CRISPR-Cas12a exhibits metal-dependent specificity switching
Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been pe...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 16; pp. 9343 - 9359 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
09.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.
Lay Summary
CRISPR-Cas systems are commonly used for biotechnology. Their specificity has been studied extensively and has previously been thought to be well understood. In this work, we asked a simple question about the effect of metal ion concentration on CRISPR specificity; the results are surprising and striking. At the actual metal ion concentrations found in cells, Cas12a specificity is inverted in comparison to the higher metal ion conditions that are typically used in test-tube assays. The specificity observed at lower metal ion concentration is more relevant under cellular conditions.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg 2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg 2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg 2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg 2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg 2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. Graphical Abstract Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. Lay Summary CRISPR-Cas systems are commonly used for biotechnology. Their specificity has been studied extensively and has previously been thought to be well understood. In this work, we asked a simple question about the effect of metal ion concentration on CRISPR specificity; the results are surprising and striking. At the actual metal ion concentrations found in cells, Cas12a specificity is inverted in comparison to the higher metal ion conditions that are typically used in test-tube assays. The specificity observed at lower metal ion concentration is more relevant under cellular conditions. Graphical Abstract Graphical Abstract Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. |
Author | Nguyen, Giang T Buscher, Kathryn A Schelling, Michael A Sritharan, Aneisha Raju, Akshara Sashital, Dipali G |
Author_xml | – sequence: 1 givenname: Giang T surname: Nguyen fullname: Nguyen, Giang T – sequence: 2 givenname: Michael A surname: Schelling fullname: Schelling, Michael A – sequence: 3 givenname: Akshara surname: Raju fullname: Raju, Akshara – sequence: 4 givenname: Kathryn A surname: Buscher fullname: Buscher, Kathryn A – sequence: 5 givenname: Aneisha surname: Sritharan fullname: Sritharan, Aneisha – sequence: 6 givenname: Dipali G orcidid: 0000-0001-7681-6987 surname: Sashital fullname: Sashital, Dipali G email: sashital@iastate.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39019776$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1Lw0AQxRdRtK2evEtPIkh0J7vJZkEQCX5BQal6XnY3k3Y1TWI29eO_N9JWVMTTHOY37w3v9cl6WZVIyC7QI6CSHZe6OZ48aYyBrZEesDgMuIzDddKjjEYBUJ5skb73j5QCh4hvki0mKUgh4h45ScfXd7fjINUeQj3Et6kzrvXDGba6CDKsscywbIe-RutyZ137PvSvrrVTV062yUauC487yzkgDxfn9-lVMLq5vE7PRoHlwNoAEBjy0LIM0YZcMAEoZR5Ja2ORmUhiFhsrJAI3oYFMSJFIY2QMRpgMOBuQ04VuPTczzGz3UKMLVTduppt3VWmnfm5KN1WT6kUBsAQYDzuFg6VCUz3P0bdq5rzFotAlVnOvGE1CRkUkkg7d-2725bLKrANgAdim8r7BXHWp6NZVn96uUEDVZy-q60Ute-luDn_drGT_pvcXdDWv_wU_AE3QndI |
CitedBy_id | crossref_primary_10_1093_nar_gkaf040 crossref_primary_10_1039_D4AY01695E crossref_primary_10_1016_j_snb_2024_137001 |
Cites_doi | 10.1038/s41587-020-0555-7 10.1016/j.tibs.2022.02.004 10.1038/nature13011 10.1073/pnas.1718686115 10.1016/bs.mie.2018.10.027 10.1093/nar/gkac462 10.1038/s41564-019-0382-0 10.1016/j.cell.2015.09.038 10.7554/eLife.55143 10.1073/pnas.1104144108 10.1038/s41589-022-01082-8 10.1016/j.molcel.2018.06.043 10.1021/bi401207q 10.1016/j.molcel.2012.03.020 10.1016/j.celrep.2015.01.067 10.1128/mBio.01361-21 10.1073/pnas.2113747118 10.1093/nar/gkab163 10.1111/j.1574-6976.2006.00015.x 10.1016/j.cub.2017.12.035 10.1021/bi702363u 10.1016/j.molcel.2017.03.016 10.1016/j.molcel.2018.11.021 10.1093/nar/25.20.4067 10.1016/j.cell.2018.10.045 10.1016/j.cell.2024.04.031 10.1073/pnas.1402597111 10.1016/j.chom.2021.09.001 10.1016/bs.mie.2022.08.048 10.1038/nmeth.4284 10.1038/msb4100050 10.1126/science.aar6245 10.1016/j.molcel.2012.03.018 10.1074/jbc.RA120.012933 10.1038/s41422-018-0022-x 10.1038/nature22398 10.1093/nar/gkad636 10.1016/j.bj.2019.10.005 10.1016/j.molcel.2023.09.008 10.1371/journal.pbio.3002065 10.1021/acs.jcim.0c00929 10.2174/1875036201307010001 10.1038/nmeth.2089 10.1038/s41587-020-0646-5 10.1128/JB.01412-07 10.1016/j.celrep.2017.12.041 10.1016/j.molcel.2017.09.007 10.1038/nbt.3620 10.1023/A:1016026831789 10.1038/nbt.3609 10.1016/j.cell.2017.05.044 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/nar/gkae613 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 9359 |
ExternalDocumentID | PMC11381342 39019776 10_1093_nar_gkae613 10.1093/nar/gkae613 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1652661 – fundername: Iowa State University – fundername: NIH HHS grantid: GM140876 – fundername: ; – fundername: ; grantid: 1652661 – fundername: ; grantid: GM140876 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c413t-1e13e42c3deec247371e99f59cc67db59ed6bc79e14b2b1d79789bb961b7bd143 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:35:22 EDT 2025 Thu Jul 10 22:18:42 EDT 2025 Mon Jul 21 05:33:16 EDT 2025 Tue Jul 01 02:59:31 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Mon Jun 30 08:34:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-1e13e42c3deec247371e99f59cc67db59ed6bc79e14b2b1d79789bb961b7bd143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-7681-6987 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkae613 |
PMID | 39019776 |
PQID | 3082307578 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11381342 proquest_miscellaneous_3082307578 pubmed_primary_39019776 crossref_citationtrail_10_1093_nar_gkae613 crossref_primary_10_1093_nar_gkae613 oup_primary_10_1093_nar_gkae613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-09 |
PublicationDateYYYYMMDD | 2024-09-09 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Owczarzy (2024090903560610200_B36) 2008; 47 Cameron (2024090903560610200_B53) 2017; 14 Jung (2024090903560610200_B35) 2017; 170 Murugan (2024090903560610200_B31) 2021; 49 Kim (2024090903560610200_B13) 2016; 34 Chen (2024090903560610200_B32) 2018; 360 Weigel (2024090903560610200_B44) 2006; 30 Aronesty (2024090903560610200_B26) 2013; 7 Singh (2024090903560610200_B20) 2018; 115 Grubbs (2024090903560610200_B50) 2002; 15 Naqvi (2024090903560610200_B46) 2022; 18 Murugan (2024090903560610200_B2) 2017; 68 Zetsche (2024090903560610200_B1) 2015; 163 Kleinstiver (2024090903560610200_B12) 2016; 34 Baba (2024090903560610200_B29) 2006; 2 Lazzarotto (2024090903560610200_B52) 2020; 38 Lee (2024090903560610200_B4) 2022; 47 Schneider (2024090903560610200_B25) 2012; 9 Fu (2024090903560610200_B16) 2019; 4 Cofsky (2024090903560610200_B8) 2020; 9 Marino (2024090903560610200_B34) 2022; 50 Jacob (2024090903560610200_B30) 1954; 87 Saha (2024090903560610200_B45) 2020; 60 Hossain (2024090903560610200_B48) 2021; 29 Xu (2024090903560610200_B37) 1997; 25 Maeshima (2024090903560610200_B51) 2018; 28 Phan (2024090903560610200_B38) 2019; 616 Singh (2024090903560610200_B47) 2023; 51 Deveau (2024090903560610200_B21) 2008; 190 Froschauer (2024090903560610200_B24) 2004; 237 Son (2024090903560610200_B9) 2021; 118 Murugan (2024090903560610200_B14) 2020; 295 Schelling (2024090903560610200_B22) 2023; 21 Eggers (2024090903560610200_B43) 2024; 187 Paul (2024090903560610200_B3) 2020; 43 Swarts (2024090903560610200_B6) 2019; 73 Sashital (2024090903560610200_B18) 2012; 46 Szczelkun (2024090903560610200_B40) 2014; 111 Li (2024090903560610200_B33) 2018; 28 Rutkauskas (2024090903560610200_B39) 2015; 10 Semenova (2024090903560610200_B19) 2011; 108 Sternberg (2024090903560610200_B17) 2014; 507 Tyrrell (2024090903560610200_B23) 2013; 52 Stella (2024090903560610200_B7) 2018; 175 Stella (2024090903560610200_B10) 2017; 546 Westra (2024090903560610200_B41) 2012; 46 Newton (2024090903560610200_B42) 2023; 83 Wu (2024090903560610200_B49) 2021; 12 Martin (2024090903560610200_B27) 2023; 679 Jones (2024090903560610200_B15) 2021; 39 Gong (2024090903560610200_B28) 2018; 22 Swarts (2024090903560610200_B5) 2017; 66 Strohkendl (2024090903560610200_B11) 2018; 71 38076861 - bioRxiv. 2024 Jan 17:2023.11.29.569287. doi: 10.1101/2023.11.29.569287 |
References_xml | – volume: 38 start-page: 1317 year: 2020 ident: 2024090903560610200_B52 article-title: CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0555-7 – volume: 47 start-page: 464 year: 2022 ident: 2024090903560610200_B4 article-title: Creating memories: molecular mechanisms of CRISPR adaptation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2022.02.004 – volume: 507 start-page: 62 year: 2014 ident: 2024090903560610200_B17 article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 publication-title: Nature doi: 10.1038/nature13011 – volume: 115 start-page: 5444 year: 2018 ident: 2024090903560610200_B20 article-title: Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a) publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1718686115 – volume: 237 start-page: 49 year: 2004 ident: 2024090903560610200_B24 article-title: Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica publication-title: FEMS Microbiol. Lett. – volume: 616 start-page: 61 year: 2019 ident: 2024090903560610200_B38 article-title: Fluorescence-based methods for measuring target interference by CRISPR-Cas systems publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2018.10.027 – volume: 50 start-page: 6414 year: 2022 ident: 2024090903560610200_B34 article-title: CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac462 – volume: 4 start-page: 888 year: 2019 ident: 2024090903560610200_B16 article-title: Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9 publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0382-0 – volume: 163 start-page: 759 year: 2015 ident: 2024090903560610200_B1 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 9 start-page: e55143 year: 2020 ident: 2024090903560610200_B8 article-title: CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks publication-title: eLife doi: 10.7554/eLife.55143 – volume: 108 start-page: 10098 year: 2011 ident: 2024090903560610200_B19 article-title: Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1104144108 – volume: 18 start-page: 1014 year: 2022 ident: 2024090903560610200_B46 article-title: CRISPR–Cas12a-mediated DNA clamping triggers target-strand cleavage publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-022-01082-8 – volume: 71 start-page: 816 year: 2018 ident: 2024090903560610200_B11 article-title: Kinetic basis for DNA target specificity of CRISPR-Cas12a publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.043 – volume: 52 start-page: 8777 year: 2013 ident: 2024090903560610200_B23 article-title: The cellular environment stabilizes adenine Riboswitch RNA structure publication-title: Biochemistry doi: 10.1021/bi401207q – volume: 46 start-page: 606 year: 2012 ident: 2024090903560610200_B18 article-title: Mechanism of foreign DNA selection in a bacterial adaptive immune system publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.03.020 – volume: 10 start-page: 1534 year: 2015 ident: 2024090903560610200_B39 article-title: Directional R-loop formation by the CRISPR-cas surveillance complex cascade provides efficient off-target site rejection publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.01.067 – volume: 12 start-page: e0136121 year: 2021 ident: 2024090903560610200_B49 article-title: Bacteriophage T4 escapes CRISPR attack by minihomology recombination and repair publication-title: mBio doi: 10.1128/mBio.01361-21 – volume: 118 start-page: e2113747118 year: 2021 ident: 2024090903560610200_B9 article-title: Mg(2+)-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2113747118 – volume: 49 start-page: 4037 year: 2021 ident: 2024090903560610200_B31 article-title: Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR-Cas9 variants publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab163 – volume: 30 start-page: 321 year: 2006 ident: 2024090903560610200_B44 article-title: Bacteriophage replication modules publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2006.00015.x – volume: 28 start-page: 444 year: 2018 ident: 2024090903560610200_B51 article-title: A transient rise in free Mg2+ ions released from ATP-Mg hydrolysis contributes to mitotic chromosome condensation publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.12.035 – volume: 47 start-page: 5336 year: 2008 ident: 2024090903560610200_B36 article-title: Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations publication-title: Biochemistry doi: 10.1021/bi702363u – volume: 66 start-page: 221 year: 2017 ident: 2024090903560610200_B5 article-title: Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.03.016 – volume: 73 start-page: 589 year: 2019 ident: 2024090903560610200_B6 article-title: Mechanistic insights into the cis- and trans-Acting DNase activities of Cas12a publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.021 – volume: 25 start-page: 4067 year: 1997 ident: 2024090903560610200_B37 article-title: Winding of the DNA helix by divalent metal ions publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.20.4067 – volume: 175 start-page: 1856 year: 2018 ident: 2024090903560610200_B7 article-title: Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity publication-title: Cell doi: 10.1016/j.cell.2018.10.045 – volume: 187 start-page: 3249 year: 2024 ident: 2024090903560610200_B43 article-title: Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9 publication-title: Cell doi: 10.1016/j.cell.2024.04.031 – volume: 111 start-page: 9798 year: 2014 ident: 2024090903560610200_B40 article-title: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1402597111 – volume: 29 start-page: 1482 year: 2021 ident: 2024090903560610200_B48 article-title: Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.09.001 – volume: 679 start-page: 97 year: 2023 ident: 2024090903560610200_B27 article-title: Optimized protocols for the characterization of Cas12a activities publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2022.08.048 – volume: 14 start-page: 600 year: 2017 ident: 2024090903560610200_B53 article-title: Mapping the genomic landscape of CRISPR–Cas9 cleavage publication-title: Nat. Methods doi: 10.1038/nmeth.4284 – volume: 2 start-page: 2006.0008 year: 2006 ident: 2024090903560610200_B29 article-title: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100050 – volume: 360 start-page: 436 year: 2018 ident: 2024090903560610200_B32 article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity publication-title: Science doi: 10.1126/science.aar6245 – volume: 46 start-page: 595 year: 2012 ident: 2024090903560610200_B41 article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by cascade and Cas3 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.03.018 – volume: 295 start-page: 5538 year: 2020 ident: 2024090903560610200_B14 article-title: CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.012933 – volume: 28 start-page: 491 year: 2018 ident: 2024090903560610200_B33 article-title: CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA publication-title: Cell Res. doi: 10.1038/s41422-018-0022-x – volume: 546 start-page: 559 year: 2017 ident: 2024090903560610200_B10 article-title: Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage publication-title: Nature doi: 10.1038/nature22398 – volume: 51 start-page: 8730 year: 2023 ident: 2024090903560610200_B47 article-title: A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad636 – volume: 43 start-page: 8 year: 2020 ident: 2024090903560610200_B3 article-title: CRISPR-Cas12a: functional overview and applications publication-title: Biomed. J. doi: 10.1016/j.bj.2019.10.005 – volume: 83 start-page: 3533 year: 2023 ident: 2024090903560610200_B42 article-title: Negative DNA supercoiling induces genome-wide Cas9 off-target activity publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.09.008 – volume: 87 start-page: 653 year: 1954 ident: 2024090903560610200_B30 article-title: [Genetic study of a temperate bacteriophage of Escherichia coli. l. The genetic system of the bacteriophage] publication-title: Ann. Inst. Pasteur (Paris). – volume: 21 start-page: e3002065 year: 2023 ident: 2024090903560610200_B22 article-title: CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3002065 – volume: 60 start-page: 6427 year: 2020 ident: 2024090903560610200_B45 article-title: Molecular dynamics reveals a DNA-induced dynamic switch triggering activation of CRISPR-Cas12a publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00929 – volume: 7 start-page: 1 year: 2013 ident: 2024090903560610200_B26 article-title: Comparison of sequencing utility programs publication-title: Open Bioinforma. J. doi: 10.2174/1875036201307010001 – volume: 9 start-page: 671 year: 2012 ident: 2024090903560610200_B25 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 39 start-page: 84 year: 2021 ident: 2024090903560610200_B15 article-title: Massively parallel kinetic profiling of natural and engineered CRISPR nucleases publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0646-5 – volume: 190 start-page: 1390 year: 2008 ident: 2024090903560610200_B21 article-title: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus publication-title: J. Bacteriol. doi: 10.1128/JB.01412-07 – volume: 22 start-page: 359 year: 2018 ident: 2024090903560610200_B28 article-title: DNA unwinding is the primary determinant of CRISPR-Cas9 activity publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.041 – volume: 68 start-page: 15 year: 2017 ident: 2024090903560610200_B2 article-title: The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.007 – volume: 34 start-page: 869 year: 2016 ident: 2024090903560610200_B12 article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3620 – volume: 15 start-page: 251 year: 2002 ident: 2024090903560610200_B50 article-title: Intracellular magnesium and magnesium buffering publication-title: Biometals doi: 10.1023/A:1016026831789 – volume: 34 start-page: 863 year: 2016 ident: 2024090903560610200_B13 article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3609 – volume: 170 start-page: 35 year: 2017 ident: 2024090903560610200_B35 article-title: Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips publication-title: Cell doi: 10.1016/j.cell.2017.05.044 – reference: 38076861 - bioRxiv. 2024 Jan 17:2023.11.29.569287. doi: 10.1101/2023.11.29.569287 |
SSID | ssj0014154 |
Score | 2.4904437 |
Snippet | Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9343 |
SubjectTerms | NAR Breakthrough |
Title | CRISPR-Cas12a exhibits metal-dependent specificity switching |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39019776 https://www.proquest.com/docview/3082307578 https://pubmed.ncbi.nlm.nih.gov/PMC11381342 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB60F72I1ld91AjiQQjtZre7XfAiRamCD2oLvYXsZqNFm4qJiP_e2U1arBQ9ZxLCTML3zc7MNwAnoqmjJG5Rv2mE8ZnEX0opqyLKNLJjBKA2tbPDt3e8O2A3w9awbJDNFpTwJW2k0Xvj6SUy3C2nRfi1Evn9--GsWIAYVKhEOVFN1i7H8H7dOwc8c8NsPzjl79bIH1hztQ5rJUn0LoqobsCSSauweZFigjz-8k4917bpzsOrsNKZrmzbhPNO7_rxoed3oowEkWfs8utRnnljgxTbn-67zT07XmlbhJCBe9nnKHf9lFswuLrsd7p-uR7B14g8uU8MoYYFmsbG6IAJKoiRMmlJrbmIVUuamCstpCFMBYrEAhNGqZTkRAkVI0_ahko6Sc0ueCrmWiSUR1xY9UipENVpO5GMJRz5Da3B2dR3oS61w-0Ki9ewqGHTEB0dlo6uwcnM-K2QzFhsdoRB-NvieBqgEB1pKxlRaiYfWeg0dppWir8GO0XAZg-yhzhIankN2nOhnBlYQe35K-no2QlrE4L8hbJg799X24fVANmNazaTB1DJ3z_MIbKTXNVhWTQv6y63r7vv9BvA0OS7 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-Cas12a+exhibits+metal-dependent+specificity+switching&rft.jtitle=Nucleic+acids+research&rft.au=Nguyen%2C+Giang+T&rft.au=Schelling%2C+Michael+A&rft.au=Raju%2C+Akshara&rft.au=Buscher%2C+Kathryn+A&rft.date=2024-09-09&rft.eissn=1362-4962&rft_id=info:doi/10.1093%2Fnar%2Fgkae613&rft_id=info%3Apmid%2F39019776&rft.externalDocID=39019776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |