FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data

Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-leve...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 51; no. W1; pp. W180 - W190
Main Authors Zhang, Zixuan, Zhu, Haiqi, Dang, Pengtao, Wang, Jia, Chang, Wennan, Wang, Xiao, Alghamdi, Norah, Lu, Alex, Zang, Yong, Wu, Wenzhuo, Wang, Yijie, Zhang, Yu, Cao, Sha, Zhang, Chi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 05.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies. Graphical Abstract Graphical Abstract
AbstractList Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/ , and stand-alone tools for local use are available at https://github.com/changwn/scFEA . Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies. Graphical Abstract
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies. Graphical Abstract Graphical Abstract
Author Zang, Yong
Wu, Wenzhuo
Zhang, Yu
Dang, Pengtao
Wang, Jia
Chang, Wennan
Wang, Yijie
Zhang, Zixuan
Lu, Alex
Zhu, Haiqi
Cao, Sha
Zhang, Chi
Alghamdi, Norah
Wang, Xiao
Author_xml – sequence: 1
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  email: czhang87@iu.edu
– sequence: 2
  givenname: Haiqi
  surname: Zhu
  fullname: Zhu, Haiqi
– sequence: 3
  givenname: Pengtao
  surname: Dang
  fullname: Dang, Pengtao
– sequence: 4
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
– sequence: 5
  givenname: Wennan
  surname: Chang
  fullname: Chang, Wennan
– sequence: 6
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
– sequence: 7
  givenname: Norah
  surname: Alghamdi
  fullname: Alghamdi, Norah
– sequence: 8
  givenname: Alex
  surname: Lu
  fullname: Lu, Alex
  email: zy26@jlu.edu.cn
– sequence: 9
  givenname: Yong
  surname: Zang
  fullname: Zang, Yong
– sequence: 10
  givenname: Wenzhuo
  surname: Wu
  fullname: Wu, Wenzhuo
– sequence: 11
  givenname: Yijie
  orcidid: 0000-0003-1656-8939
  surname: Wang
  fullname: Wang, Yijie
– sequence: 12
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: czhang87@iu.edu
– sequence: 13
  givenname: Sha
  orcidid: 0000-0002-8645-848X
  surname: Cao
  fullname: Cao, Sha
  email: shacao@iu.edu
– sequence: 14
  givenname: Chi
  orcidid: 0000-0001-9553-0925
  surname: Zhang
  fullname: Zhang, Chi
  email: czhang87@iu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37216602$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxa2qiG4XTr1XPiEkFOqvZB0uCFW0RVqJC5W4WY4z3pomdmo7C_z3uOy2AlRx8mF-8974vWN06IMHhE4oeUtJy8-8jmebW90LIQ7QgvKGVaJt2CFaEE7qihIhj9BxSt8IoYLW4jk64itGm4awBeou1tdfIWU36hziO6zxd-gSxC1EbEPEU4Temez8Bo-QdRcGZ7Ad5h9Y-x5vdXQ6u-ATntM9k6P2yUQ35TA6k3Cvs36Bnlk9JHi5f5fo-uLjl_Orav358tP5h3VlBOW5YmTFhLTaSCF7wnnbtAyshU7aumEAtm6JbqSksoxBWiC9XfG2JsRKa2rJl-j9TneauxF6A75cM6gplr_Fnypop_6eeHejNmGrKOGM0JYUhdd7hRju5pKKGl0yMAzaQ5iTYsWc1LUo1y3R6Z9mjy4PyRaA7gATQ0oRrDIu_86qeLuhmKr79lRpT-3bKztv_tl5kH2afrWjwzz9F_wFpDyslQ
CitedBy_id crossref_primary_10_1002_advs_202310308
crossref_primary_10_3389_fimmu_2024_1372432
crossref_primary_10_1165_rcmb_2024_0080PS
Cites_doi 10.1186/1752-0509-7-36
10.1073/pnas.0506580102
10.1101/gr.271205.120
10.1186/1752-0509-8-79
10.1016/j.cmet.2019.08.013
10.1016/S0303-2647(98)00017-3
10.1016/j.cell.2011.02.013
10.1093/database/baaa094
10.1371/journal.pcbi.1006733
10.1021/acs.analchem.9b02410
10.1038/nbt.4072
10.1016/j.ccr.2012.02.014
10.1016/j.cels.2016.04.012
10.1073/pnas.0611235104
10.1016/j.cmet.2018.05.011
10.1016/j.cell.2021.04.048
10.1016/j.molmet.2021.101396
10.7554/eLife.67764
10.1093/nar/28.1.27
10.1158/0008-5472.CAN-08-4806
10.1016/j.cmet.2007.10.002
10.1038/msb.2008.71
10.1038/s41467-019-09695-9
10.1038/nature08460
10.1093/nar/gkt1097
10.1093/nar/gkj001
10.1073/pnas.1100358109
10.1038/s41586-019-1195-2
10.1016/j.cmet.2015.12.006
10.1093/nar/gkaa409
10.1100/2011/625690
10.1016/j.celrep.2021.110171
10.1038/nrendo.2014.155
10.7326/0003-4819-159-12-201312170-00729
10.1016/j.cell.2021.05.045
10.1016/j.cell.2018.05.061
10.1186/1752-0509-4-140
10.1126/science.1243259
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkad444
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage W190
ExternalDocumentID PMC10320190
37216602
10_1093_nar_gkad444
10.1093/nar/gkad444
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM150971
– fundername: ;
  grantid: RSG-22-062-01-MM
– fundername: ;
  grantid: IIBR 2047631; IIS 2145314
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
AMNDL
CITATION
OVT
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c413t-207248fac848d0339692effeb8f562eef590a688188d0e8fe0df739500f8fc583
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:37:11 EDT 2025
Fri Jul 11 07:59:56 EDT 2025
Wed Feb 19 02:04:40 EST 2025
Thu Apr 24 23:03:37 EDT 2025
Tue Jul 01 02:59:22 EDT 2025
Wed Aug 28 03:17:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue W1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-207248fac848d0339692effeb8f562eef590a688188d0e8fe0df739500f8fc583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.
ORCID 0000-0001-9553-0925
0000-0002-8645-848X
0000-0003-1656-8939
OpenAccessLink https://dx.doi.org/10.1093/nar/gkad444
PMID 37216602
PQID 2818055403
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320190
proquest_miscellaneous_2818055403
pubmed_primary_37216602
crossref_citationtrail_10_1093_nar_gkad444
crossref_primary_10_1093_nar_gkad444
oup_primary_10_1093_nar_gkad444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-05
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Mintz-Oron (2023070505033787000_B8) 2012; 109
Alghamdi (2023070505033787000_B22) 2021; 31
Kanehisa (2023070505033787000_B26) 2000; 28
Evers (2023070505033787000_B16) 2019; 91
Chen (2023070505033787000_B4) 2021; 2021
Saier (2023070505033787000_B30) 2014; 42
Sigurdsson (2023070505033787000_B10) 2010; 4
Hao (2023070505033787000_B37) 2021; 184
Pavlova (2023070505033787000_B1) 2016; 23
Wagner (2023070505033787000_B17) 2021; 184
Damiani (2023070505033787000_B25) 2019; 15
Fortmann (2023070505033787000_B6) 2013; 159
Brunk (2023070505033787000_B27) 2018; 36
Oren (2023070505033787000_B44) 2009; 40
Weaver (2023070505033787000_B11) 2014; 8
Hari (2023070505033787000_B23) 2020; 48
van Dijk (2023070505033787000_B36) 2018; 174
Ward (2023070505033787000_B21) 2012; 21
Barbie (2023070505033787000_B32) 2009; 462
Polis (2023070505033787000_B40) 2020; 15
Saier (2023070505033787000_B31) 2006; 34
Caetano (2023070505033787000_B42) 2021; 10
Damiani (2023070505033787000_B15) 2019; 15
Ortmayr (2023070505033787000_B14) 2019; 10
Zenobi (2023070505033787000_B45) 2013; 342
Savage (2023070505033787000_B43) 2007; 104
Mattson (2023070505033787000_B2) 2018; 27
Brunk (2023070505033787000_B28) 2018; 36
Thompson (2023070505033787000_B18) 2005
DeBerardinis (2023070505033787000_B19) 2008; 7
Hirayama (2023070505033787000_B13) 2009; 69
Mathys (2023070505033787000_B38) 2019; 570
Kim (2023070505033787000_B41) 2019; 30
Coquin (2023070505033787000_B7) 2008; 4
Wagner (2023070505033787000_B24) 2021; 184
Zhang (2023070505033787000_B34) 2022
Jensen (2023070505033787000_B3) 2014; 10
Nookaew (2023070505033787000_B9) 2013; 7
Geeraerts (2023070505033787000_B46) 2021; 37
Yilmaz (2023070505033787000_B12) 2016; 2
Hrovatin (2023070505033787000_B35) 2022; 57
Hanahan (2023070505033787000_B20) 2011; 144
Ogata (2023070505033787000_B29) 1998; 47
Subramanian (2023070505033787000_B33) 2005; 102
Chen (2023070505033787000_B5) 2018; 91
Yurov (2023070505033787000_B39) 2011; 11
References_xml – volume: 7
  start-page: 36
  year: 2013
  ident: 2023070505033787000_B9
  article-title: Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-36
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2023070505033787000_B33
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506580102
– volume: 31
  start-page: 1867
  year: 2021
  ident: 2023070505033787000_B22
  article-title: A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
  publication-title: Genome. Res.
  doi: 10.1101/gr.271205.120
– year: 2022
  ident: 2023070505033787000_B34
  article-title: scFLUX: a webserver to estimate cell-/sample-wise metabolic fluxome by using scRNA-seq or general transcriptomics data
– volume: 8
  start-page: 79
  year: 2014
  ident: 2023070505033787000_B11
  article-title: A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-8-79
– volume: 30
  start-page: 434
  year: 2019
  ident: 2023070505033787000_B41
  article-title: Mechanisms and Implications of Metabolic Heterogeneity in Cancer
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2019.08.013
– volume: 47
  start-page: 119
  year: 1998
  ident: 2023070505033787000_B29
  article-title: Computation with the KEGG pathway database
  publication-title: Biosystems
  doi: 10.1016/S0303-2647(98)00017-3
– volume: 144
  start-page: 646
  year: 2011
  ident: 2023070505033787000_B20
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 2021
  start-page: baaa094
  year: 2021
  ident: 2023070505033787000_B4
  article-title: CMBD: a manually curated cancer metabolic biomarker knowledge database
  publication-title: Database (Oxford)
  doi: 10.1093/database/baaa094
– volume: 15
  start-page: e1006733
  year: 2019
  ident: 2023070505033787000_B15
  article-title: Integration of single-cell RNA-seq data into population models to characterize cancer metabolism
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006733
– volume: 91
  start-page: 13314
  year: 2019
  ident: 2023070505033787000_B16
  article-title: Deciphering metabolic heterogeneity by single-cell analysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02410
– volume: 36
  start-page: 272
  year: 2018
  ident: 2023070505033787000_B27
  article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4072
– volume: 15
  start-page: 1460
  year: 2020
  ident: 2023070505033787000_B40
  article-title: Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders
  publication-title: Neur. Reg. Res.
– volume-title: How do cancer cells acquire the fuel needed to support cell growth? Cold Spring Harbor symposia on quantitative biology
  year: 2005
  ident: 2023070505033787000_B18
– volume: 21
  start-page: 297
  year: 2012
  ident: 2023070505033787000_B21
  article-title: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.014
– volume: 2
  start-page: 297
  year: 2016
  ident: 2023070505033787000_B12
  article-title: A Caenorhabditis elegans genome-scale metabolic network model
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.04.012
– volume: 104
  start-page: 4718
  year: 2007
  ident: 2023070505033787000_B43
  article-title: Scaling of number, size, and metabolic rate of cells with body size in mammals
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0611235104
– volume: 27
  start-page: 1176
  year: 2018
  ident: 2023070505033787000_B2
  article-title: Hallmarks of brain aging: adaptive and pathological modification by metabolic states
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.05.011
– volume: 184
  start-page: 3573
  year: 2021
  ident: 2023070505033787000_B37
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 57
  start-page: 101396
  year: 2022
  ident: 2023070505033787000_B35
  article-title: Toward modeling metabolic state from single-cell transcriptomics
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2021.101396
– volume: 10
  start-page: e67764
  year: 2021
  ident: 2023070505033787000_B42
  article-title: Evolution of diversity in metabolic strategies
  publication-title: Elife
  doi: 10.7554/eLife.67764
– volume: 28
  start-page: 27
  year: 2000
  ident: 2023070505033787000_B26
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 69
  start-page: 4918
  year: 2009
  ident: 2023070505033787000_B13
  article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4806
– volume: 36
  start-page: 272
  year: 2018
  ident: 2023070505033787000_B28
  article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4072
– volume: 7
  start-page: 11
  year: 2008
  ident: 2023070505033787000_B19
  article-title: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.10.002
– volume: 40
  year: 2009
  ident: 2023070505033787000_B44
  article-title: Metabolic diversity in prokaryotes and eukaryotes
  publication-title: Biolog. Sci. Fund. Syst.-Volume II
– volume: 4
  start-page: 233
  year: 2008
  ident: 2023070505033787000_B7
  article-title: Metabolomic and flux-balance analysis of age-related decline of hypoxia tolerance in Drosophila muscle tissue
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2008.71
– volume: 10
  start-page: 1841
  year: 2019
  ident: 2023070505033787000_B14
  article-title: Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09695-9
– volume: 462
  start-page: 108
  year: 2009
  ident: 2023070505033787000_B32
  article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
  publication-title: Nature
  doi: 10.1038/nature08460
– volume: 42
  start-page: D251
  year: 2014
  ident: 2023070505033787000_B30
  article-title: The transporter classification database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1097
– volume: 34
  start-page: D181
  year: 2006
  ident: 2023070505033787000_B31
  article-title: TCDB: the Transporter Classification Database for membrane transport protein analyses and information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj001
– volume: 109
  start-page: 339
  year: 2012
  ident: 2023070505033787000_B8
  article-title: Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1100358109
– volume: 570
  start-page: 332
  year: 2019
  ident: 2023070505033787000_B38
  article-title: Single-cell transcriptomic analysis of Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/s41586-019-1195-2
– volume: 23
  start-page: 27
  year: 2016
  ident: 2023070505033787000_B1
  article-title: The emerging hallmarks of cancer metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.12.006
– volume: 48
  start-page: W427
  year: 2020
  ident: 2023070505033787000_B23
  article-title: Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa409
– volume: 15
  start-page: e1006733
  year: 2019
  ident: 2023070505033787000_B25
  article-title: Integration of single-cell RNA-seq data into population models to characterize cancer metabolism
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006733
– volume: 11
  start-page: 2602
  year: 2011
  ident: 2023070505033787000_B39
  article-title: The DNA replication stress hypothesis of Alzheimer's disease
  publication-title: Sci. World J.
  doi: 10.1100/2011/625690
– volume: 37
  start-page: 110171
  year: 2021
  ident: 2023070505033787000_B46
  article-title: Macrophages are metabolically heterogeneous within the tumor microenvironment
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.110171
– volume: 10
  start-page: 659
  year: 2014
  ident: 2023070505033787000_B3
  article-title: Novel metabolic biomarkers of cardiovascular disease
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2014.155
– volume: 159
  start-page: 824
  year: 2013
  ident: 2023070505033787000_B6
  article-title: Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-159-12-201312170-00729
– volume: 184
  start-page: 4168
  year: 2021
  ident: 2023070505033787000_B17
  article-title: Metabolic modeling of single Th17 cells reveals regulators of autoimmunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.045
– volume: 174
  start-page: 716
  year: 2018
  ident: 2023070505033787000_B36
  article-title: Recovering gene interactions from single-cell data using data diffusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 91
  start-page: 95
  year: 2018
  ident: 2023070505033787000_B5
  article-title: Importance of nutrients and nutrient metabolism on human health
  publication-title: Yale. J. Biol. Med.
– volume: 184
  start-page: 4168
  year: 2021
  ident: 2023070505033787000_B24
  article-title: Metabolic modeling of single Th17 cells reveals regulators of autoimmunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.045
– volume: 4
  start-page: 140
  year: 2010
  ident: 2023070505033787000_B10
  article-title: A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-140
– volume: 342
  start-page: 1243259
  year: 2013
  ident: 2023070505033787000_B45
  article-title: Single-cell metabolomics: analytical and biological perspectives
  publication-title: Science
  doi: 10.1126/science.1243259
SSID ssj0014154
Score 2.458514
Snippet Abstract Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based...
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage W180
SubjectTerms Animals
Humans
Metabolic Networks and Pathways
Metabolomics
Mice
Models, Biological
Software
Transcriptome
Web Server Issue
Title FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data
URI https://www.ncbi.nlm.nih.gov/pubmed/37216602
https://www.proquest.com/docview/2818055403
https://pubmed.ncbi.nlm.nih.gov/PMC10320190
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB7Ui17Et_VRVxAPQui22Ww33kppEfFxsdBb2Gx2VWyjtKnov3cmSYstRc-ZhLBfsjOz8803ABdCOmMT53sYTWhPSOk8TJtDL6ibJmmV1IWlfuf7B3nTE7f9oF8SZMdLSvihX0v1qPb8phMhSPYT3S9J5D899mfFAvRBhUpULqopVNmGt3DvnOOZa2b7FVMuUiN_-ZruFmyWQSJrFahuw4pNd2C3lWKCPPxmlyynbebn4Tuw3p6ObNuFuHvX65NsxpBS6WumGW6SdOxqRwyDU_YxorIMEZ3Z0GYI_-DVMDeYfDGdJuwT0-bi_I4RG_6ZZeTH8l2FWpfHjNike9Drdp7aN145RMEz6J8y_AuaDaGcNkqohCMMMmwQVSRWDkMfa10Qci0V-m28bJWzPHFUvOPcKWcC5e_DWvqe2kNgvh9TOGVcqJQIY6mVqTdxx3ROGCmToAJX0xWOTKkwToMuBlFR6fYjhCMq4ajAxcz4oxDWWG52hlD9bXE-hTHC5aZ6h07t-2QckdAVx3CJ-xU4KGCdPcgn0SLJGxVQc4DPDEh2e_5K-vqSy2-TBCF14B_9-2rHsEHT6XN2b3ACa9loYk8xhsniKqw2eaeanwBU86_5B68v8_M
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FLUXestimator%3A+a+webserver+for+predicting+metabolic+flux+and+variations+using+transcriptomics+data&rft.jtitle=Nucleic+acids+research&rft.au=Zhang%2C+Zixuan&rft.au=Zhu%2C+Haiqi&rft.au=Dang%2C+Pengtao&rft.au=Wang%2C+Jia&rft.date=2023-07-05&rft.eissn=1362-4962&rft.volume=51&rft.issue=W1&rft.spage=W180&rft_id=info:doi/10.1093%2Fnar%2Fgkad444&rft_id=info%3Apmid%2F37216602&rft.externalDocID=37216602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon