Metal telluride nanosheets by scalable solid lithiation and exfoliation

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science 1 – 3 . Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing tim...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 628; no. 8007; pp. 313 - 319
Main Authors Zhang, Liangzhu, Yang, Zixuan, Feng, Shun, Guo, Zhuobin, Jia, Qingchao, Zeng, Huidan, Ding, Yajun, Das, Pratteek, Bi, Zhihong, Ma, Jiaxin, Fu, Yunqi, Wang, Sen, Mi, Jinxing, Zheng, Shuanghao, Li, Mingrun, Sun, Dong-Ming, Kang, Ning, Wu, Zhong-Shuai, Cheng, Hui-Ming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.04.2024
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-024-07209-2

Cover

Loading…
Abstract Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science 1 – 3 . Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market 4 – 8 . We report the fast and scalable synthesis of a wide variety of MTe 2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe 2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe 2 as a representative, we produced more than a hundred grams (108 g) of NbTe 2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe 2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium–oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization. Fast and scalable synthesis of a variety of transition metal telluride nanosheets by solid lithiation and hydrolysis is demonstrated and several interesting quantum phenomena were observed, such as quantum oscillations and giant magnetoresistance.
AbstractList Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science . Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market . We report the fast and scalable synthesis of a wide variety of MTe (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe within 10 min and their subsequent hydrolysis within seconds. Using NbTe as a representative, we produced more than a hundred grams (108 g) of NbTe nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.
Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.
Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science 1 – 3 . Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market 4 – 8 . We report the fast and scalable synthesis of a wide variety of MTe 2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe 2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe 2 as a representative, we produced more than a hundred grams (108 g) of NbTe 2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe 2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium–oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization. Fast and scalable synthesis of a variety of transition metal telluride nanosheets by solid lithiation and hydrolysis is demonstrated and several interesting quantum phenomena were observed, such as quantum oscillations and giant magnetoresistance.
Author Wu, Zhong-Shuai
Cheng, Hui-Ming
Wang, Sen
Sun, Dong-Ming
Kang, Ning
Ding, Yajun
Feng, Shun
Fu, Yunqi
Zheng, Shuanghao
Guo, Zhuobin
Zeng, Huidan
Jia, Qingchao
Mi, Jinxing
Das, Pratteek
Li, Mingrun
Yang, Zixuan
Zhang, Liangzhu
Bi, Zhihong
Ma, Jiaxin
Author_xml – sequence: 1
  givenname: Liangzhu
  orcidid: 0000-0002-7968-6847
  surname: Zhang
  fullname: Zhang, Liangzhu
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology
– sequence: 2
  givenname: Zixuan
  surname: Yang
  fullname: Yang, Zixuan
  organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University
– sequence: 3
  givenname: Shun
  surname: Feng
  fullname: Feng, Shun
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhuobin
  surname: Guo
  fullname: Guo, Zhuobin
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Qingchao
  surname: Jia
  fullname: Jia, Qingchao
  organization: School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology
– sequence: 6
  givenname: Huidan
  surname: Zeng
  fullname: Zeng, Huidan
  organization: School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology
– sequence: 7
  givenname: Yajun
  surname: Ding
  fullname: Ding, Yajun
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Pratteek
  surname: Das
  fullname: Das, Pratteek
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Zhihong
  surname: Bi
  fullname: Bi, Zhihong
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 10
  givenname: Jiaxin
  surname: Ma
  fullname: Ma, Jiaxin
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 11
  givenname: Yunqi
  surname: Fu
  fullname: Fu, Yunqi
  organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University
– sequence: 12
  givenname: Sen
  surname: Wang
  fullname: Wang, Sen
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 13
  givenname: Jinxing
  surname: Mi
  fullname: Mi, Jinxing
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Shuanghao
  surname: Zheng
  fullname: Zheng, Shuanghao
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences
– sequence: 15
  givenname: Mingrun
  surname: Li
  fullname: Li, Mingrun
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 16
  givenname: Dong-Ming
  orcidid: 0000-0003-1552-7940
  surname: Sun
  fullname: Sun, Dong-Ming
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 17
  givenname: Ning
  orcidid: 0000-0003-4478-8402
  surname: Kang
  fullname: Kang, Ning
  email: nkang@pku.edu.cn
  organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University
– sequence: 18
  givenname: Zhong-Shuai
  orcidid: 0000-0003-1851-4803
  surname: Wu
  fullname: Wu, Zhong-Shuai
  email: wuzs@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences
– sequence: 19
  givenname: Hui-Ming
  orcidid: 0000-0002-5387-4241
  surname: Cheng
  fullname: Cheng, Hui-Ming
  email: hm.cheng@siat.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38570689$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PBCEQhonReHfqH7AwW9qsDh8LbGmMX4nGRmvCAqsYjj2BTfTfu96phcVVZCbPO8w8C7Qbh-gQOsZwhoHK88xwI3kNhNUgCLQ12UFzzASvGZdiF80BiKxBUj5Di5zfAKDBgu2jGZWNAC7bObp5cEWHqrgQxuStq6KOQ351ruSq-6yy0UF3wVV5CN5WwZdXr4sfYqWjrdxHP7XX9SHa63XI7ujnPUDP11dPl7f1_ePN3eXFfW0YpqXGTlrdMsaFsaQzpuXcGkeopYQywbRpOtoTznrLteiBNJ1tWq77zkxN2hB6gE43c1dpeB9dLmrps5m219ENY1YUKAUMQjQTevKDjt3SWbVKfqnTp_o9fgLIBjBpyDm5_g_BoL4Nq41hNRlWa8PqewH5L2R8WSsoSfuwPUo30Tz9E19cUm_DmOKka1vqC07oj9s
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_178076
crossref_primary_10_7566_JPSJ_93_111003
crossref_primary_10_1016_j_commatsci_2025_113824
crossref_primary_10_1039_D4SE01623H
crossref_primary_10_1016_j_fuel_2024_133955
crossref_primary_10_1021_acs_nanolett_4c02621
crossref_primary_10_1021_acsnano_4c09114
crossref_primary_10_1021_acsnano_4c09147
crossref_primary_10_1016_j_apenergy_2024_125179
crossref_primary_10_1021_acs_nanolett_4c05645
crossref_primary_10_1016_j_matt_2024_04_020
crossref_primary_10_1021_accountsmr_4c00270
crossref_primary_10_1002_advs_202411344
crossref_primary_10_1016_j_jallcom_2024_176128
crossref_primary_10_1039_D4NR03543G
crossref_primary_10_1016_j_matlet_2025_138370
crossref_primary_10_1002_adfm_202414823
crossref_primary_10_1016_j_matt_2024_05_037
crossref_primary_10_1016_j_jcrysgro_2024_127891
Cites_doi 10.1093/nsr/nwaa084
10.1126/science.aaw9270
10.1002/anie.201808050
10.1103/PhysRevB.97.241409
10.1038/s41586-018-0008-3
10.1038/ncomms3995
10.1021/ic00253a001
10.1016/0025-5408(86)90011-5
10.1038/nenergy.2017.89
10.1021/acsnano.2c12610
10.1038/s41467-022-33201-3
10.1002/adma.201907857
10.1126/science.1194975
10.1038/s41596-021-00643-w
10.1038/s41467-019-09995-0
10.1038/nature13763
10.7566/JPSJ.90.014706
10.1002/adfm.202004139
10.1126/science.abf5825
10.1080/00150198308208248
10.1038/ncomms11038
10.1021/acs.nanolett.0c04935
10.1093/nsr/nwz156
10.1038/s41586-022-05521-3
10.1038/s41586-018-0574-4
10.1126/science.1226419
10.1038/s41467-019-11949-5
10.1038/s41467-021-22343-5
10.1002/adma.201801043
10.1038/s44160-022-00232-z
10.1002/adma.201900568
10.1038/s41598-019-45142-x
10.1103/PhysRevB.94.235154
10.1021/acsnano.6b06922
10.1038/s41467-022-29182-y
10.1021/cm960579t
10.1038/s41467-019-12831-0
10.1021/acsnano.6b02368
10.1039/C6TA05110C
10.1038/nnano.2014.207
10.1038/s41563-020-00831-1
10.1002/adfm.202010901
10.1126/science.aah6442
10.1038/nphys3314
10.1038/s41563-019-0394-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1038/s41586-024-07209-2
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 319
ExternalDocumentID 38570689
10_1038_s41586_024_07209_2
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
1VR
2XV
41X
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
AARCD
AAYXX
ABFSG
ABJCF
ABUWG
ACMFV
ACSTC
AEUYN
AEZWR
AFANA
AFHIU
AFKRA
AHWEU
AIXLP
ALPWD
ATHPR
AZQEC
BBNVY
BCU
BEC
BGLVJ
BKEYQ
BKSAR
BPHCQ
BVXVI
CCPQU
CITATION
D1I
D1J
D1K
DWQXO
EMH
EX3
FYUFA
GNUQQ
GUQSH
HMCUK
INR
ISR
K6-
KB.
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
NAPCQ
NFIDA
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
S0X
SJFOW
UKHRP
WOW
~7V
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
MVM
N4W
NEJ
NPM
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
7X8
ID FETCH-LOGICAL-c413t-1e8da94467cd2bcc966dce23d323474ac5b3f264fd6a7f025bd596afbc2643523
ISSN 0028-0836
1476-4687
IngestDate Mon Jul 21 10:18:28 EDT 2025
Mon Jul 21 05:25:56 EDT 2025
Tue Jul 01 02:58:53 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 21 02:39:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8007
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-1e8da94467cd2bcc966dce23d323474ac5b3f264fd6a7f025bd596afbc2643523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1851-4803
0000-0003-1552-7940
0000-0003-4478-8402
0000-0002-7968-6847
0000-0002-5387-4241
PMID 38570689
PQID 3033010775
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_3033010775
pubmed_primary_38570689
crossref_primary_10_1038_s41586_024_07209_2
crossref_citationtrail_10_1038_s41586_024_07209_2
springer_journals_10_1038_s41586_024_07209_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-11
PublicationDateYYYYMMDD 2024-04-11
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References Zhang (CR30) 2020; 7
Li (CR32) 2018; 30
Tsai, Heising, Schindler, Kannewurf, Kanatzidis (CR25) 1997; 9
Tiwari (CR43) 2021; 12
Zhang (CR7) 2020; 30
Yang (CR20) 2022; 17
Lin (CR21) 2018; 562
Chia, Ambrosi, Lazar, Sofer, Pumera (CR34) 2016; 4
Zhou (CR1) 2018; 556
Fiori (CR2) 2014; 9
Zheng (CR24) 2014; 5
Benalcazar, Bernevig, Hughes (CR39) 2017; 357
Jindal (CR14) 2023; 613
Rhodes (CR42) 2021; 21
Li (CR9) 2021; 31
Kowalczyk (CR40) 2023; 17
Yang (CR19) 2023; 2
Qi (CR37) 2016; 7
Wang (CR13) 2020; 368
Chen (CR38) 2016; 94
Keum (CR10) 2015; 11
Li (CR6) 2021; 20
Coleman (CR8) 2011; 331
Joensen, Frindt, Morrison (CR23) 1986; 21
CR5
Mleczko (CR33) 2016; 10
Ono (CR27) 2020; 90
Hangyo, Nakashima, Mitsuishi (CR31) 1983; 52
Huang (CR41) 2019; 10
Choi (CR4) 2022; 13
Nicolosi, Chhowalla, Kanatzidis, Strano, Coleman (CR17) 2013; 340
Yang, Zhang, Nia, Feng (CR18) 2020; 32
Peng (CR22) 2019; 31
Jawaid (CR29) 2017; 11
Ma (CR45) 2022; 13
Zhao (CR15) 2020; 7
Zhong (CR44) 2018; 97
Ali (CR12) 2014; 514
Peng (CR28) 2018; 57
Xu (CR11) 2021; 372
Kanatzidis, Marks (CR26) 1987; 26
McGlynn (CR16) 2019; 10
Pomerantseva, Gogotsi (CR3) 2017; 2
Huang (CR35) 2019; 9
Cui (CR36) 2019; 10
V Nicolosi (7209_CR17) 2013; 340
A Jawaid (7209_CR29) 2017; 11
A Tiwari (7209_CR43) 2021; 12
X Xu (7209_CR11) 2021; 372
J Cui (7209_CR36) 2019; 10
W Wang (7209_CR13) 2020; 368
Y Qi (7209_CR37) 2016; 7
DA Rhodes (7209_CR42) 2021; 21
J Zhou (7209_CR1) 2018; 556
F-T Huang (7209_CR41) 2019; 10
X Zhao (7209_CR15) 2020; 7
M Hangyo (7209_CR31) 1983; 52
J Zheng (7209_CR24) 2014; 5
J Peng (7209_CR28) 2018; 57
R Yang (7209_CR19) 2023; 2
J Li (7209_CR32) 2018; 30
H Kowalczyk (7209_CR40) 2023; 17
S Zhong (7209_CR44) 2018; 97
7209_CR5
J Li (7209_CR6) 2021; 20
L Zhang (7209_CR7) 2020; 30
MN Ali (7209_CR12) 2014; 514
J-H Huang (7209_CR35) 2019; 9
FC Chen (7209_CR38) 2016; 94
WA Benalcazar (7209_CR39) 2017; 357
JC McGlynn (7209_CR16) 2019; 10
JN Coleman (7209_CR8) 2011; 331
T Ma (7209_CR45) 2022; 13
G Fiori (7209_CR2) 2014; 9
X Chia (7209_CR34) 2016; 4
M Ono (7209_CR27) 2020; 90
Z Lin (7209_CR21) 2018; 562
C Zhang (7209_CR30) 2020; 7
H Li (7209_CR9) 2021; 31
DH Keum (7209_CR10) 2015; 11
R Yang (7209_CR20) 2022; 17
P Joensen (7209_CR23) 1986; 21
E Pomerantseva (7209_CR3) 2017; 2
A Jindal (7209_CR14) 2023; 613
MG Kanatzidis (7209_CR26) 1987; 26
H-L Tsai (7209_CR25) 1997; 9
S Yang (7209_CR18) 2020; 32
SH Choi (7209_CR4) 2022; 13
J Peng (7209_CR22) 2019; 31
MJ Mleczko (7209_CR33) 2016; 10
References_xml – volume: 7
  start-page: 1360
  year: 2020
  end-page: 1366
  ident: CR15
  article-title: Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwaa084
– volume: 368
  start-page: 534
  year: 2020
  end-page: 537
  ident: CR13
  article-title: Evidence for an edge supercurrent in the Weyl superconductor MoTe
  publication-title: Science
  doi: 10.1126/science.aaw9270
– volume: 57
  start-page: 13533
  year: 2018
  end-page: 13537
  ident: CR28
  article-title: Two-dimensional tellurium nanosheets exhibiting an anomalous switchable photoresponse with thickness dependence
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808050
– volume: 97
  start-page: 241409
  year: 2018
  ident: CR44
  article-title: Origin of magnetoresistance suppression in thin γ–MoTe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.241409
– volume: 556
  start-page: 355
  year: 2018
  end-page: 359
  ident: CR1
  article-title: A library of atomically thin metal chalcogenides
  publication-title: Nature
  doi: 10.1038/s41586-018-0008-3
– volume: 5
  year: 2014
  ident: CR24
  article-title: High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3995
– volume: 26
  start-page: 783
  year: 1987
  end-page: 784
  ident: CR26
  article-title: Tetrahydroborate intercalation reagents. Convenient, straightforward routes to known and new types of layered intercalation compounds
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00253a001
– volume: 21
  start-page: 457
  year: 1986
  end-page: 461
  ident: CR23
  article-title: Single-layer MoS
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(86)90011-5
– volume: 2
  start-page: 17089
  year: 2017
  ident: CR3
  article-title: Two-dimensional heterostructures for energy storage
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.89
– volume: 17
  start-page: 6708
  year: 2023
  end-page: 6718
  ident: CR40
  article-title: Gate and temperature driven phase transitions in few-layer MoTe
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12610
– volume: 13
  year: 2022
  ident: CR45
  article-title: Growth of bilayer MoTe single crystals with strong non-linear Hall effect
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33201-3
– volume: 32
  start-page: 1907857
  year: 2020
  ident: CR18
  article-title: Emerging 2D materials produced via electrochemistry
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907857
– volume: 331
  start-page: 568
  year: 2011
  end-page: 571
  ident: CR8
  article-title: Two-dimensional nanosheets produced by liquid exfoliation of layered materials
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 17
  start-page: 358
  year: 2022
  end-page: 377
  ident: CR20
  article-title: High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00643-w
– volume: 10
  year: 2019
  ident: CR36
  article-title: Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1 -MoTe
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09995-0
– volume: 514
  start-page: 205
  year: 2014
  end-page: 208
  ident: CR12
  article-title: Large, non-saturating magnetoresistance in WTe
  publication-title: Nature
  doi: 10.1038/nature13763
– volume: 90
  start-page: 014706
  year: 2020
  ident: CR27
  article-title: New lithium- and ethylenediamine-intercalated superconductors Li (C H N ) WTe
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.90.014706
– volume: 30
  start-page: 2004139
  year: 2020
  ident: CR7
  article-title: Solid phase exfoliation for producing dispersible transition metal dichalcogenides nanosheets
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004139
– volume: 372
  start-page: 195
  year: 2021
  end-page: 200
  ident: CR11
  article-title: Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe
  publication-title: Science
  doi: 10.1126/science.abf5825
– volume: 52
  start-page: 151
  year: 1983
  end-page: 159
  ident: CR31
  article-title: Raman spectroscopic studies of MX -type layered compounds
  publication-title: Ferroelectrics
  doi: 10.1080/00150198308208248
– volume: 7
  year: 2016
  ident: CR37
  article-title: Superconductivity in Weyl semimetal candidate MoTe
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11038
– volume: 21
  start-page: 2505
  year: 2021
  end-page: 2511
  ident: CR42
  article-title: Enhanced superconductivity in monolayer -MoTe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04935
– volume: 7
  start-page: 324
  year: 2020
  end-page: 332
  ident: CR30
  article-title: Mass production of 2D materials by intermediate-assisted grinding exfoliation
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz156
– volume: 613
  start-page: 48
  year: 2023
  end-page: 52
  ident: CR14
  article-title: Coupled ferroelectricity and superconductivity in bilayer T -MoTe
  publication-title: Nature
  doi: 10.1038/s41586-022-05521-3
– volume: 562
  start-page: 254
  year: 2018
  end-page: 258
  ident: CR21
  article-title: Solution-processable 2D semiconductors for high-performance large-area electronics
  publication-title: Nature
  doi: 10.1038/s41586-018-0574-4
– volume: 340
  start-page: 1226419
  year: 2013
  ident: CR17
  article-title: Liquid exfoliation of layered materials
  publication-title: Science
  doi: 10.1126/science.1226419
– volume: 10
  year: 2019
  ident: CR41
  article-title: Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11949-5
– volume: 12
  year: 2021
  ident: CR43
  article-title: Giant -axis nonlinear anomalous Hall effect in T -MoTe and WTe
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22343-5
– volume: 30
  start-page: 1801043
  year: 2018
  ident: CR32
  article-title: Synthesis of ultrathin metallic MTe (M = V, Nb, Ta) single-crystalline nanoplates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801043
– volume: 2
  start-page: 101
  year: 2023
  end-page: 118
  ident: CR19
  article-title: Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-022-00232-z
– volume: 31
  start-page: 1900568
  year: 2019
  ident: CR22
  article-title: High phase purity of large-sized 1T′-MoS monolayers with 2D superconductivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900568
– volume: 9
  year: 2019
  ident: CR35
  article-title: Polymorphism control of layered MoTe through two-dimensional solid-phase crystallization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45142-x
– volume: 94
  start-page: 235154
  year: 2016
  ident: CR38
  article-title: Extremely large magnetoresistance in the type-II Weyl semimetal MoTe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.235154
– volume: 11
  start-page: 635
  year: 2017
  end-page: 646
  ident: CR29
  article-title: Redox exfoliation of layered transition metal dichalcogenides
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06922
– volume: 13
  year: 2022
  ident: CR4
  article-title: Large-scale synthesis of graphene and other 2D materials towards industrialization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29182-y
– volume: 9
  start-page: 879
  year: 1997
  end-page: 882
  ident: CR25
  article-title: Exfoliated-restacked phase of WS
  publication-title: Chem. Mater.
  doi: 10.1021/cm960579t
– volume: 10
  year: 2019
  ident: CR16
  article-title: The rapid electrochemical activation of MoTe for the hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12831-0
– volume: 10
  start-page: 7507
  year: 2016
  end-page: 7514
  ident: CR33
  article-title: High current density and low thermal conductivity of atomically thin semimetallic WTe
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02368
– ident: CR5
– volume: 4
  start-page: 14241
  year: 2016
  end-page: 14253
  ident: CR34
  article-title: Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX , M = V, Nb, and Ta; X = S, Se, and Te)
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05110C
– volume: 9
  start-page: 768
  year: 2014
  end-page: 779
  ident: CR2
  article-title: Electronics based on two-dimensional materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 20
  start-page: 181
  year: 2021
  end-page: 187
  ident: CR6
  article-title: Printable two-dimensional superconducting monolayers
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00831-1
– volume: 31
  start-page: 2010901
  year: 2021
  ident: CR9
  article-title: Two-dimensional metal telluride atomic crystals: preparation, physical properties, and applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010901
– volume: 357
  start-page: 61
  year: 2017
  end-page: 66
  ident: CR39
  article-title: Quantized electric multipole insulators
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 11
  start-page: 482
  year: 2015
  end-page: 486
  ident: CR10
  article-title: Bandgap opening in few-layered monoclinic MoTe
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3314
– volume: 17
  start-page: 6708
  year: 2023
  ident: 7209_CR40
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12610
– volume: 97
  start-page: 241409
  year: 2018
  ident: 7209_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.241409
– volume: 20
  start-page: 181
  year: 2021
  ident: 7209_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00831-1
– volume: 4
  start-page: 14241
  year: 2016
  ident: 7209_CR34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05110C
– volume: 9
  year: 2019
  ident: 7209_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45142-x
– volume: 9
  start-page: 768
  year: 2014
  ident: 7209_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 2
  start-page: 101
  year: 2023
  ident: 7209_CR19
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-022-00232-z
– volume: 21
  start-page: 457
  year: 1986
  ident: 7209_CR23
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(86)90011-5
– volume: 31
  start-page: 1900568
  year: 2019
  ident: 7209_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900568
– volume: 10
  start-page: 7507
  year: 2016
  ident: 7209_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02368
– volume: 31
  start-page: 2010901
  year: 2021
  ident: 7209_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010901
– volume: 7
  start-page: 324
  year: 2020
  ident: 7209_CR30
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz156
– volume: 357
  start-page: 61
  year: 2017
  ident: 7209_CR39
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 514
  start-page: 205
  year: 2014
  ident: 7209_CR12
  publication-title: Nature
  doi: 10.1038/nature13763
– volume: 340
  start-page: 1226419
  year: 2013
  ident: 7209_CR17
  publication-title: Science
  doi: 10.1126/science.1226419
– volume: 57
  start-page: 13533
  year: 2018
  ident: 7209_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808050
– volume: 30
  start-page: 2004139
  year: 2020
  ident: 7209_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004139
– volume: 10
  year: 2019
  ident: 7209_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12831-0
– volume: 11
  start-page: 635
  year: 2017
  ident: 7209_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06922
– volume: 7
  year: 2016
  ident: 7209_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11038
– ident: 7209_CR5
  doi: 10.1038/s41563-019-0394-4
– volume: 331
  start-page: 568
  year: 2011
  ident: 7209_CR8
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 13
  year: 2022
  ident: 7209_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33201-3
– volume: 368
  start-page: 534
  year: 2020
  ident: 7209_CR13
  publication-title: Science
  doi: 10.1126/science.aaw9270
– volume: 94
  start-page: 235154
  year: 2016
  ident: 7209_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.235154
– volume: 7
  start-page: 1360
  year: 2020
  ident: 7209_CR15
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwaa084
– volume: 21
  start-page: 2505
  year: 2021
  ident: 7209_CR42
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04935
– volume: 90
  start-page: 014706
  year: 2020
  ident: 7209_CR27
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.90.014706
– volume: 372
  start-page: 195
  year: 2021
  ident: 7209_CR11
  publication-title: Science
  doi: 10.1126/science.abf5825
– volume: 26
  start-page: 783
  year: 1987
  ident: 7209_CR26
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00253a001
– volume: 556
  start-page: 355
  year: 2018
  ident: 7209_CR1
  publication-title: Nature
  doi: 10.1038/s41586-018-0008-3
– volume: 32
  start-page: 1907857
  year: 2020
  ident: 7209_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907857
– volume: 11
  start-page: 482
  year: 2015
  ident: 7209_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3314
– volume: 12
  year: 2021
  ident: 7209_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22343-5
– volume: 52
  start-page: 151
  year: 1983
  ident: 7209_CR31
  publication-title: Ferroelectrics
  doi: 10.1080/00150198308208248
– volume: 9
  start-page: 879
  year: 1997
  ident: 7209_CR25
  publication-title: Chem. Mater.
  doi: 10.1021/cm960579t
– volume: 13
  year: 2022
  ident: 7209_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29182-y
– volume: 10
  year: 2019
  ident: 7209_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11949-5
– volume: 613
  start-page: 48
  year: 2023
  ident: 7209_CR14
  publication-title: Nature
  doi: 10.1038/s41586-022-05521-3
– volume: 10
  year: 2019
  ident: 7209_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09995-0
– volume: 5
  year: 2014
  ident: 7209_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3995
– volume: 562
  start-page: 254
  year: 2018
  ident: 7209_CR21
  publication-title: Nature
  doi: 10.1038/s41586-018-0574-4
– volume: 2
  start-page: 17089
  year: 2017
  ident: 7209_CR3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.89
– volume: 30
  start-page: 1801043
  year: 2018
  ident: 7209_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801043
– volume: 17
  start-page: 358
  year: 2022
  ident: 7209_CR20
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00643-w
SSID ssj0005174
Score 2.559873
Snippet Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science 1 – 3...
Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science ....
Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 313
SubjectTerms 140/133
140/146
639/301/357/1018
639/925/357/551
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Title Metal telluride nanosheets by scalable solid lithiation and exfoliation
URI https://link.springer.com/article/10.1038/s41586-024-07209-2
https://www.ncbi.nlm.nih.gov/pubmed/38570689
https://www.proquest.com/docview/3033010775
Volume 628
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0RfBFbP26qscKPig12tvdZJNHLe0VsYdIC0dfQvbLHEhOmgu0_eud_ciHPS3Wl3Asd3PLzi8zv53ZmUXoNVMi1lTSiMeERcCIsyhTeyIChmTInkkkdRnd41lydMo-z-N5H9N11SUr8V5e_bGu5H-0CmOgV1slewvNdkJhAD6DfuEJGobnP-n4WNtSRlsH0pwvlN6timpZl1qvassqa1h-VxgFk1goW2xcej24hIG-MDDc6yUQ1Jlr9Dm86KOLFHSx5S8Aqe9XZdNZjDB-trhoerDBSvlIdNl0Y9PGRWbPysaWnQ0jDsQdVAkWsa0A8F2tvQ_xhpPxJGJJcJ7BsiYkHUAIqCkfmErqa1CD16XecK4ZdN--vQaakdrD0jAXTmxOqHdfbcr-mlfrzhq6LDtNcy8jBxm5k5GD494ksLmw916kh9P-YNC13t2h1ApkfFifx-90Zm2PspZfd7Tl5CF6EPYb-KMHzxa6o6ttdM-d-5X1NtoKtr3Gb0ID8reP0NThCne4wj2usLjELa6wwxXucYUBV3iAq8fo9PDgZP8oChduRBK4zCqa6FQVGQPfKRURUsJWWElNqKKEMs4KGQtqgEEblRTcAFsWKs6SwggJg8Dk6RO0US0r_QxhbgpOVCppkqWMUiGYBB4EDsUYw2CPNEKTdt1yGbrR20tRfuR_19cI7Xa_-el7sdz47VetOnIwmTYPVlR62dQ5sDZwa7b34wg99Xrq5FF74UOSZiP0rlVcHt74-oY_27nV1J6j-_179QJtrM4b_RK47UqM0V0-5_BM9ydjB8sx2vx0MPv67Regf51-
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+telluride+nanosheets+by+scalable+solid+lithiation+and+exfoliation&rft.jtitle=Nature+%28London%29&rft.au=Zhang%2C+Liangzhu&rft.au=Yang%2C+Zixuan&rft.au=Feng%2C+Shun&rft.au=Guo%2C+Zhuobin&rft.date=2024-04-11&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=628&rft.issue=8007&rft.spage=313&rft.epage=319&rft_id=info:doi/10.1038%2Fs41586-024-07209-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_024_07209_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon