Gait-Based Person Recognition Using Arbitrary View Transformation Model
Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views a...
Saved in:
Published in | IEEE transactions on image processing Vol. 24; no. 1; pp. 140 - 154 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 1941-0042 |
DOI | 10.1109/TIP.2014.2371335 |
Cover
Loading…
Abstract | Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views are the same as their discrete training views. However, the gait traits are observed from an arbitrary view in a real situation. Thus, the target views may not coincide with discrete training views, resulting in recognition accuracy degradation. We propose an arbitrary VTM (AVTM) that accurately matches a pair of gait traits from an arbitrary view. To realize an AVTM, we first construct 3D gait volume sequences of training subjects, disjoint from the test subjects in the target scene. We then generate 2D gait silhouette sequences of the training subjects by projecting the 3D gait volume sequences onto the same views as the target views, and train the AVTM with gait features extracted from the 2D sequences. In addition, we extend our AVTM by incorporating a part-dependent view selection scheme (AVTM_PdVS), which divides the gait feature into several parts, and sets part-dependent destination views for transformation. Because appropriate destination views may differ for different body parts, the part-dependent destination view selection can suppress transformation errors, leading to increased recognition accuracy. Experiments using data sets collected in different settings show that the AVTM improves the accuracy of cross-view matching and that the AVTM_PdVS further improves the accuracy in many cases, in particular, verification scenarios. |
---|---|
AbstractList | Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views are the same as their discrete training views. However, the gait traits are observed from an arbitrary view in a real situation. Thus, the target views may not coincide with discrete training views, resulting in recognition accuracy degradation. We propose an arbitrary VTM (AVTM) that accurately matches a pair of gait traits from an arbitrary view. To realize an AVTM, we first construct 3D gait volume sequences of training subjects, disjoint from the test subjects in the target scene. We then generate 2D gait silhouette sequences of the training subjects by projecting the 3D gait volume sequences onto the same views as the target views, and train the AVTM with gait features extracted from the 2D sequences. In addition, we extend our AVTM by incorporating a part-dependent view selection scheme (AVTM_PdVS), which divides the gait feature into several parts, and sets part-dependent destination views for transformation. Because appropriate destination views may differ for different body parts, the part-dependent destination view selection can suppress transformation errors, leading to increased recognition accuracy. Experiments using data sets collected in different settings show that the AVTM improves the accuracy of cross-view matching and that the AVTM_PdVS further improves the accuracy in many cases, in particular, verification scenarios. Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views are the same as their discrete training views. However, the gait traits are observed from an arbitrary view in a real situation. Thus, the target views may not coincide with discrete training views, resulting in recognition accuracy degradation. We propose an arbitrary VTM (AVTM) that accurately matches a pair of gait traits from an arbitrary view. To realize an AVTM, we first construct 3D gait volume sequences of training subjects, disjoint from the test subjects in the target scene. We then generate 2D gait silhouette sequences of the training subjects by projecting the 3D gait volume sequences onto the same views as the target views, and train the AVTM with gait features extracted from the 2D sequences. In addition, we extend our AVTM by incorporating a part-dependent view selection scheme (AVTM_PdVS), which divides the gait feature into several parts, and sets part-dependent destination views for transformation. Because appropriate destination views may differ for different body parts, the part-dependent destination view selection can suppress transformation errors, leading to increased recognition accuracy. Experiments using data sets collected in different settings show that the AVTM improves the accuracy of cross-view matching and that the AVTM_PdVS further improves the accuracy in many cases, in particular, verification scenarios.Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views are the same as their discrete training views. However, the gait traits are observed from an arbitrary view in a real situation. Thus, the target views may not coincide with discrete training views, resulting in recognition accuracy degradation. We propose an arbitrary VTM (AVTM) that accurately matches a pair of gait traits from an arbitrary view. To realize an AVTM, we first construct 3D gait volume sequences of training subjects, disjoint from the test subjects in the target scene. We then generate 2D gait silhouette sequences of the training subjects by projecting the 3D gait volume sequences onto the same views as the target views, and train the AVTM with gait features extracted from the 2D sequences. In addition, we extend our AVTM by incorporating a part-dependent view selection scheme (AVTM_PdVS), which divides the gait feature into several parts, and sets part-dependent destination views for transformation. Because appropriate destination views may differ for different body parts, the part-dependent destination view selection can suppress transformation errors, leading to increased recognition accuracy. Experiments using data sets collected in different settings show that the AVTM improves the accuracy of cross-view matching and that the AVTM_PdVS further improves the accuracy in many cases, in particular, verification scenarios. |
Author | Makihara, Yasushi Shiraishi, Akira Yagi, Yasushi Uddin, Md Zasim Muramatsu, Daigo |
Author_xml | – sequence: 1 givenname: Daigo surname: Muramatsu fullname: Muramatsu, Daigo email: muramatsu@am.sanken.osaka-u.ac.jp organization: Inst. of the Sci. & Ind. Res., Osaka Univ., Ibaraki, Japan – sequence: 2 givenname: Akira surname: Shiraishi fullname: Shiraishi, Akira email: shiraishi@am.sanken.osaka-u.ac.jp organization: Inst. of the Sci. & Ind. Res., Osaka Univ., Ibaraki, Japan – sequence: 3 givenname: Yasushi surname: Makihara fullname: Makihara, Yasushi email: makihara@am.sanken.osaka-u.ac.jp organization: Inst. of the Sci. & Ind. Res., Osaka Univ., Ibaraki, Japan – sequence: 4 givenname: Md Zasim surname: Uddin fullname: Uddin, Md Zasim email: zasim@am.sanken.osaka-u.ac.jp organization: Inst. of the Sci. & Ind. Res., Osaka Univ., Ibaraki, Japan – sequence: 5 givenname: Yasushi surname: Yagi fullname: Yagi, Yasushi email: yagi@am.sanken.osaka-u.ac.jp organization: Inst. of the Sci. & Ind. Res., Osaka Univ., Ibaraki, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25423652$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLxDAQxoMovu-CIAUvXrrmneaoi66CosjqNaTpVCLdRpMu4n9v3IcHD55mGH7fMN98e2izDz0gdETwiBCsz6e3jyOKCR9RpghjYgPtEs1JiTGnm7nHQpWKcL2D9lJ6w5kURG6jHSo4ZVLQXTSZWD-UlzZBUzxCTKEvnsCF194PPvfPyfevxUWs_RBt_CpePHwW02j71IY4swvmPjTQHaCt1nYJDld1Hz1fX03HN-Xdw-R2fHFXOk7YUFLb1lRJDqAJyEq1daWFrRkRrdBOVhUVWHOtG9cw6lTDhG4sqetK5Zlwlu2js-Xe9xg-5pAGM_PJQdfZHsI8GSKFYpTKCmf09A_6Fuaxz9dliqmqkoLwTJ2sqHk9g8a8Rz_LTs36RRmQS8DFkFKE1jg_LJznl_jOEGx-sjA5C_OThVllkYX4j3C9-x_J8VLiAeAXl1oyLiX7Bh6Lkfk |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1007_s11042_018_6045_y crossref_primary_10_1109_TCYB_2016_2545693 crossref_primary_10_1016_j_neucom_2020_03_101 crossref_primary_10_1186_s41074_017_0029_0 crossref_primary_10_1049_iet_bmt_2017_0151 crossref_primary_10_1007_s11042_021_11107_4 crossref_primary_10_1007_s11227_023_05143_0 crossref_primary_10_1049_iet_ipr_2018_6566 crossref_primary_10_1109_TIP_2021_3055936 crossref_primary_10_1016_j_neucom_2017_10_049 crossref_primary_10_3390_app13042084 crossref_primary_10_1109_TMM_2019_2900134 crossref_primary_10_1007_s11042_020_09777_7 crossref_primary_10_1007_s12021_018_9362_4 crossref_primary_10_1109_TBIOM_2022_3174559 crossref_primary_10_1016_j_compag_2019_104944 crossref_primary_10_1016_j_jvcir_2021_103093 crossref_primary_10_1007_s00521_019_04256_z crossref_primary_10_1109_ACCESS_2024_3513541 crossref_primary_10_1049_iet_bmt_2018_5063 crossref_primary_10_1016_j_jvcir_2024_104322 crossref_primary_10_1007_s11042_019_7712_3 crossref_primary_10_1016_j_neucom_2016_10_054 crossref_primary_10_1007_s00500_016_2108_z crossref_primary_10_1109_TIM_2017_2789078 crossref_primary_10_1016_j_wpi_2021_102040 crossref_primary_10_1109_ACCESS_2018_2879896 crossref_primary_10_1016_j_patcog_2017_01_003 crossref_primary_10_1007_s11042_018_5722_1 crossref_primary_10_3169_itej_70_706 crossref_primary_10_1109_TIFS_2017_2738611 crossref_primary_10_1109_TIM_2023_3315405 crossref_primary_10_1109_TCBB_2019_2951146 crossref_primary_10_1186_s41074_018_0041_z crossref_primary_10_1186_s41074_018_0046_7 crossref_primary_10_1145_3393619 crossref_primary_10_1016_j_neucom_2016_08_002 crossref_primary_10_32604_cmc_2024_050018 crossref_primary_10_1016_j_jvcir_2024_104139 crossref_primary_10_1016_j_patcog_2016_05_030 crossref_primary_10_1109_TPAMI_2019_2960509 crossref_primary_10_1007_s11042_019_08509_w crossref_primary_10_1007_s40747_022_00771_0 crossref_primary_10_1364_JOSAA_499933 crossref_primary_10_1111_1556_4029_15214 crossref_primary_10_1016_j_patcog_2019_01_017 crossref_primary_10_1109_ACCESS_2020_2997814 crossref_primary_10_3390_s20061646 crossref_primary_10_1109_TCSVT_2020_2975671 crossref_primary_10_1016_j_jfranklin_2019_12_041 crossref_primary_10_1016_j_jvcir_2016_05_020 crossref_primary_10_1109_TBIOM_2022_3216857 crossref_primary_10_1109_TPAMI_2022_3183288 crossref_primary_10_1016_j_legalmed_2016_02_001 crossref_primary_10_1109_ACCESS_2024_3482430 crossref_primary_10_1109_TCSVT_2017_2760835 crossref_primary_10_1371_journal_pone_0214389 crossref_primary_10_1016_j_cosrev_2021_100432 crossref_primary_10_1109_TIP_2016_2612823 crossref_primary_10_1016_j_patrec_2017_10_033 crossref_primary_10_1186_s41074_019_0061_3 crossref_primary_10_1007_s11042_021_10941_w crossref_primary_10_1007_s11831_019_09375_3 crossref_primary_10_1007_s11042_022_12751_0 crossref_primary_10_1049_iet_bmt_2020_0103 crossref_primary_10_1109_TIP_2019_2894362 |
Cites_doi | 10.1109/CVPR.2010.5540113 10.1002/aja.1001200104 10.1007/s10791-009-9109-9 10.1109/AVSS.2003.1217914 10.1109/EST.2010.19 10.1109/TPAMI.2006.38 10.1109/TSMCC.2005.848181 10.1016/j.patrec.2009.11.006 10.1016/j.imavis.2008.11.009 10.1109/ICPR.2010.535 10.1109/ICB.2012.6199832 10.1109/CVPR.2001.990506 10.1109/LSP.2011.2157143 10.1016/j.imavis.2008.11.008 10.1109/IROS.2005.1545167 10.1109/TIFS.2012.2204253 10.1109/ICCVW.2009.5457587 10.1109/TPAMI.1983.4767367 10.1016/j.patcog.2010.10.011 10.1016/j.patcog.2003.09.012 10.1007/978-0-387-71041-9 10.1016/j.patcog.2009.12.020 10.1109/BTAS.2012.6374561 10.1109/TSMCB.2009.2031091 10.1109/AFGR.2004.1301503 10.1109/CVPR.2001.990508 10.1109/TCSVT.2012.2186744 10.1109/TPAMI.2005.39 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2014.2371335 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 154 |
ExternalDocumentID | 3531145381 25423652 10_1109_TIP_2014_2371335 6963466 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Grant-in-Aid for Scientific Research (S) through the Japan Society for the Promotion of Science grantid: 21220003 – fundername: Research and Development Program for Implementation of AntiCrime and AntiTerrorism Technologies for a Safe and Secure Society – fundername: Funds for Integrated Promotion of Social System Reform and Research and Development through the Ministry of Education, Culture, Sports, Science and Technology – fundername: Japan Science and Technology Agency CREST Project entitled Behavior Understanding Based on Intention-Gait Model – fundername: Japanese Government |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c413t-2afb2764ee91e687fb895ab315f59c6882509499dcd32c7d359da1bb8799d5ca3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 04:42:44 EDT 2025 Mon Jun 30 10:15:57 EDT 2025 Thu Apr 03 06:51:44 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 02:03:01 EDT 2025 Tue Aug 26 16:40:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gait recognition |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-2afb2764ee91e687fb895ab315f59c6882509499dcd32c7d359da1bb8799d5ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25423652 |
PQID | 1637886514 |
PQPubID | 85429 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_25423652 proquest_miscellaneous_1657322680 crossref_citationtrail_10_1109_TIP_2014_2371335 crossref_primary_10_1109_TIP_2014_2371335 proquest_journals_1637886514 ieee_primary_6963466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Jan. 2015-1-00 2015-Jan 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 makihara (ref34) 2008 ref12 ref37 ref15 ref36 ref14 ref30 martín-félez (ref31) 2012; 7572 ref11 ref32 ref10 ref2 ref17 ref38 ref16 ref19 utsumi (ref33) 2004; 2 ref24 ref23 ref26 makihara (ref4) 2006 ref25 ref20 lee (ref18) 2002 han (ref22) 2005; 3 ref21 muramatsu (ref27) 2014 ref28 ref29 makihara (ref6) 2010 ref8 ref7 ref9 yang (ref13) 2006 ref3 ref5 nixon (ref1) 2005 |
References_xml | – start-page: 222 year: 2014 ident: ref27 article-title: Are intermediate views beneficial for gait recognition using a view transformation model? publication-title: Proceedings of Korea-Japan Joint Workshop on Frontiers of Computer Vision – ident: ref25 doi: 10.1109/CVPR.2010.5540113 – volume: 7572 start-page: 328 year: 2012 ident: ref31 article-title: Gait recognition by ranking publication-title: Computer Vision – volume: 3 start-page: iii-297 year: 2005 ident: ref22 article-title: A study on view-insensitive gait recognition publication-title: Proc IEEE Int Conf Image Process – ident: ref35 doi: 10.1002/aja.1001200104 – ident: ref32 doi: 10.1007/s10791-009-9109-9 – volume: 2 start-page: 794 year: 2004 ident: ref33 article-title: Adaptation of appearance model for human tracking using geometrical pixel value distributions publication-title: Proc 6th Asian Conf Comput Vis – ident: ref3 doi: 10.1109/AVSS.2003.1217914 – ident: ref20 doi: 10.1109/EST.2010.19 – ident: ref9 doi: 10.1109/TPAMI.2006.38 – ident: ref38 doi: 10.1109/TSMCC.2005.848181 – ident: ref29 doi: 10.1016/j.patrec.2009.11.006 – ident: ref21 doi: 10.1016/j.imavis.2008.11.009 – ident: ref24 doi: 10.1109/ICPR.2010.535 – ident: ref15 doi: 10.1109/ICB.2012.6199832 – ident: ref11 doi: 10.1109/CVPR.2001.990506 – ident: ref30 doi: 10.1109/LSP.2011.2157143 – year: 2002 ident: ref18 article-title: Gait analysis for classification – ident: ref19 doi: 10.1016/j.imavis.2008.11.008 – ident: ref36 doi: 10.1109/IROS.2005.1545167 – ident: ref28 doi: 10.1109/TIFS.2012.2204253 – ident: ref23 doi: 10.1109/ICCVW.2009.5457587 – ident: ref37 doi: 10.1109/TPAMI.1983.4767367 – ident: ref10 doi: 10.1016/j.patcog.2010.10.011 – ident: ref12 doi: 10.1016/j.patcog.2003.09.012 – ident: ref2 doi: 10.1007/978-0-387-71041-9 – start-page: 151 year: 2006 ident: ref4 article-title: Gait recognition using a view transformation model in the frequency domain publication-title: Proc 9th Eur Conf Comput Vis – ident: ref7 doi: 10.1016/j.patcog.2009.12.020 – ident: ref26 doi: 10.1109/BTAS.2012.6374561 – ident: ref14 doi: 10.1109/TSMCB.2009.2031091 – ident: ref16 doi: 10.1109/AFGR.2004.1301503 – start-page: 1 year: 2008 ident: ref34 article-title: Silhouette extraction based on iterative spatio-temporal local color transformation and graph-cut segmentation publication-title: Proc 19th Int Conf Pattern Recognit – start-page: 717 year: 2010 ident: ref6 article-title: Silhouette transformation based on walking speed for gait identification publication-title: Proc IEEE Conf Comp Vis Pattern Recognit – start-page: 619 year: 2006 ident: ref13 article-title: Reconstruction of 3D human body pose for gait recognition publication-title: Proc IAPR Int Conf Biometrics – ident: ref17 doi: 10.1109/CVPR.2001.990508 – ident: ref5 doi: 10.1109/TCSVT.2012.2186744 – ident: ref8 doi: 10.1109/TPAMI.2005.39 – year: 2005 ident: ref1 publication-title: Human Identification Based on Gait |
SSID | ssj0014516 |
Score | 2.4636261 |
Snippet | Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 140 |
SubjectTerms | Accuracy Cameras Feature extraction Image sequences Three-dimensional displays Training Visualization |
Title | Gait-Based Person Recognition Using Arbitrary View Transformation Model |
URI | https://ieeexplore.ieee.org/document/6963466 https://www.ncbi.nlm.nih.gov/pubmed/25423652 https://www.proquest.com/docview/1637886514 https://www.proquest.com/docview/1657322680 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGB0pZHoKAgcUEiu4nj57FFfYBUVKEt6i2y47G0otpFNCskfj1j56GCAHGzkonjeMaZbzzjGYDXytkSfcDCS3RkoKAsrFSm0Iw7XjkeVIgb-hcf5fkV_3Atrrfg7XQWBhFT8BnOYjP58v263cStsrkkaeFSbsM2GW79Wa3JYxALzibPplCFItg_uiRLM1-8v4wxXHzG6miSxWI1ZBaxWgr2izZK5VX-jjSTxjndhYtxrH2gyZfZpnOz9sdvaRz_92MewoMBeuZHvazswRau9mF3gKH5sMhv9-H-nRyFB3B2ZpddcUzKzueXCZ7nn8agI2qnkAPq0y3T-f388xK_54s7aJhoYr21m0dwdXqyeHdeDNUXipYUW1cwGxxTkiOaCqVWwWkjrKsrEYRpJSHzmHvPGN_6mrXK18J4WzmnFV0Tra0fw85qvcKnkAdd-sCcsYIrrmWlUZsqEHSwrJRoMIP5yIWmHVKTxwoZN00yUUrTEAubyMJmYGEGb6YnvvZpOf5BexBnf6IbJj6Dw5HRzbBubxtCpyRaklBkBq-m27TiohvFrnC9iTRC0W9Q6jKDJ72ATH2PcvXsz-98DvdoZKLfwjmEne7bBl8QqOncyyTNPwEkmu9o |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoKgQJB4oJEdvPw8wiIdgvdqkJb1Ftkx2NpRbWLaFZI_HrGzkMFAeJmJRPH8YzjbzwvgJfSmhydx8wJtKSgoMiMkDpTJbOssMxLHw7056dids4-XPCLLXg9xsIgYnQ-w0loRlu-WzebcFQ2FSQtTIgbcJOHYNwuWmu0GYSSs9G2yWUmCfgPRslcTxfHZ8GLi03KKihloVwNKUZlJXj5y34UC6z8HWvGPedwB-bDaDtXky-TTWsnzY_fEjn-7-fcg7s9-EzfdNJyH7ZwtQs7PRBN-2V-tQt3rmUp3IOjI7Nss7e03bn0LAL09NPgdkTt6HRAfdpljOBPPy_xe7q4hoeJJlRcu3wA54fvF-9mWV9_IWtoa2uz0nhbSsEQdYFCSW-V5sZWBfdcN4Kweci-p7VrXFU20lVcO1NYqyRd442p9mF7tV7hI0i9yp0vrTacSaZEoVDpwhN4MGUuUGMC04ELddMnJw81Mi7rqKTkuiYW1oGFdc_CBF6NT3ztEnP8g3YvzP5I1098AgcDo-t-5V7VhE-lUoJwZAIvxtu05oIhxaxwvQk0XNKPUKg8gYedgIx9D3L1-M_vfA63Zov5SX1yfPrxCdymUfLuQOcAtttvG3xKEKe1z6Jk_wTIgfKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait-based+person+recognition+using+arbitrary+view+transformation+model&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Muramatsu%2C+Daigo&rft.au=Shiraishi%2C+Akira&rft.au=Makihara%2C+Yasushi&rft.au=Uddin%2C+Md+Zasim&rft.date=2015-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=24&rft.issue=1&rft.spage=140&rft_id=info:doi/10.1109%2FTIP.2014.2371335&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |