Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators

Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, c...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 26; no. 12; pp. 125022 - 125038
Main Authors McCoul, David, Rosset, Samuel, Schlatter, Samuel, Shea, Herbert
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 m have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V m−1 and also up to 130 V m−1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.
AbstractList Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 m have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V m−1 and also up to 130 V m−1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.
Author Shea, Herbert
McCoul, David
Rosset, Samuel
Schlatter, Samuel
Author_xml – sequence: 1
  givenname: David
  surname: McCoul
  fullname: McCoul, David
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland
– sequence: 2
  givenname: Samuel
  surname: Rosset
  fullname: Rosset, Samuel
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland
– sequence: 3
  givenname: Samuel
  surname: Schlatter
  fullname: Schlatter, Samuel
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland
– sequence: 4
  givenname: Herbert
  orcidid: 0000-0003-3527-3036
  surname: Shea
  fullname: Shea, Herbert
  email: herbert.shea@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), CH-2000 Neuchâtel, Switzerland
BookMark eNp9kEtLAzEQgINUsK3ePebowbV5bNLNUeqrUPBixVtMsxNN3d2UJD34791SURApDAzMzDfDfCM06EIHCJ1TckVJVU0ol7SQUrxMjFFSiSM0_CkN0JAoWRZ0yuQJGqW0JoTSitMhep13H2vImN_gTfRd9t0bDg4vn7HpapzfIbamwXYbASffeNsfxdCYlEMLMWEXIq49NGBz9Pa3g43NW5NDTKfo2Jkmwdl3HqPl3e3T7KFYPN7PZ9eLwpaU54LVXFAmwKmaCa4YgBJqVdaVXSlZ1VaB4-CgJJQYS4VgzFjODZtKagwtOR8jud9rY0gpgtPWZ5N96HI0vtGU6J0nvZOid1L03lMPkj9gL6I18fMQcrlHfNjoddjGrv_s0PjFP-OpTZpJTVkfgjCmN7XjX1saiYU
CODEN SMSTER
CitedBy_id crossref_primary_10_3390_mi13040642
crossref_primary_10_1063_5_0043959
crossref_primary_10_1007_s42464_024_00241_x
crossref_primary_10_1126_sciadv_abq3917
crossref_primary_10_1016_j_ijnonlinmec_2020_103546
crossref_primary_10_1002_aisy_202000125
crossref_primary_10_1016_j_jmbbm_2020_103971
crossref_primary_10_1038_s41467_022_29432_z
crossref_primary_10_1016_j_recm_2022_09_001
crossref_primary_10_1002_advs_202206094
crossref_primary_10_1002_pc_28626
crossref_primary_10_1108_RPJ_10_2018_0279
crossref_primary_10_1002_adem_201800241
crossref_primary_10_1088_2399_7532_ac4836
crossref_primary_10_1016_j_bea_2025_100158
crossref_primary_10_1002_admt_202000148
crossref_primary_10_1088_2752_5724_ad22cf
crossref_primary_10_1089_3dp_2021_0105
crossref_primary_10_1016_j_jcomc_2021_100143
crossref_primary_10_1016_j_ultsonch_2023_106469
crossref_primary_10_1002_aisy_202000013
crossref_primary_10_1002_aisy_202000136
crossref_primary_10_1515_teme_2024_0019
crossref_primary_10_1021_acsami_9b03156
crossref_primary_10_1016_j_apmt_2021_101306
crossref_primary_10_1146_annurev_control_061022_012035
crossref_primary_10_3390_ma14164521
crossref_primary_10_1007_s40964_022_00373_9
crossref_primary_10_1007_s11431_019_1443_1
crossref_primary_10_1039_C9TC03391B
crossref_primary_10_1016_j_polymer_2023_126222
crossref_primary_10_1109_ACCESS_2018_2820902
crossref_primary_10_1016_j_addma_2019_100793
crossref_primary_10_3390_jmmp2020024
crossref_primary_10_3390_act7040073
crossref_primary_10_1080_19475411_2019_1591541
crossref_primary_10_1177_00219983221131614
crossref_primary_10_1002_pen_26318
crossref_primary_10_1016_j_matpr_2020_07_335
crossref_primary_10_1080_17452759_2024_2346821
crossref_primary_10_1021_acsami_9b19632
crossref_primary_10_1002_aesr_202000111
crossref_primary_10_1016_j_addma_2022_103270
crossref_primary_10_1016_j_mtcomm_2022_105178
crossref_primary_10_1016_j_cej_2022_134843
crossref_primary_10_1002_chem_201903658
crossref_primary_10_1002_adma_202402301
crossref_primary_10_1016_j_cej_2021_128675
crossref_primary_10_1002_marc_202200023
crossref_primary_10_1108_RPJ_06_2022_0179
crossref_primary_10_1007_s40964_020_00143_5
crossref_primary_10_1016_j_addma_2020_101330
crossref_primary_10_1016_j_addma_2021_102320
crossref_primary_10_1016_j_compositesb_2020_108220
crossref_primary_10_1016_j_rser_2019_109430
crossref_primary_10_1108_RPJ_08_2021_0198
crossref_primary_10_1177_08927057241248028
crossref_primary_10_1002_admt_202400423
crossref_primary_10_1007_s43939_022_00033_3
crossref_primary_10_1002_admt_202300099
crossref_primary_10_1108_RPJ_10_2019_0255
crossref_primary_10_1007_s40964_019_00097_3
crossref_primary_10_1515_revce_2021_0089
crossref_primary_10_1089_soro_2018_0046
crossref_primary_10_1016_j_sna_2022_113977
crossref_primary_10_1108_RPJ_11_2019_0302
crossref_primary_10_1016_j_addma_2020_101681
crossref_primary_10_1016_j_cej_2019_01_150
crossref_primary_10_1109_TIE_2021_3071680
crossref_primary_10_3390_s22062332
crossref_primary_10_1038_s41598_019_52168_8
crossref_primary_10_1088_1361_665X_ad4cac
crossref_primary_10_3390_polym15163361
crossref_primary_10_1088_2631_8695_ac342e
crossref_primary_10_1016_j_addma_2018_10_002
crossref_primary_10_1002_admt_201800232
crossref_primary_10_1002_adfm_202000187
crossref_primary_10_3389_frobt_2021_714332
crossref_primary_10_1088_1361_665X_acb677
crossref_primary_10_1016_j_addma_2020_101395
crossref_primary_10_3390_robotics11060143
crossref_primary_10_1177_24726303211020297
crossref_primary_10_1016_j_xcrp_2024_101849
crossref_primary_10_3390_polym12061276
crossref_primary_10_1002_adfm_202400023
crossref_primary_10_3390_polym12092136
crossref_primary_10_1021_acsomega_3c08102
crossref_primary_10_1088_1361_665X_abcf1d
crossref_primary_10_1002_admt_202401739
crossref_primary_10_1002_app_50991
crossref_primary_10_1115_1_4054087
crossref_primary_10_1002_aisy_202400699
crossref_primary_10_3390_pr11061736
crossref_primary_10_1002_app_55015
crossref_primary_10_1016_j_aime_2023_100125
crossref_primary_10_1016_j_progpolymsci_2019_101144
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_1007_s40964_023_00421_y
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122902
crossref_primary_10_1126_sciadv_aaw1160
Cites_doi 10.1016/j.sna.2016.09.028
10.5254/1.3539210
10.1002/marc.200900425
10.1117/12.2044978
10.1088/0960-1317/22/4/045020
10.1002/9780470744697.ch24
10.1021/ac9015837
10.1016/S0007-8506(07)63240-5
10.1016/j.jmatprotec.2010.10.003
10.1038/39827
10.1117/12.2218224
10.1117/12.2258615
10.1080/17452759.2015.1097054
10.1039/b711984d
10.1016/j.matdes.2009.04.030
10.1063/1.4740023
10.1088/0964-1726/16/2/S15
10.1016/j.optlastec.2010.08.002
10.1039/C6LC00903D
10.1146/annurev-matsci-070909-104502
10.1063/1.4937735
10.1002/adma.200300385
10.1117/12.815746
10.1007/s00397-009-0419-z
10.1109/TBME.2009.2024691
10.1088/0964-1726/22/10/104013
10.1002/marc.201000521
10.1109/MEMSYS.1997.581811
10.1007/s11012-015-0273-2
10.1016/j.matdes.2010.02.050
10.3791/53423
10.1063/1.4862272
10.1007/s11837-003-0175-y
10.1117/12.2219226
10.1007/s00339-012-7402-8
10.1016/S0924-0136(01)00980-3
10.1117/12.915069
10.1039/b805252b
10.1007/s00170-012-4605-2
10.1016/S0921-5093(03)00341-1
10.1016/j.biomaterials.2010.04.050
10.1088/0964-1726/16/2/S16
10.1088/0960-1317/15/5/018
10.1038/nature21003
10.1016/j.sna.2011.03.004
10.1088/0964-1726/25/5/055009
10.1088/1748-3182/5/2/026007
10.1021/ac403397r
10.1002/adfm.201403942
10.1007/s10404-012-1055-y
10.1088/0964-1726/14/6/014
10.1002/adma.201504264
10.1088/1748-3182/2/2/S05
10.1002/aelm.201500407
10.1016/j.medengphy.2007.05.011
10.1016/S0928-4931(00)00128-4
10.1063/1.4963164
10.1109/SII.2015.7404953
10.1117/12.604468
10.1016/j.jmatprotec.2005.02.259
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aa9695
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aa9695
smsaa9695
GrantInformation_xml – fundername: H2020 Marie Sklodowska-Curie Actions
  grantid: 641822
  funderid: https://doi.org/10.13039/100010665
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c413t-2d35125ef9d25392ee959b4d8cb968dc9ef3efe4010ac15522ac33a2761aa1433
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:38:39 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Wed Aug 21 03:40:36 EDT 2024
Thu Jan 07 13:52:43 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-2d35125ef9d25392ee959b4d8cb968dc9ef3efe4010ac15522ac33a2761aa1433
Notes SMS-105714.R1
ORCID 0000-0003-3527-3036
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/142199
PageCount 17
ParticipantIDs crossref_citationtrail_10_1088_1361_665X_aa9695
iop_journals_10_1088_1361_665X_aa9695
crossref_primary_10_1088_1361_665X_aa9695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
McKinley G H (60) 2005; 2005
McKinley G H (61) 2005; 2005
46
47
48
Jung K (27) 2007; 2
49
50
51
52
53
10
11
55
Akbari S (12) 2012; 22
56
13
57
14
58
15
Carpi F (22) 2007; 16
59
16
17
18
1
2
3
4
5
6
Shirazi S F S (39) 2015; 16
7
8
62
63
20
65
23
24
McCoul D (26) 2017; 26
29
Maffli L (9) 2013; 22
Baechler C (54) 2016; 25
Carpi F (21) 2005; 14
30
31
Pan T (25) 2005; 15
32
33
34
35
36
37
38
Kovacs G (19) 2007; 16
Jordi C (28) 2010; 5
40
41
42
43
Project Peta-pico-Voltron: High Voltage Power Supply (64) 2017
References_xml – ident: 34
  doi: 10.1016/j.sna.2016.09.028
– ident: 63
  doi: 10.5254/1.3539210
– ident: 2
  doi: 10.1002/marc.200900425
– ident: 16
  doi: 10.1117/12.2044978
– volume: 2005
  start-page: 6
  year: 2005
  ident: 60
  publication-title: Soc. Rheol. Bull.
– volume: 22
  issn: 0960-1317
  year: 2012
  ident: 12
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/4/045020
– ident: 18
  doi: 10.1002/9780470744697.ch24
– ident: 10
  doi: 10.1021/ac9015837
– ident: 33
  doi: 10.1016/S0007-8506(07)63240-5
– ident: 42
  doi: 10.1016/j.jmatprotec.2010.10.003
– ident: 65
  doi: 10.1038/39827
– ident: 56
  doi: 10.1117/12.2218224
– ident: 55
  doi: 10.1117/12.2258615
– ident: 48
  doi: 10.1080/17452759.2015.1097054
– ident: 57
  doi: 10.1039/b711984d
– ident: 37
  doi: 10.1016/j.matdes.2009.04.030
– ident: 3
  doi: 10.1063/1.4740023
– volume: 16
  start-page: S300
  issn: 0964-1726
  year: 2007
  ident: 22
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/2/S15
– ident: 43
  doi: 10.1016/j.optlastec.2010.08.002
– ident: 11
  doi: 10.1039/C6LC00903D
– ident: 47
  doi: 10.1146/annurev-matsci-070909-104502
– ident: 52
  doi: 10.1063/1.4937735
– ident: 58
  doi: 10.1002/adma.200300385
– ident: 53
  doi: 10.1117/12.815746
– ident: 62
  doi: 10.1007/s00397-009-0419-z
– ident: 17
  doi: 10.1109/TBME.2009.2024691
– volume: 22
  issn: 0964-1726
  year: 2013
  ident: 9
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/10/104013
– ident: 59
  doi: 10.1002/marc.201000521
– ident: 29
  doi: 10.1109/MEMSYS.1997.581811
– ident: 31
  doi: 10.1007/s11012-015-0273-2
– ident: 44
  doi: 10.1016/j.matdes.2010.02.050
– ident: 5
  doi: 10.3791/53423
– ident: 14
  doi: 10.1063/1.4862272
– ident: 46
  doi: 10.1007/s11837-003-0175-y
– ident: 51
  doi: 10.1117/12.2219226
– ident: 6
  doi: 10.1007/s00339-012-7402-8
– ident: 38
  doi: 10.1016/S0924-0136(01)00980-3
– ident: 15
  doi: 10.1117/12.915069
– volume: 2005
  start-page: 1
  year: 2005
  ident: 61
  publication-title: Annu. Rheol. Rev.
– ident: 24
  doi: 10.1039/b805252b
– ident: 32
  doi: 10.1007/s00170-012-4605-2
– ident: 45
  doi: 10.1016/S0921-5093(03)00341-1
– ident: 41
  doi: 10.1016/j.biomaterials.2010.04.050
– volume: 16
  start-page: S306
  issn: 0964-1726
  year: 2007
  ident: 19
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/2/S16
– volume: 15
  start-page: 1021
  issn: 0960-1317
  year: 2005
  ident: 25
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/15/5/018
– ident: 35
  doi: 10.1038/nature21003
– ident: 49
  doi: 10.1016/j.sna.2011.03.004
– volume: 25
  issn: 0964-1726
  year: 2016
  ident: 54
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/5/055009
– volume: 5
  issn: 1748-3190
  year: 2010
  ident: 28
  publication-title: Bioinsp. Biomim.
  doi: 10.1088/1748-3182/5/2/026007
– ident: 40
  doi: 10.1021/ac403397r
– ident: 13
  doi: 10.1002/adfm.201403942
– year: 2017
  ident: 64
– ident: 8
  doi: 10.1007/s10404-012-1055-y
– volume: 14
  start-page: 1210
  issn: 0964-1726
  year: 2005
  ident: 21
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/14/6/014
– ident: 23
  doi: 10.1002/adma.201504264
– volume: 2
  start-page: S42
  issn: 1748-3190
  year: 2007
  ident: 27
  publication-title: Bioinsp. Biomim.
  doi: 10.1088/1748-3182/2/2/S05
– ident: 7
  doi: 10.1002/aelm.201500407
– ident: 20
  doi: 10.1016/j.medengphy.2007.05.011
– ident: 1
  doi: 10.1016/S0928-4931(00)00128-4
– ident: 4
  doi: 10.1063/1.4963164
– ident: 50
  doi: 10.1109/SII.2015.7404953
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 26
  publication-title: Smart Mater. Struct.
– volume: 16
  issn: 1468-6996
  year: 2015
  ident: 39
  publication-title: Sci. Technol. Adv. Mater.
– ident: 30
  doi: 10.1117/12.604468
– ident: 36
  doi: 10.1016/j.jmatprotec.2005.02.259
SSID ssj0011831
Score 2.542035
Snippet Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 125022
SubjectTerms 3D printing
dielectric elastomer actuator
drop-on-demand
inkjet
silicone
Title Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators
URI https://iopscience.iop.org/article/10.1088/1361-665X/aa9695
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0jwMLYBYhubjAQPPKRt7NqztSfEmLZJDB4o6gOS8cdFKt3Saklf-Os5J2nZEJoQUh4S5XK2zo7vd_Z9ALzWkXBx9DrzPo9koBQyM9KHDJEPHK0NxSCkeOePl-psNLwYy_EaHK9iYWbzbunv0W2bKLgVYecQp_u5UHmmlBz3nTPKyHV4IDQpzhS99-nz6giB5mpTLs-oYUZaenlG-TcOd3TSOrV7S8WcPoFvy861niXT3qL2vfDzj7yN_9n7LdjsoCd715JuwxqWO_D4VkLCHXjYOISG6il8Py-nP7Bm4oSlrb_kHM1mBRt9Za6MLKHGa-IVFjfIqskVTacSGRISr2dpI5wRFGZx0tbYmYTfb5hLASupws8zGJ1--PL-LOuqMWSBFF2d8SgIHEgsTOSSUBWikcYPow7eKB2DwUJggWSvDVxIid24C0I4fqRy5wiVieewUVJnXgDTeETICEWO3pF9iW4gCy5MoGfiNfS70F-Ohw1dqvJUMePKNkfmWtskRZukaFsp7sLb1RfzNk3HPbRvaHBs969W99C9ukNXXVeWK5tzuiRBHzuPxd4_8tqHRzzhgcYP5iVs1DcLPCA0U_vDZtb-Ahh17Ls
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RaBy4FGoWihgJHrgkN2NvQ7xoYeKZdWlUHpg0d6MHxNp-8iumqwQ_Kn-lf6kjpPs0iJUcekBKYdEcSzHM575xp4HwJvUEy72No2sjT0ZKJmMlLQuQuQdQ7Ih67gQ7_z5INkbdj-O5GgJzhexMJNpI_pbdFsnCq6nsHGIS9uxSOIoSeSobYxKlGxPfdZ4Ve7jzx9ksxU7gx4ReJvz_oev7_eipqxA5EhilxH3grScxEx5LgkeICqpbNenzqok9U5hJjBDMjw6xoUMZdw4IQwng98YgheC-l2GO1KQrg4Rg18OF8cWtD6qEn0q6UaEDObnon8b9TU9uEz_ekWt9R_CxXxCam-W49astC33649ckf_RjD2CBw3EZrv18B7DEuZrcP9K4sU1uFs5vrriCXwf5MdHWDLRY2GLMziBs0nGht-YyT0L6PiU-nKzM2TF-ISWTY4MyeIoJ2HDnxHkZ35c1xIau99vmAmBOaGS0VMY3srPrsNKToPZAJbiO0KAKGK0huxoNB2ZcaEcPVNfXbsJ7TkPaNekZA-VQU505RqQpjpQTgfK6Zpym_B28cW0TkdyQ9ttYgjdyKTihnavr7UrTgvNEx1zuiRBPE3c8uwf-3oF9w57ff1pcLD_HFZ5gECV688WrJRnM3xBAK60L6tFw4jCt8xzl3r7S-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inkjet+3D+printing+of+UV+and+thermal+cure+silicone+elastomers+for+dielectric+elastomer+actuators&rft.jtitle=Smart+materials+and+structures&rft.au=McCoul%2C+David&rft.au=Rosset%2C+Samuel&rft.au=Schlatter%2C+Samuel&rft.au=Shea%2C+Herbert&rft.date=2017-12-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=12&rft_id=info:doi/10.1088%2F1361-665X%2Faa9695&rft.externalDocID=smsaa9695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon