FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data
Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-leve...
Saved in:
Published in | Nucleic acids research Vol. 51; no. W1; pp. W180 - W190 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
05.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at
http://scFLUX.org/
, and stand-alone tools for local use are available at
https://github.com/changwn/scFEA
. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
Graphical Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies. Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies. Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies. Graphical Abstract Graphical Abstract |
Author | Zang, Yong Wu, Wenzhuo Zhang, Yu Dang, Pengtao Wang, Jia Chang, Wennan Wang, Yijie Zhang, Zixuan Lu, Alex Zhu, Haiqi Cao, Sha Zhang, Chi Alghamdi, Norah Wang, Xiao |
Author_xml | – sequence: 1 givenname: Zixuan surname: Zhang fullname: Zhang, Zixuan email: czhang87@iu.edu – sequence: 2 givenname: Haiqi surname: Zhu fullname: Zhu, Haiqi – sequence: 3 givenname: Pengtao surname: Dang fullname: Dang, Pengtao – sequence: 4 givenname: Jia surname: Wang fullname: Wang, Jia – sequence: 5 givenname: Wennan surname: Chang fullname: Chang, Wennan – sequence: 6 givenname: Xiao surname: Wang fullname: Wang, Xiao – sequence: 7 givenname: Norah surname: Alghamdi fullname: Alghamdi, Norah – sequence: 8 givenname: Alex surname: Lu fullname: Lu, Alex email: zy26@jlu.edu.cn – sequence: 9 givenname: Yong surname: Zang fullname: Zang, Yong – sequence: 10 givenname: Wenzhuo surname: Wu fullname: Wu, Wenzhuo – sequence: 11 givenname: Yijie orcidid: 0000-0003-1656-8939 surname: Wang fullname: Wang, Yijie – sequence: 12 givenname: Yu surname: Zhang fullname: Zhang, Yu email: czhang87@iu.edu – sequence: 13 givenname: Sha orcidid: 0000-0002-8645-848X surname: Cao fullname: Cao, Sha email: shacao@iu.edu – sequence: 14 givenname: Chi orcidid: 0000-0001-9553-0925 surname: Zhang fullname: Zhang, Chi email: czhang87@iu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37216602$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxa2qiG4XTr1XPiEkFOqvZB0uCFW0RVqJC5W4WY4z3pomdmo7C_z3uOy2AlRx8mF-8974vWN06IMHhE4oeUtJy8-8jmebW90LIQ7QgvKGVaJt2CFaEE7qihIhj9BxSt8IoYLW4jk64itGm4awBeou1tdfIWU36hziO6zxd-gSxC1EbEPEU4Temez8Bo-QdRcGZ7Ad5h9Y-x5vdXQ6u-ATntM9k6P2yUQ35TA6k3Cvs36Bnlk9JHi5f5fo-uLjl_Orav358tP5h3VlBOW5YmTFhLTaSCF7wnnbtAyshU7aumEAtm6JbqSksoxBWiC9XfG2JsRKa2rJl-j9TneauxF6A75cM6gplr_Fnypop_6eeHejNmGrKOGM0JYUhdd7hRju5pKKGl0yMAzaQ5iTYsWc1LUo1y3R6Z9mjy4PyRaA7gATQ0oRrDIu_86qeLuhmKr79lRpT-3bKztv_tl5kH2afrWjwzz9F_wFpDyslQ |
CitedBy_id | crossref_primary_10_1002_advs_202310308 crossref_primary_10_3389_fimmu_2024_1372432 crossref_primary_10_1165_rcmb_2024_0080PS |
Cites_doi | 10.1186/1752-0509-7-36 10.1073/pnas.0506580102 10.1101/gr.271205.120 10.1186/1752-0509-8-79 10.1016/j.cmet.2019.08.013 10.1016/S0303-2647(98)00017-3 10.1016/j.cell.2011.02.013 10.1093/database/baaa094 10.1371/journal.pcbi.1006733 10.1021/acs.analchem.9b02410 10.1038/nbt.4072 10.1016/j.ccr.2012.02.014 10.1016/j.cels.2016.04.012 10.1073/pnas.0611235104 10.1016/j.cmet.2018.05.011 10.1016/j.cell.2021.04.048 10.1016/j.molmet.2021.101396 10.7554/eLife.67764 10.1093/nar/28.1.27 10.1158/0008-5472.CAN-08-4806 10.1016/j.cmet.2007.10.002 10.1038/msb.2008.71 10.1038/s41467-019-09695-9 10.1038/nature08460 10.1093/nar/gkt1097 10.1093/nar/gkj001 10.1073/pnas.1100358109 10.1038/s41586-019-1195-2 10.1016/j.cmet.2015.12.006 10.1093/nar/gkaa409 10.1100/2011/625690 10.1016/j.celrep.2021.110171 10.1038/nrendo.2014.155 10.7326/0003-4819-159-12-201312170-00729 10.1016/j.cell.2021.05.045 10.1016/j.cell.2018.05.061 10.1186/1752-0509-4-140 10.1126/science.1243259 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkad444 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | W190 |
ExternalDocumentID | PMC10320190 37216602 10_1093_nar_gkad444 10.1093/nar/gkad444 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM150971 – fundername: ; grantid: RSG-22-062-01-MM – fundername: ; grantid: IIBR 2047631; IIS 2145314 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV ABGNP AMNDL CITATION OVT ADIXU CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c413t-207248fac848d0339692effeb8f562eef590a688188d0e8fe0df739500f8fc583 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:37:11 EDT 2025 Fri Jul 11 07:59:56 EDT 2025 Wed Feb 19 02:04:40 EST 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 02:59:22 EDT 2025 Wed Aug 28 03:17:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | W1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-207248fac848d0339692effeb8f562eef590a688188d0e8fe0df739500f8fc583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-9553-0925 0000-0002-8645-848X 0000-0003-1656-8939 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkad444 |
PMID | 37216602 |
PQID | 2818055403 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320190 proquest_miscellaneous_2818055403 pubmed_primary_37216602 crossref_citationtrail_10_1093_nar_gkad444 crossref_primary_10_1093_nar_gkad444 oup_primary_10_1093_nar_gkad444 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-05 |
PublicationDateYYYYMMDD | 2023-07-05 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Mintz-Oron (2023070505033787000_B8) 2012; 109 Alghamdi (2023070505033787000_B22) 2021; 31 Kanehisa (2023070505033787000_B26) 2000; 28 Evers (2023070505033787000_B16) 2019; 91 Chen (2023070505033787000_B4) 2021; 2021 Saier (2023070505033787000_B30) 2014; 42 Sigurdsson (2023070505033787000_B10) 2010; 4 Hao (2023070505033787000_B37) 2021; 184 Pavlova (2023070505033787000_B1) 2016; 23 Wagner (2023070505033787000_B17) 2021; 184 Damiani (2023070505033787000_B25) 2019; 15 Fortmann (2023070505033787000_B6) 2013; 159 Brunk (2023070505033787000_B27) 2018; 36 Oren (2023070505033787000_B44) 2009; 40 Weaver (2023070505033787000_B11) 2014; 8 Hari (2023070505033787000_B23) 2020; 48 van Dijk (2023070505033787000_B36) 2018; 174 Ward (2023070505033787000_B21) 2012; 21 Barbie (2023070505033787000_B32) 2009; 462 Polis (2023070505033787000_B40) 2020; 15 Saier (2023070505033787000_B31) 2006; 34 Caetano (2023070505033787000_B42) 2021; 10 Damiani (2023070505033787000_B15) 2019; 15 Ortmayr (2023070505033787000_B14) 2019; 10 Zenobi (2023070505033787000_B45) 2013; 342 Savage (2023070505033787000_B43) 2007; 104 Mattson (2023070505033787000_B2) 2018; 27 Brunk (2023070505033787000_B28) 2018; 36 Thompson (2023070505033787000_B18) 2005 DeBerardinis (2023070505033787000_B19) 2008; 7 Hirayama (2023070505033787000_B13) 2009; 69 Mathys (2023070505033787000_B38) 2019; 570 Kim (2023070505033787000_B41) 2019; 30 Coquin (2023070505033787000_B7) 2008; 4 Wagner (2023070505033787000_B24) 2021; 184 Zhang (2023070505033787000_B34) 2022 Jensen (2023070505033787000_B3) 2014; 10 Nookaew (2023070505033787000_B9) 2013; 7 Geeraerts (2023070505033787000_B46) 2021; 37 Yilmaz (2023070505033787000_B12) 2016; 2 Hrovatin (2023070505033787000_B35) 2022; 57 Hanahan (2023070505033787000_B20) 2011; 144 Ogata (2023070505033787000_B29) 1998; 47 Subramanian (2023070505033787000_B33) 2005; 102 Chen (2023070505033787000_B5) 2018; 91 Yurov (2023070505033787000_B39) 2011; 11 |
References_xml | – volume: 7 start-page: 36 year: 2013 ident: 2023070505033787000_B9 article-title: Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-36 – volume: 102 start-page: 15545 year: 2005 ident: 2023070505033787000_B33 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506580102 – volume: 31 start-page: 1867 year: 2021 ident: 2023070505033787000_B22 article-title: A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data publication-title: Genome. Res. doi: 10.1101/gr.271205.120 – year: 2022 ident: 2023070505033787000_B34 article-title: scFLUX: a webserver to estimate cell-/sample-wise metabolic fluxome by using scRNA-seq or general transcriptomics data – volume: 8 start-page: 79 year: 2014 ident: 2023070505033787000_B11 article-title: A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-8-79 – volume: 30 start-page: 434 year: 2019 ident: 2023070505033787000_B41 article-title: Mechanisms and Implications of Metabolic Heterogeneity in Cancer publication-title: Cell Metab doi: 10.1016/j.cmet.2019.08.013 – volume: 47 start-page: 119 year: 1998 ident: 2023070505033787000_B29 article-title: Computation with the KEGG pathway database publication-title: Biosystems doi: 10.1016/S0303-2647(98)00017-3 – volume: 144 start-page: 646 year: 2011 ident: 2023070505033787000_B20 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 2021 start-page: baaa094 year: 2021 ident: 2023070505033787000_B4 article-title: CMBD: a manually curated cancer metabolic biomarker knowledge database publication-title: Database (Oxford) doi: 10.1093/database/baaa094 – volume: 15 start-page: e1006733 year: 2019 ident: 2023070505033787000_B15 article-title: Integration of single-cell RNA-seq data into population models to characterize cancer metabolism publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006733 – volume: 91 start-page: 13314 year: 2019 ident: 2023070505033787000_B16 article-title: Deciphering metabolic heterogeneity by single-cell analysis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02410 – volume: 36 start-page: 272 year: 2018 ident: 2023070505033787000_B27 article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4072 – volume: 15 start-page: 1460 year: 2020 ident: 2023070505033787000_B40 article-title: Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders publication-title: Neur. Reg. Res. – volume-title: How do cancer cells acquire the fuel needed to support cell growth? Cold Spring Harbor symposia on quantitative biology year: 2005 ident: 2023070505033787000_B18 – volume: 21 start-page: 297 year: 2012 ident: 2023070505033787000_B21 article-title: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.014 – volume: 2 start-page: 297 year: 2016 ident: 2023070505033787000_B12 article-title: A Caenorhabditis elegans genome-scale metabolic network model publication-title: Cell Syst. doi: 10.1016/j.cels.2016.04.012 – volume: 104 start-page: 4718 year: 2007 ident: 2023070505033787000_B43 article-title: Scaling of number, size, and metabolic rate of cells with body size in mammals publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0611235104 – volume: 27 start-page: 1176 year: 2018 ident: 2023070505033787000_B2 article-title: Hallmarks of brain aging: adaptive and pathological modification by metabolic states publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.05.011 – volume: 184 start-page: 3573 year: 2021 ident: 2023070505033787000_B37 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 57 start-page: 101396 year: 2022 ident: 2023070505033787000_B35 article-title: Toward modeling metabolic state from single-cell transcriptomics publication-title: Mol. Metab. doi: 10.1016/j.molmet.2021.101396 – volume: 10 start-page: e67764 year: 2021 ident: 2023070505033787000_B42 article-title: Evolution of diversity in metabolic strategies publication-title: Elife doi: 10.7554/eLife.67764 – volume: 28 start-page: 27 year: 2000 ident: 2023070505033787000_B26 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 69 start-page: 4918 year: 2009 ident: 2023070505033787000_B13 article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4806 – volume: 36 start-page: 272 year: 2018 ident: 2023070505033787000_B28 article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4072 – volume: 7 start-page: 11 year: 2008 ident: 2023070505033787000_B19 article-title: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.10.002 – volume: 40 year: 2009 ident: 2023070505033787000_B44 article-title: Metabolic diversity in prokaryotes and eukaryotes publication-title: Biolog. Sci. Fund. Syst.-Volume II – volume: 4 start-page: 233 year: 2008 ident: 2023070505033787000_B7 article-title: Metabolomic and flux-balance analysis of age-related decline of hypoxia tolerance in Drosophila muscle tissue publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2008.71 – volume: 10 start-page: 1841 year: 2019 ident: 2023070505033787000_B14 article-title: Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism publication-title: Nat. Commun. doi: 10.1038/s41467-019-09695-9 – volume: 462 start-page: 108 year: 2009 ident: 2023070505033787000_B32 article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 publication-title: Nature doi: 10.1038/nature08460 – volume: 42 start-page: D251 year: 2014 ident: 2023070505033787000_B30 article-title: The transporter classification database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1097 – volume: 34 start-page: D181 year: 2006 ident: 2023070505033787000_B31 article-title: TCDB: the Transporter Classification Database for membrane transport protein analyses and information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj001 – volume: 109 start-page: 339 year: 2012 ident: 2023070505033787000_B8 article-title: Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1100358109 – volume: 570 start-page: 332 year: 2019 ident: 2023070505033787000_B38 article-title: Single-cell transcriptomic analysis of Alzheimer's disease publication-title: Nature doi: 10.1038/s41586-019-1195-2 – volume: 23 start-page: 27 year: 2016 ident: 2023070505033787000_B1 article-title: The emerging hallmarks of cancer metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.12.006 – volume: 48 start-page: W427 year: 2020 ident: 2023070505033787000_B23 article-title: Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa409 – volume: 15 start-page: e1006733 year: 2019 ident: 2023070505033787000_B25 article-title: Integration of single-cell RNA-seq data into population models to characterize cancer metabolism publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006733 – volume: 11 start-page: 2602 year: 2011 ident: 2023070505033787000_B39 article-title: The DNA replication stress hypothesis of Alzheimer's disease publication-title: Sci. World J. doi: 10.1100/2011/625690 – volume: 37 start-page: 110171 year: 2021 ident: 2023070505033787000_B46 article-title: Macrophages are metabolically heterogeneous within the tumor microenvironment publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.110171 – volume: 10 start-page: 659 year: 2014 ident: 2023070505033787000_B3 article-title: Novel metabolic biomarkers of cardiovascular disease publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2014.155 – volume: 159 start-page: 824 year: 2013 ident: 2023070505033787000_B6 article-title: Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-159-12-201312170-00729 – volume: 184 start-page: 4168 year: 2021 ident: 2023070505033787000_B17 article-title: Metabolic modeling of single Th17 cells reveals regulators of autoimmunity publication-title: Cell doi: 10.1016/j.cell.2021.05.045 – volume: 174 start-page: 716 year: 2018 ident: 2023070505033787000_B36 article-title: Recovering gene interactions from single-cell data using data diffusion publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 91 start-page: 95 year: 2018 ident: 2023070505033787000_B5 article-title: Importance of nutrients and nutrient metabolism on human health publication-title: Yale. J. Biol. Med. – volume: 184 start-page: 4168 year: 2021 ident: 2023070505033787000_B24 article-title: Metabolic modeling of single Th17 cells reveals regulators of autoimmunity publication-title: Cell doi: 10.1016/j.cell.2021.05.045 – volume: 4 start-page: 140 year: 2010 ident: 2023070505033787000_B10 article-title: A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-140 – volume: 342 start-page: 1243259 year: 2013 ident: 2023070505033787000_B45 article-title: Single-cell metabolomics: analytical and biological perspectives publication-title: Science doi: 10.1126/science.1243259 |
SSID | ssj0014154 |
Score | 2.458514 |
Snippet | Abstract
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based... Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | W180 |
SubjectTerms | Animals Humans Metabolic Networks and Pathways Metabolomics Mice Models, Biological Software Transcriptome Web Server Issue |
Title | FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37216602 https://www.proquest.com/docview/2818055403 https://pubmed.ncbi.nlm.nih.gov/PMC10320190 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB7Ui17Et_VRVxAPQui22Ww33kppEfFxsdBb2Gx2VWyjtKnov3cmSYstRc-ZhLBfsjOz8803ABdCOmMT53sYTWhPSOk8TJtDL6ibJmmV1IWlfuf7B3nTE7f9oF8SZMdLSvihX0v1qPb8phMhSPYT3S9J5D899mfFAvRBhUpULqopVNmGt3DvnOOZa2b7FVMuUiN_-ZruFmyWQSJrFahuw4pNd2C3lWKCPPxmlyynbebn4Tuw3p6ObNuFuHvX65NsxpBS6WumGW6SdOxqRwyDU_YxorIMEZ3Z0GYI_-DVMDeYfDGdJuwT0-bi_I4RG_6ZZeTH8l2FWpfHjNike9Drdp7aN145RMEz6J8y_AuaDaGcNkqohCMMMmwQVSRWDkMfa10Qci0V-m28bJWzPHFUvOPcKWcC5e_DWvqe2kNgvh9TOGVcqJQIY6mVqTdxx3ROGCmToAJX0xWOTKkwToMuBlFR6fYjhCMq4ajAxcz4oxDWWG52hlD9bXE-hTHC5aZ6h07t-2QckdAVx3CJ-xU4KGCdPcgn0SLJGxVQc4DPDEh2e_5K-vqSy2-TBCF14B_9-2rHsEHT6XN2b3ACa9loYk8xhsniKqw2eaeanwBU86_5B68v8_M |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FLUXestimator%3A+a+webserver+for+predicting+metabolic+flux+and+variations+using+transcriptomics+data&rft.jtitle=Nucleic+acids+research&rft.au=Zhang%2C+Zixuan&rft.au=Zhu%2C+Haiqi&rft.au=Dang%2C+Pengtao&rft.au=Wang%2C+Jia&rft.date=2023-07-05&rft.eissn=1362-4962&rft.volume=51&rft.issue=W1&rft.spage=W180&rft_id=info:doi/10.1093%2Fnar%2Fgkad444&rft_id=info%3Apmid%2F37216602&rft.externalDocID=37216602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |