000187 crossref_primary_10_3389_frobt_2021_714332 crossref_primary_10_1088_1361_665X_acb677 crossref_primary_10_1016_j_addma_2020_101395 crossref_primary_10_3390_robotics11060143 crossref_primary_10_1177_24726303211020297 crossref_primary_10_1016_j_xcrp_2024_101849 crossref_primary_10_3390_polym12061276 crossref_primary_10_1002_adfm_202400023 crossref_primary_10_3390_polym12092136 crossref_primary_10_1021_acsomega_3c08102 crossref_primary_10_1088_1361_665X_abcf1d crossref_primary_10_1002_admt_202401739 crossref_primary_10_1002_app_50991 crossref_primary_10_1115_1_4054087 crossref_primary_10_1002_aisy_202400699 crossref_primary_10_3390_pr11061736 crossref_primary_10_1002_app_55015 crossref_primary_10_1016_j_aime_2023_100125 crossref_primary_10_1016_j_progpolymsci_2019_101144 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1007_s40964_023_00421_y crossref_primary_10_1016_j_ijheatmasstransfer_2022_122902 crossref_primary_10_1126_sciadv_aaw1160 |
Cites_doi | 10.1016/j.sna.2016.09.028 10.5254/1.3539210 10.1002/marc.200900425 10.1117/12.2044978 10.1088/0960-1317/22/4/045020 10.1002/9780470744697.ch24 10.1021/ac9015837 10.1016/S0007-8506(07)63240-5 10.1016/j.jmatprotec.2010.10.003 10.1038/39827 10.1117/12.2218224 10.1117/12.2258615 10.1080/17452759.2015.1097054 10.1039/b711984d 10.1016/j.matdes.2009.04.030 10.1063/1.4740023 10.1088/0964-1726/16/2/S15 10.1016/j.optlastec.2010.08.002 10.1039/C6LC00903D 10.1146/annurev-matsci-070909-104502 10.1063/1.4937735 10.1002/adma.200300385 10.1117/12.815746 10.1007/s00397-009-0419-z 10.1109/TBME.2009.2024691 10.1088/0964-1726/22/10/104013 10.1002/marc.201000521 10.1109/MEMSYS.1997.581811 10.1007/s11012-015-0273-2 10.1016/j.matdes.2010.02.050 10.3791/53423 10.1063/1.4862272 10.1007/s11837-003-0175-y 10.1117/12.2219226 10.1007/s00339-012-7402-8 10.1016/S0924-0136(01)00980-3 10.1117/12.915069 10.1039/b805252b 10.1007/s00170-012-4605-2 10.1016/S0921-5093(03)00341-1 10.1016/j.biomaterials.2010.04.050 10.1088/0964-1726/16/2/S16 10.1088/0960-1317/15/5/018 10.1038/nature21003 10.1016/j.sna.2011.03.004 10.1088/0964-1726/25/5/055009 10.1088/1748-3182/5/2/026007 10.1021/ac403397r 10.1002/adfm.201403942 10.1007/s10404-012-1055-y 10.1088/0964-1726/14/6/014 10.1002/adma.201504264 10.1088/1748-3182/2/2/S05 10.1002/aelm.201500407 10.1016/j.medengphy.2007.05.011 10.1016/S0928-4931(00)00128-4 10.1063/1.4963164 10.1109/SII.2015.7404953 10.1117/12.604468 10.1016/j.jmatprotec.2005.02.259 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aa9695 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aa9695 smsaa9695 |
GrantInformation_xml | – fundername: H2020 Marie Sklodowska-Curie Actions grantid: 641822 funderid: https://doi.org/10.13039/100010665 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c413t-2d35125ef9d25392ee959b4d8cb968dc9ef3efe4010ac15522ac33a2761aa1433 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:39 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Wed Aug 21 03:40:36 EDT 2024 Thu Jan 07 13:52:43 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-2d35125ef9d25392ee959b4d8cb968dc9ef3efe4010ac15522ac33a2761aa1433 |
Notes | SMS-105714.R1 |
ORCID | 0000-0003-3527-3036 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/142199 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_665X_aa9695 iop_journals_10_1088_1361_665X_aa9695 crossref_primary_10_1088_1361_665X_aa9695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 McKinley G H (60) 2005; 2005 McKinley G H (61) 2005; 2005 46 47 48 Jung K (27) 2007; 2 49 50 51 52 53 10 11 55 Akbari S (12) 2012; 22 56 13 57 14 58 15 Carpi F (22) 2007; 16 59 16 17 18 1 2 3 4 5 6 Shirazi S F S (39) 2015; 16 7 8 62 63 20 65 23 24 McCoul D (26) 2017; 26 29 Maffli L (9) 2013; 22 Baechler C (54) 2016; 25 Carpi F (21) 2005; 14 30 31 Pan T (25) 2005; 15 32 33 34 35 36 37 38 Kovacs G (19) 2007; 16 Jordi C (28) 2010; 5 40 41 42 43 Project Peta-pico-Voltron: High Voltage Power Supply (64) 2017 |
References_xml | – ident: 34 doi: 10.1016/j.sna.2016.09.028 – ident: 63 doi: 10.5254/1.3539210 – ident: 2 doi: 10.1002/marc.200900425 – ident: 16 doi: 10.1117/12.2044978 – volume: 2005 start-page: 6 year: 2005 ident: 60 publication-title: Soc. Rheol. Bull. – volume: 22 issn: 0960-1317 year: 2012 ident: 12 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/4/045020 – ident: 18 doi: 10.1002/9780470744697.ch24 – ident: 10 doi: 10.1021/ac9015837 – ident: 33 doi: 10.1016/S0007-8506(07)63240-5 – ident: 42 doi: 10.1016/j.jmatprotec.2010.10.003 – ident: 65 doi: 10.1038/39827 – ident: 56 doi: 10.1117/12.2218224 – ident: 55 doi: 10.1117/12.2258615 – ident: 48 doi: 10.1080/17452759.2015.1097054 – ident: 57 doi: 10.1039/b711984d – ident: 37 doi: 10.1016/j.matdes.2009.04.030 – ident: 3 doi: 10.1063/1.4740023 – volume: 16 start-page: S300 issn: 0964-1726 year: 2007 ident: 22 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/2/S15 – ident: 43 doi: 10.1016/j.optlastec.2010.08.002 – ident: 11 doi: 10.1039/C6LC00903D – ident: 47 doi: 10.1146/annurev-matsci-070909-104502 – ident: 52 doi: 10.1063/1.4937735 – ident: 58 doi: 10.1002/adma.200300385 – ident: 53 doi: 10.1117/12.815746 – ident: 62 doi: 10.1007/s00397-009-0419-z – ident: 17 doi: 10.1109/TBME.2009.2024691 – volume: 22 issn: 0964-1726 year: 2013 ident: 9 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/10/104013 – ident: 59 doi: 10.1002/marc.201000521 – ident: 29 doi: 10.1109/MEMSYS.1997.581811 – ident: 31 doi: 10.1007/s11012-015-0273-2 – ident: 44 doi: 10.1016/j.matdes.2010.02.050 – ident: 5 doi: 10.3791/53423 – ident: 14 doi: 10.1063/1.4862272 – ident: 46 doi: 10.1007/s11837-003-0175-y – ident: 51 doi: 10.1117/12.2219226 – ident: 6 doi: 10.1007/s00339-012-7402-8 – ident: 38 doi: 10.1016/S0924-0136(01)00980-3 – ident: 15 doi: 10.1117/12.915069 – volume: 2005 start-page: 1 year: 2005 ident: 61 publication-title: Annu. Rheol. Rev. – ident: 24 doi: 10.1039/b805252b – ident: 32 doi: 10.1007/s00170-012-4605-2 – ident: 45 doi: 10.1016/S0921-5093(03)00341-1 – ident: 41 doi: 10.1016/j.biomaterials.2010.04.050 – volume: 16 start-page: S306 issn: 0964-1726 year: 2007 ident: 19 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/2/S16 – volume: 15 start-page: 1021 issn: 0960-1317 year: 2005 ident: 25 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/15/5/018 – ident: 35 doi: 10.1038/nature21003 – ident: 49 doi: 10.1016/j.sna.2011.03.004 – volume: 25 issn: 0964-1726 year: 2016 ident: 54 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/5/055009 – volume: 5 issn: 1748-3190 year: 2010 ident: 28 publication-title: Bioinsp. Biomim. doi: 10.1088/1748-3182/5/2/026007 – ident: 40 doi: 10.1021/ac403397r – ident: 13 doi: 10.1002/adfm.201403942 – year: 2017 ident: 64 – ident: 8 doi: 10.1007/s10404-012-1055-y – volume: 14 start-page: 1210 issn: 0964-1726 year: 2005 ident: 21 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/14/6/014 – ident: 23 doi: 10.1002/adma.201504264 – volume: 2 start-page: S42 issn: 1748-3190 year: 2007 ident: 27 publication-title: Bioinsp. Biomim. doi: 10.1088/1748-3182/2/2/S05 – ident: 7 doi: 10.1002/aelm.201500407 – ident: 20 doi: 10.1016/j.medengphy.2007.05.011 – ident: 1 doi: 10.1016/S0928-4931(00)00128-4 – ident: 4 doi: 10.1063/1.4963164 – ident: 50 doi: 10.1109/SII.2015.7404953 – volume: 26 issn: 0964-1726 year: 2017 ident: 26 publication-title: Smart Mater. Struct. – volume: 16 issn: 1468-6996 year: 2015 ident: 39 publication-title: Sci. Technol. Adv. Mater. – ident: 30 doi: 10.1117/12.604468 – ident: 36 doi: 10.1016/j.jmatprotec.2005.02.259 |
SSID | ssj0011831 |
Score | 2.542035 |
Snippet | Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125022 |
SubjectTerms | 3D printing dielectric elastomer actuator drop-on-demand inkjet silicone |
Title | Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aa9695 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0jwMLYBYhubjAQPPKRt7NqztSfEmLZJDB4o6gOS8cdFKt3Saklf-Os5J2nZEJoQUh4S5XK2zo7vd_Z9ALzWkXBx9DrzPo9koBQyM9KHDJEPHK0NxSCkeOePl-psNLwYy_EaHK9iYWbzbunv0W2bKLgVYecQp_u5UHmmlBz3nTPKyHV4IDQpzhS99-nz6giB5mpTLs-oYUZaenlG-TcOd3TSOrV7S8WcPoFvy861niXT3qL2vfDzj7yN_9n7LdjsoCd715JuwxqWO_D4VkLCHXjYOISG6il8Py-nP7Bm4oSlrb_kHM1mBRt9Za6MLKHGa-IVFjfIqskVTacSGRISr2dpI5wRFGZx0tbYmYTfb5hLASupws8zGJ1--PL-LOuqMWSBFF2d8SgIHEgsTOSSUBWikcYPow7eKB2DwUJggWSvDVxIid24C0I4fqRy5wiVieewUVJnXgDTeETICEWO3pF9iW4gCy5MoGfiNfS70F-Ohw1dqvJUMePKNkfmWtskRZukaFsp7sLb1RfzNk3HPbRvaHBs969W99C9ukNXXVeWK5tzuiRBHzuPxd4_8tqHRzzhgcYP5iVs1DcLPCA0U_vDZtb-Ahh17Ls |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RaBy4FGoWihgJHrgkN2NvQ7xoYeKZdWlUHpg0d6MHxNp-8iumqwQ_Kn-lf6kjpPs0iJUcekBKYdEcSzHM575xp4HwJvUEy72No2sjT0ZKJmMlLQuQuQdQ7Ih67gQ7_z5INkbdj-O5GgJzhexMJNpI_pbdFsnCq6nsHGIS9uxSOIoSeSobYxKlGxPfdZ4Ve7jzx9ksxU7gx4ReJvz_oev7_eipqxA5EhilxH3grScxEx5LgkeICqpbNenzqok9U5hJjBDMjw6xoUMZdw4IQwng98YgheC-l2GO1KQrg4Rg18OF8cWtD6qEn0q6UaEDObnon8b9TU9uEz_ekWt9R_CxXxCam-W49astC33649ckf_RjD2CBw3EZrv18B7DEuZrcP9K4sU1uFs5vrriCXwf5MdHWDLRY2GLMziBs0nGht-YyT0L6PiU-nKzM2TF-ISWTY4MyeIoJ2HDnxHkZ35c1xIau99vmAmBOaGS0VMY3srPrsNKToPZAJbiO0KAKGK0huxoNB2ZcaEcPVNfXbsJ7TkPaNekZA-VQU505RqQpjpQTgfK6Zpym_B28cW0TkdyQ9ttYgjdyKTihnavr7UrTgvNEx1zuiRBPE3c8uwf-3oF9w57ff1pcLD_HFZ5gECV688WrJRnM3xBAK60L6tFw4jCt8xzl3r7S-s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inkjet+3D+printing+of+UV+and+thermal+cure+silicone+elastomers+for+dielectric+elastomer+actuators&rft.jtitle=Smart+materials+and+structures&rft.au=McCoul%2C+David&rft.au=Rosset%2C+Samuel&rft.au=Schlatter%2C+Samuel&rft.au=Shea%2C+Herbert&rft.date=2017-12-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=12&rft_id=info:doi/10.1088%2F1361-665X%2Faa9695&rft.externalDocID=smsaa9695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |