Metal telluride nanosheets by scalable solid lithiation and exfoliation
Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science 1 – 3 . Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing tim...
Saved in:
Published in | Nature (London) Vol. 628; no. 8007; pp. 313 - 319 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-024-07209-2 |
Cover
Loading…
Abstract | Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science
1
–
3
. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market
4
–
8
. We report the fast and scalable synthesis of a wide variety of MTe
2
(M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe
2
within 10 min and their subsequent hydrolysis within seconds. Using NbTe
2
as a representative, we produced more than a hundred grams (108 g) of NbTe
2
nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe
2
nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium–oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.
Fast and scalable synthesis of a variety of transition metal telluride nanosheets by solid lithiation and hydrolysis is demonstrated and several interesting quantum phenomena were observed, such as quantum oscillations and giant magnetoresistance. |
---|---|
AbstractList | Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science
. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market
. We report the fast and scalable synthesis of a wide variety of MTe
(M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe
within 10 min and their subsequent hydrolysis within seconds. Using NbTe
as a representative, we produced more than a hundred grams (108 g) of NbTe
nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe
nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization. Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization. Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science 1 – 3 . Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market 4 – 8 . We report the fast and scalable synthesis of a wide variety of MTe 2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe 2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe 2 as a representative, we produced more than a hundred grams (108 g) of NbTe 2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe 2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium–oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization. Fast and scalable synthesis of a variety of transition metal telluride nanosheets by solid lithiation and hydrolysis is demonstrated and several interesting quantum phenomena were observed, such as quantum oscillations and giant magnetoresistance. |
Author | Wu, Zhong-Shuai Cheng, Hui-Ming Wang, Sen Sun, Dong-Ming Kang, Ning Ding, Yajun Feng, Shun Fu, Yunqi Zheng, Shuanghao Guo, Zhuobin Zeng, Huidan Jia, Qingchao Mi, Jinxing Das, Pratteek Li, Mingrun Yang, Zixuan Zhang, Liangzhu Bi, Zhihong Ma, Jiaxin |
Author_xml | – sequence: 1 givenname: Liangzhu orcidid: 0000-0002-7968-6847 surname: Zhang fullname: Zhang, Liangzhu organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology – sequence: 2 givenname: Zixuan surname: Yang fullname: Yang, Zixuan organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University – sequence: 3 givenname: Shun surname: Feng fullname: Feng, Shun organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 4 givenname: Zhuobin surname: Guo fullname: Guo, Zhuobin organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Qingchao surname: Jia fullname: Jia, Qingchao organization: School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology – sequence: 6 givenname: Huidan surname: Zeng fullname: Zeng, Huidan organization: School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology – sequence: 7 givenname: Yajun surname: Ding fullname: Ding, Yajun organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 8 givenname: Pratteek surname: Das fullname: Das, Pratteek organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 9 givenname: Zhihong surname: Bi fullname: Bi, Zhihong organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 10 givenname: Jiaxin surname: Ma fullname: Ma, Jiaxin organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 11 givenname: Yunqi surname: Fu fullname: Fu, Yunqi organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University – sequence: 12 givenname: Sen surname: Wang fullname: Wang, Sen organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 13 givenname: Jinxing surname: Mi fullname: Mi, Jinxing organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 14 givenname: Shuanghao surname: Zheng fullname: Zheng, Shuanghao organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences – sequence: 15 givenname: Mingrun surname: Li fullname: Li, Mingrun organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 16 givenname: Dong-Ming orcidid: 0000-0003-1552-7940 surname: Sun fullname: Sun, Dong-Ming organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 17 givenname: Ning orcidid: 0000-0003-4478-8402 surname: Kang fullname: Kang, Ning email: nkang@pku.edu.cn organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University – sequence: 18 givenname: Zhong-Shuai orcidid: 0000-0003-1851-4803 surname: Wu fullname: Wu, Zhong-Shuai email: wuzs@dicp.ac.cn organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences – sequence: 19 givenname: Hui-Ming orcidid: 0000-0002-5387-4241 surname: Cheng fullname: Cheng, Hui-Ming email: hm.cheng@siat.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38570689$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PBCEQhonReHfqH7AwW9qsDh8LbGmMX4nGRmvCAqsYjj2BTfTfu96phcVVZCbPO8w8C7Qbh-gQOsZwhoHK88xwI3kNhNUgCLQ12UFzzASvGZdiF80BiKxBUj5Di5zfAKDBgu2jGZWNAC7bObp5cEWHqrgQxuStq6KOQ351ruSq-6yy0UF3wVV5CN5WwZdXr4sfYqWjrdxHP7XX9SHa63XI7ujnPUDP11dPl7f1_ePN3eXFfW0YpqXGTlrdMsaFsaQzpuXcGkeopYQywbRpOtoTznrLteiBNJ1tWq77zkxN2hB6gE43c1dpeB9dLmrps5m219ENY1YUKAUMQjQTevKDjt3SWbVKfqnTp_o9fgLIBjBpyDm5_g_BoL4Nq41hNRlWa8PqewH5L2R8WSsoSfuwPUo30Tz9E19cUm_DmOKka1vqC07oj9s |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_178076 crossref_primary_10_7566_JPSJ_93_111003 crossref_primary_10_1016_j_commatsci_2025_113824 crossref_primary_10_1039_D4SE01623H crossref_primary_10_1016_j_fuel_2024_133955 crossref_primary_10_1021_acs_nanolett_4c02621 crossref_primary_10_1021_acsnano_4c09114 crossref_primary_10_1021_acsnano_4c09147 crossref_primary_10_1016_j_apenergy_2024_125179 crossref_primary_10_1021_acs_nanolett_4c05645 crossref_primary_10_1016_j_matt_2024_04_020 crossref_primary_10_1021_accountsmr_4c00270 crossref_primary_10_1002_advs_202411344 crossref_primary_10_1016_j_jallcom_2024_176128 crossref_primary_10_1039_D4NR03543G crossref_primary_10_1016_j_matlet_2025_138370 crossref_primary_10_1002_adfm_202414823 crossref_primary_10_1016_j_matt_2024_05_037 crossref_primary_10_1016_j_jcrysgro_2024_127891 |
Cites_doi | 10.1093/nsr/nwaa084 10.1126/science.aaw9270 10.1002/anie.201808050 10.1103/PhysRevB.97.241409 10.1038/s41586-018-0008-3 10.1038/ncomms3995 10.1021/ic00253a001 10.1016/0025-5408(86)90011-5 10.1038/nenergy.2017.89 10.1021/acsnano.2c12610 10.1038/s41467-022-33201-3 10.1002/adma.201907857 10.1126/science.1194975 10.1038/s41596-021-00643-w 10.1038/s41467-019-09995-0 10.1038/nature13763 10.7566/JPSJ.90.014706 10.1002/adfm.202004139 10.1126/science.abf5825 10.1080/00150198308208248 10.1038/ncomms11038 10.1021/acs.nanolett.0c04935 10.1093/nsr/nwz156 10.1038/s41586-022-05521-3 10.1038/s41586-018-0574-4 10.1126/science.1226419 10.1038/s41467-019-11949-5 10.1038/s41467-021-22343-5 10.1002/adma.201801043 10.1038/s44160-022-00232-z 10.1002/adma.201900568 10.1038/s41598-019-45142-x 10.1103/PhysRevB.94.235154 10.1021/acsnano.6b06922 10.1038/s41467-022-29182-y 10.1021/cm960579t 10.1038/s41467-019-12831-0 10.1021/acsnano.6b02368 10.1039/C6TA05110C 10.1038/nnano.2014.207 10.1038/s41563-020-00831-1 10.1002/adfm.202010901 10.1126/science.aah6442 10.1038/nphys3314 10.1038/s41563-019-0394-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1038/s41586-024-07209-2 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 319 |
ExternalDocumentID | 38570689 10_1038_s41586_024_07209_2 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM 1VR 2XV 41X 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L AARCD AAYXX ABFSG ABJCF ABUWG ACMFV ACSTC AEUYN AEZWR AFANA AFHIU AFKRA AHWEU AIXLP ALPWD ATHPR AZQEC BBNVY BCU BEC BGLVJ BKEYQ BKSAR BPHCQ BVXVI CCPQU CITATION D1I D1J D1K DWQXO EMH EX3 FYUFA GNUQQ GUQSH HMCUK INR ISR K6- KB. L6V LK5 LK8 M1P M2M M2P M7R M7S NAPCQ NFIDA P62 PATMY PCBAR PDBOC PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 S0X SJFOW UKHRP WOW ~7V .-4 .GJ .HR 00M 08P 0WA 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM OHT P-O PEA PJZUB PM3 PPXIY PQGLB QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 7X8 |
ID | FETCH-LOGICAL-c413t-1e8da94467cd2bcc966dce23d323474ac5b3f264fd6a7f025bd596afbc2643523 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Jul 21 10:18:28 EDT 2025 Mon Jul 21 05:25:56 EDT 2025 Tue Jul 01 02:58:53 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 21 02:39:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8007 |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-1e8da94467cd2bcc966dce23d323474ac5b3f264fd6a7f025bd596afbc2643523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1851-4803 0000-0003-1552-7940 0000-0003-4478-8402 0000-0002-7968-6847 0000-0002-5387-4241 |
PMID | 38570689 |
PQID | 3033010775 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3033010775 pubmed_primary_38570689 crossref_primary_10_1038_s41586_024_07209_2 crossref_citationtrail_10_1038_s41586_024_07209_2 springer_journals_10_1038_s41586_024_07209_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-11 |
PublicationDateYYYYMMDD | 2024-04-11 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | Zhang (CR30) 2020; 7 Li (CR32) 2018; 30 Tsai, Heising, Schindler, Kannewurf, Kanatzidis (CR25) 1997; 9 Tiwari (CR43) 2021; 12 Zhang (CR7) 2020; 30 Yang (CR20) 2022; 17 Lin (CR21) 2018; 562 Chia, Ambrosi, Lazar, Sofer, Pumera (CR34) 2016; 4 Zhou (CR1) 2018; 556 Fiori (CR2) 2014; 9 Zheng (CR24) 2014; 5 Benalcazar, Bernevig, Hughes (CR39) 2017; 357 Jindal (CR14) 2023; 613 Rhodes (CR42) 2021; 21 Li (CR9) 2021; 31 Kowalczyk (CR40) 2023; 17 Yang (CR19) 2023; 2 Qi (CR37) 2016; 7 Wang (CR13) 2020; 368 Chen (CR38) 2016; 94 Keum (CR10) 2015; 11 Li (CR6) 2021; 20 Coleman (CR8) 2011; 331 Joensen, Frindt, Morrison (CR23) 1986; 21 CR5 Mleczko (CR33) 2016; 10 Ono (CR27) 2020; 90 Hangyo, Nakashima, Mitsuishi (CR31) 1983; 52 Huang (CR41) 2019; 10 Choi (CR4) 2022; 13 Nicolosi, Chhowalla, Kanatzidis, Strano, Coleman (CR17) 2013; 340 Yang, Zhang, Nia, Feng (CR18) 2020; 32 Peng (CR22) 2019; 31 Jawaid (CR29) 2017; 11 Ma (CR45) 2022; 13 Zhao (CR15) 2020; 7 Zhong (CR44) 2018; 97 Ali (CR12) 2014; 514 Peng (CR28) 2018; 57 Xu (CR11) 2021; 372 Kanatzidis, Marks (CR26) 1987; 26 McGlynn (CR16) 2019; 10 Pomerantseva, Gogotsi (CR3) 2017; 2 Huang (CR35) 2019; 9 Cui (CR36) 2019; 10 V Nicolosi (7209_CR17) 2013; 340 A Jawaid (7209_CR29) 2017; 11 A Tiwari (7209_CR43) 2021; 12 X Xu (7209_CR11) 2021; 372 J Cui (7209_CR36) 2019; 10 W Wang (7209_CR13) 2020; 368 Y Qi (7209_CR37) 2016; 7 DA Rhodes (7209_CR42) 2021; 21 J Zhou (7209_CR1) 2018; 556 F-T Huang (7209_CR41) 2019; 10 X Zhao (7209_CR15) 2020; 7 M Hangyo (7209_CR31) 1983; 52 J Zheng (7209_CR24) 2014; 5 J Peng (7209_CR28) 2018; 57 R Yang (7209_CR19) 2023; 2 J Li (7209_CR32) 2018; 30 H Kowalczyk (7209_CR40) 2023; 17 S Zhong (7209_CR44) 2018; 97 7209_CR5 J Li (7209_CR6) 2021; 20 L Zhang (7209_CR7) 2020; 30 MN Ali (7209_CR12) 2014; 514 J-H Huang (7209_CR35) 2019; 9 FC Chen (7209_CR38) 2016; 94 WA Benalcazar (7209_CR39) 2017; 357 JC McGlynn (7209_CR16) 2019; 10 JN Coleman (7209_CR8) 2011; 331 T Ma (7209_CR45) 2022; 13 G Fiori (7209_CR2) 2014; 9 X Chia (7209_CR34) 2016; 4 M Ono (7209_CR27) 2020; 90 Z Lin (7209_CR21) 2018; 562 C Zhang (7209_CR30) 2020; 7 H Li (7209_CR9) 2021; 31 DH Keum (7209_CR10) 2015; 11 R Yang (7209_CR20) 2022; 17 P Joensen (7209_CR23) 1986; 21 E Pomerantseva (7209_CR3) 2017; 2 A Jindal (7209_CR14) 2023; 613 MG Kanatzidis (7209_CR26) 1987; 26 H-L Tsai (7209_CR25) 1997; 9 S Yang (7209_CR18) 2020; 32 SH Choi (7209_CR4) 2022; 13 J Peng (7209_CR22) 2019; 31 MJ Mleczko (7209_CR33) 2016; 10 |
References_xml | – volume: 7 start-page: 1360 year: 2020 end-page: 1366 ident: CR15 article-title: Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwaa084 – volume: 368 start-page: 534 year: 2020 end-page: 537 ident: CR13 article-title: Evidence for an edge supercurrent in the Weyl superconductor MoTe publication-title: Science doi: 10.1126/science.aaw9270 – volume: 57 start-page: 13533 year: 2018 end-page: 13537 ident: CR28 article-title: Two-dimensional tellurium nanosheets exhibiting an anomalous switchable photoresponse with thickness dependence publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808050 – volume: 97 start-page: 241409 year: 2018 ident: CR44 article-title: Origin of magnetoresistance suppression in thin γ–MoTe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.241409 – volume: 556 start-page: 355 year: 2018 end-page: 359 ident: CR1 article-title: A library of atomically thin metal chalcogenides publication-title: Nature doi: 10.1038/s41586-018-0008-3 – volume: 5 year: 2014 ident: CR24 article-title: High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide publication-title: Nat. Commun. doi: 10.1038/ncomms3995 – volume: 26 start-page: 783 year: 1987 end-page: 784 ident: CR26 article-title: Tetrahydroborate intercalation reagents. Convenient, straightforward routes to known and new types of layered intercalation compounds publication-title: Inorg. Chem. doi: 10.1021/ic00253a001 – volume: 21 start-page: 457 year: 1986 end-page: 461 ident: CR23 article-title: Single-layer MoS publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(86)90011-5 – volume: 2 start-page: 17089 year: 2017 ident: CR3 article-title: Two-dimensional heterostructures for energy storage publication-title: Nat. Energy doi: 10.1038/nenergy.2017.89 – volume: 17 start-page: 6708 year: 2023 end-page: 6718 ident: CR40 article-title: Gate and temperature driven phase transitions in few-layer MoTe publication-title: ACS Nano doi: 10.1021/acsnano.2c12610 – volume: 13 year: 2022 ident: CR45 article-title: Growth of bilayer MoTe single crystals with strong non-linear Hall effect publication-title: Nat. Commun. doi: 10.1038/s41467-022-33201-3 – volume: 32 start-page: 1907857 year: 2020 ident: CR18 article-title: Emerging 2D materials produced via electrochemistry publication-title: Adv. Mater. doi: 10.1002/adma.201907857 – volume: 331 start-page: 568 year: 2011 end-page: 571 ident: CR8 article-title: Two-dimensional nanosheets produced by liquid exfoliation of layered materials publication-title: Science doi: 10.1126/science.1194975 – volume: 17 start-page: 358 year: 2022 end-page: 377 ident: CR20 article-title: High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00643-w – volume: 10 year: 2019 ident: CR36 article-title: Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1 -MoTe publication-title: Nat. Commun. doi: 10.1038/s41467-019-09995-0 – volume: 514 start-page: 205 year: 2014 end-page: 208 ident: CR12 article-title: Large, non-saturating magnetoresistance in WTe publication-title: Nature doi: 10.1038/nature13763 – volume: 90 start-page: 014706 year: 2020 ident: CR27 article-title: New lithium- and ethylenediamine-intercalated superconductors Li (C H N ) WTe publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.90.014706 – volume: 30 start-page: 2004139 year: 2020 ident: CR7 article-title: Solid phase exfoliation for producing dispersible transition metal dichalcogenides nanosheets publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004139 – volume: 372 start-page: 195 year: 2021 end-page: 200 ident: CR11 article-title: Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe publication-title: Science doi: 10.1126/science.abf5825 – volume: 52 start-page: 151 year: 1983 end-page: 159 ident: CR31 article-title: Raman spectroscopic studies of MX -type layered compounds publication-title: Ferroelectrics doi: 10.1080/00150198308208248 – volume: 7 year: 2016 ident: CR37 article-title: Superconductivity in Weyl semimetal candidate MoTe publication-title: Nat. Commun. doi: 10.1038/ncomms11038 – volume: 21 start-page: 2505 year: 2021 end-page: 2511 ident: CR42 article-title: Enhanced superconductivity in monolayer -MoTe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04935 – volume: 7 start-page: 324 year: 2020 end-page: 332 ident: CR30 article-title: Mass production of 2D materials by intermediate-assisted grinding exfoliation publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz156 – volume: 613 start-page: 48 year: 2023 end-page: 52 ident: CR14 article-title: Coupled ferroelectricity and superconductivity in bilayer T -MoTe publication-title: Nature doi: 10.1038/s41586-022-05521-3 – volume: 562 start-page: 254 year: 2018 end-page: 258 ident: CR21 article-title: Solution-processable 2D semiconductors for high-performance large-area electronics publication-title: Nature doi: 10.1038/s41586-018-0574-4 – volume: 340 start-page: 1226419 year: 2013 ident: CR17 article-title: Liquid exfoliation of layered materials publication-title: Science doi: 10.1126/science.1226419 – volume: 10 year: 2019 ident: CR41 article-title: Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe publication-title: Nat. Commun. doi: 10.1038/s41467-019-11949-5 – volume: 12 year: 2021 ident: CR43 article-title: Giant -axis nonlinear anomalous Hall effect in T -MoTe and WTe publication-title: Nat. Commun. doi: 10.1038/s41467-021-22343-5 – volume: 30 start-page: 1801043 year: 2018 ident: CR32 article-title: Synthesis of ultrathin metallic MTe (M = V, Nb, Ta) single-crystalline nanoplates publication-title: Adv. Mater. doi: 10.1002/adma.201801043 – volume: 2 start-page: 101 year: 2023 end-page: 118 ident: CR19 article-title: Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials publication-title: Nat. Synth. doi: 10.1038/s44160-022-00232-z – volume: 31 start-page: 1900568 year: 2019 ident: CR22 article-title: High phase purity of large-sized 1T′-MoS monolayers with 2D superconductivity publication-title: Adv. Mater. doi: 10.1002/adma.201900568 – volume: 9 year: 2019 ident: CR35 article-title: Polymorphism control of layered MoTe through two-dimensional solid-phase crystallization publication-title: Sci. Rep. doi: 10.1038/s41598-019-45142-x – volume: 94 start-page: 235154 year: 2016 ident: CR38 article-title: Extremely large magnetoresistance in the type-II Weyl semimetal MoTe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.235154 – volume: 11 start-page: 635 year: 2017 end-page: 646 ident: CR29 article-title: Redox exfoliation of layered transition metal dichalcogenides publication-title: ACS Nano doi: 10.1021/acsnano.6b06922 – volume: 13 year: 2022 ident: CR4 article-title: Large-scale synthesis of graphene and other 2D materials towards industrialization publication-title: Nat. Commun. doi: 10.1038/s41467-022-29182-y – volume: 9 start-page: 879 year: 1997 end-page: 882 ident: CR25 article-title: Exfoliated-restacked phase of WS publication-title: Chem. Mater. doi: 10.1021/cm960579t – volume: 10 year: 2019 ident: CR16 article-title: The rapid electrochemical activation of MoTe for the hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-12831-0 – volume: 10 start-page: 7507 year: 2016 end-page: 7514 ident: CR33 article-title: High current density and low thermal conductivity of atomically thin semimetallic WTe publication-title: ACS Nano doi: 10.1021/acsnano.6b02368 – ident: CR5 – volume: 4 start-page: 14241 year: 2016 end-page: 14253 ident: CR34 article-title: Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX , M = V, Nb, and Ta; X = S, Se, and Te) publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05110C – volume: 9 start-page: 768 year: 2014 end-page: 779 ident: CR2 article-title: Electronics based on two-dimensional materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 20 start-page: 181 year: 2021 end-page: 187 ident: CR6 article-title: Printable two-dimensional superconducting monolayers publication-title: Nat. Mater. doi: 10.1038/s41563-020-00831-1 – volume: 31 start-page: 2010901 year: 2021 ident: CR9 article-title: Two-dimensional metal telluride atomic crystals: preparation, physical properties, and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010901 – volume: 357 start-page: 61 year: 2017 end-page: 66 ident: CR39 article-title: Quantized electric multipole insulators publication-title: Science doi: 10.1126/science.aah6442 – volume: 11 start-page: 482 year: 2015 end-page: 486 ident: CR10 article-title: Bandgap opening in few-layered monoclinic MoTe publication-title: Nat. Phys. doi: 10.1038/nphys3314 – volume: 17 start-page: 6708 year: 2023 ident: 7209_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.2c12610 – volume: 97 start-page: 241409 year: 2018 ident: 7209_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.241409 – volume: 20 start-page: 181 year: 2021 ident: 7209_CR6 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00831-1 – volume: 4 start-page: 14241 year: 2016 ident: 7209_CR34 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05110C – volume: 9 year: 2019 ident: 7209_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-019-45142-x – volume: 9 start-page: 768 year: 2014 ident: 7209_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 2 start-page: 101 year: 2023 ident: 7209_CR19 publication-title: Nat. Synth. doi: 10.1038/s44160-022-00232-z – volume: 21 start-page: 457 year: 1986 ident: 7209_CR23 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(86)90011-5 – volume: 31 start-page: 1900568 year: 2019 ident: 7209_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201900568 – volume: 10 start-page: 7507 year: 2016 ident: 7209_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.6b02368 – volume: 31 start-page: 2010901 year: 2021 ident: 7209_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010901 – volume: 7 start-page: 324 year: 2020 ident: 7209_CR30 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz156 – volume: 357 start-page: 61 year: 2017 ident: 7209_CR39 publication-title: Science doi: 10.1126/science.aah6442 – volume: 514 start-page: 205 year: 2014 ident: 7209_CR12 publication-title: Nature doi: 10.1038/nature13763 – volume: 340 start-page: 1226419 year: 2013 ident: 7209_CR17 publication-title: Science doi: 10.1126/science.1226419 – volume: 57 start-page: 13533 year: 2018 ident: 7209_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808050 – volume: 30 start-page: 2004139 year: 2020 ident: 7209_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004139 – volume: 10 year: 2019 ident: 7209_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12831-0 – volume: 11 start-page: 635 year: 2017 ident: 7209_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.6b06922 – volume: 7 year: 2016 ident: 7209_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms11038 – ident: 7209_CR5 doi: 10.1038/s41563-019-0394-4 – volume: 331 start-page: 568 year: 2011 ident: 7209_CR8 publication-title: Science doi: 10.1126/science.1194975 – volume: 13 year: 2022 ident: 7209_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33201-3 – volume: 368 start-page: 534 year: 2020 ident: 7209_CR13 publication-title: Science doi: 10.1126/science.aaw9270 – volume: 94 start-page: 235154 year: 2016 ident: 7209_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.235154 – volume: 7 start-page: 1360 year: 2020 ident: 7209_CR15 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwaa084 – volume: 21 start-page: 2505 year: 2021 ident: 7209_CR42 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04935 – volume: 90 start-page: 014706 year: 2020 ident: 7209_CR27 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.90.014706 – volume: 372 start-page: 195 year: 2021 ident: 7209_CR11 publication-title: Science doi: 10.1126/science.abf5825 – volume: 26 start-page: 783 year: 1987 ident: 7209_CR26 publication-title: Inorg. Chem. doi: 10.1021/ic00253a001 – volume: 556 start-page: 355 year: 2018 ident: 7209_CR1 publication-title: Nature doi: 10.1038/s41586-018-0008-3 – volume: 32 start-page: 1907857 year: 2020 ident: 7209_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201907857 – volume: 11 start-page: 482 year: 2015 ident: 7209_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys3314 – volume: 12 year: 2021 ident: 7209_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22343-5 – volume: 52 start-page: 151 year: 1983 ident: 7209_CR31 publication-title: Ferroelectrics doi: 10.1080/00150198308208248 – volume: 9 start-page: 879 year: 1997 ident: 7209_CR25 publication-title: Chem. Mater. doi: 10.1021/cm960579t – volume: 13 year: 2022 ident: 7209_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29182-y – volume: 10 year: 2019 ident: 7209_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11949-5 – volume: 613 start-page: 48 year: 2023 ident: 7209_CR14 publication-title: Nature doi: 10.1038/s41586-022-05521-3 – volume: 10 year: 2019 ident: 7209_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09995-0 – volume: 5 year: 2014 ident: 7209_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms3995 – volume: 562 start-page: 254 year: 2018 ident: 7209_CR21 publication-title: Nature doi: 10.1038/s41586-018-0574-4 – volume: 2 start-page: 17089 year: 2017 ident: 7209_CR3 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.89 – volume: 30 start-page: 1801043 year: 2018 ident: 7209_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201801043 – volume: 17 start-page: 358 year: 2022 ident: 7209_CR20 publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00643-w |
SSID | ssj0005174 |
Score | 2.559873 |
Snippet | Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science
1
–
3... Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science .... Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 313 |
SubjectTerms | 140/133 140/146 639/301/357/1018 639/925/357/551 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
Title | Metal telluride nanosheets by scalable solid lithiation and exfoliation |
URI | https://link.springer.com/article/10.1038/s41586-024-07209-2 https://www.ncbi.nlm.nih.gov/pubmed/38570689 https://www.proquest.com/docview/3033010775 |
Volume | 628 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0RfBFbP26qscKPig12tvdZJNHLe0VsYdIC0dfQvbLHEhOmgu0_eud_ciHPS3Wl3Asd3PLzi8zv53ZmUXoNVMi1lTSiMeERcCIsyhTeyIChmTInkkkdRnd41lydMo-z-N5H9N11SUr8V5e_bGu5H-0CmOgV1slewvNdkJhAD6DfuEJGobnP-n4WNtSRlsH0pwvlN6timpZl1qvassqa1h-VxgFk1goW2xcej24hIG-MDDc6yUQ1Jlr9Dm86KOLFHSx5S8Aqe9XZdNZjDB-trhoerDBSvlIdNl0Y9PGRWbPysaWnQ0jDsQdVAkWsa0A8F2tvQ_xhpPxJGJJcJ7BsiYkHUAIqCkfmErqa1CD16XecK4ZdN--vQaakdrD0jAXTmxOqHdfbcr-mlfrzhq6LDtNcy8jBxm5k5GD494ksLmw916kh9P-YNC13t2h1ApkfFifx-90Zm2PspZfd7Tl5CF6EPYb-KMHzxa6o6ttdM-d-5X1NtoKtr3Gb0ID8reP0NThCne4wj2usLjELa6wwxXucYUBV3iAq8fo9PDgZP8oChduRBK4zCqa6FQVGQPfKRURUsJWWElNqKKEMs4KGQtqgEEblRTcAFsWKs6SwggJg8Dk6RO0US0r_QxhbgpOVCppkqWMUiGYBB4EDsUYw2CPNEKTdt1yGbrR20tRfuR_19cI7Xa_-el7sdz47VetOnIwmTYPVlR62dQ5sDZwa7b34wg99Xrq5FF74UOSZiP0rlVcHt74-oY_27nV1J6j-_179QJtrM4b_RK47UqM0V0-5_BM9ydjB8sx2vx0MPv67Regf51- |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+telluride+nanosheets+by+scalable+solid+lithiation+and+exfoliation&rft.jtitle=Nature+%28London%29&rft.au=Zhang%2C+Liangzhu&rft.au=Yang%2C+Zixuan&rft.au=Feng%2C+Shun&rft.au=Guo%2C+Zhuobin&rft.date=2024-04-11&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=628&rft.issue=8007&rft.spage=313&rft.epage=319&rft_id=info:doi/10.1038%2Fs41586-024-07209-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_024_07209_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |