CRISPR-Cas12a exhibits metal-dependent specificity switching

Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been pe...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 52; no. 16; pp. 9343 - 9359
Main Authors Nguyen, Giang T, Schelling, Michael A, Raju, Akshara, Buscher, Kathryn A, Sritharan, Aneisha, Sashital, Dipali G
Format Journal Article
LanguageEnglish
Published England Oxford University Press 09.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. Lay Summary CRISPR-Cas systems are commonly used for biotechnology. Their specificity has been studied extensively and has previously been thought to be well understood. In this work, we asked a simple question about the effect of metal ion concentration on CRISPR specificity; the results are surprising and striking. At the actual metal ion concentrations found in cells, Cas12a specificity is inverted in comparison to the higher metal ion conditions that are typically used in test-tube assays. The specificity observed at lower metal ion concentration is more relevant under cellular conditions. Graphical Abstract Graphical Abstract
AbstractList Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.
Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg 2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg 2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg 2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg 2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg 2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. Graphical Abstract
Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments. Lay Summary CRISPR-Cas systems are commonly used for biotechnology. Their specificity has been studied extensively and has previously been thought to be well understood. In this work, we asked a simple question about the effect of metal ion concentration on CRISPR specificity; the results are surprising and striking. At the actual metal ion concentrations found in cells, Cas12a specificity is inverted in comparison to the higher metal ion conditions that are typically used in test-tube assays. The specificity observed at lower metal ion concentration is more relevant under cellular conditions. Graphical Abstract Graphical Abstract
Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.
Author Nguyen, Giang T
Buscher, Kathryn A
Schelling, Michael A
Sritharan, Aneisha
Raju, Akshara
Sashital, Dipali G
Author_xml – sequence: 1
  givenname: Giang T
  surname: Nguyen
  fullname: Nguyen, Giang T
– sequence: 2
  givenname: Michael A
  surname: Schelling
  fullname: Schelling, Michael A
– sequence: 3
  givenname: Akshara
  surname: Raju
  fullname: Raju, Akshara
– sequence: 4
  givenname: Kathryn A
  surname: Buscher
  fullname: Buscher, Kathryn A
– sequence: 5
  givenname: Aneisha
  surname: Sritharan
  fullname: Sritharan, Aneisha
– sequence: 6
  givenname: Dipali G
  orcidid: 0000-0001-7681-6987
  surname: Sashital
  fullname: Sashital, Dipali G
  email: sashital@iastate.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39019776$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1Lw0AQxRdRtK2evEtPIkh0J7vJZkEQCX5BQal6XnY3k3Y1TWI29eO_N9JWVMTTHOY37w3v9cl6WZVIyC7QI6CSHZe6OZ48aYyBrZEesDgMuIzDddKjjEYBUJ5skb73j5QCh4hvki0mKUgh4h45ScfXd7fjINUeQj3Et6kzrvXDGba6CDKsscywbIe-RutyZ137PvSvrrVTV062yUauC487yzkgDxfn9-lVMLq5vE7PRoHlwNoAEBjy0LIM0YZcMAEoZR5Ja2ORmUhiFhsrJAI3oYFMSJFIY2QMRpgMOBuQ04VuPTczzGz3UKMLVTduppt3VWmnfm5KN1WT6kUBsAQYDzuFg6VCUz3P0bdq5rzFotAlVnOvGE1CRkUkkg7d-2725bLKrANgAdim8r7BXHWp6NZVn96uUEDVZy-q60Ute-luDn_drGT_pvcXdDWv_wU_AE3QndI
CitedBy_id crossref_primary_10_1093_nar_gkaf040
crossref_primary_10_1039_D4AY01695E
crossref_primary_10_1016_j_snb_2024_137001
Cites_doi 10.1038/s41587-020-0555-7
10.1016/j.tibs.2022.02.004
10.1038/nature13011
10.1073/pnas.1718686115
10.1016/bs.mie.2018.10.027
10.1093/nar/gkac462
10.1038/s41564-019-0382-0
10.1016/j.cell.2015.09.038
10.7554/eLife.55143
10.1073/pnas.1104144108
10.1038/s41589-022-01082-8
10.1016/j.molcel.2018.06.043
10.1021/bi401207q
10.1016/j.molcel.2012.03.020
10.1016/j.celrep.2015.01.067
10.1128/mBio.01361-21
10.1073/pnas.2113747118
10.1093/nar/gkab163
10.1111/j.1574-6976.2006.00015.x
10.1016/j.cub.2017.12.035
10.1021/bi702363u
10.1016/j.molcel.2017.03.016
10.1016/j.molcel.2018.11.021
10.1093/nar/25.20.4067
10.1016/j.cell.2018.10.045
10.1016/j.cell.2024.04.031
10.1073/pnas.1402597111
10.1016/j.chom.2021.09.001
10.1016/bs.mie.2022.08.048
10.1038/nmeth.4284
10.1038/msb4100050
10.1126/science.aar6245
10.1016/j.molcel.2012.03.018
10.1074/jbc.RA120.012933
10.1038/s41422-018-0022-x
10.1038/nature22398
10.1093/nar/gkad636
10.1016/j.bj.2019.10.005
10.1016/j.molcel.2023.09.008
10.1371/journal.pbio.3002065
10.1021/acs.jcim.0c00929
10.2174/1875036201307010001
10.1038/nmeth.2089
10.1038/s41587-020-0646-5
10.1128/JB.01412-07
10.1016/j.celrep.2017.12.041
10.1016/j.molcel.2017.09.007
10.1038/nbt.3620
10.1023/A:1016026831789
10.1038/nbt.3609
10.1016/j.cell.2017.05.044
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/nar/gkae613
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 9359
ExternalDocumentID PMC11381342
39019776
10_1093_nar_gkae613
10.1093/nar/gkae613
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1652661
– fundername: Iowa State University
– fundername: NIH HHS
  grantid: GM140876
– fundername: ;
– fundername: ;
  grantid: 1652661
– fundername: ;
  grantid: GM140876
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c413t-1e13e42c3deec247371e99f59cc67db59ed6bc79e14b2b1d79789bb961b7bd143
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:35:22 EDT 2025
Thu Jul 10 22:18:42 EDT 2025
Mon Jul 21 05:33:16 EDT 2025
Tue Jul 01 02:59:31 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Mon Jun 30 08:34:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-1e13e42c3deec247371e99f59cc67db59ed6bc79e14b2b1d79789bb961b7bd143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors should be regarded as Joint First Authors.
ORCID 0000-0001-7681-6987
OpenAccessLink https://dx.doi.org/10.1093/nar/gkae613
PMID 39019776
PQID 3082307578
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11381342
proquest_miscellaneous_3082307578
pubmed_primary_39019776
crossref_citationtrail_10_1093_nar_gkae613
crossref_primary_10_1093_nar_gkae613
oup_primary_10_1093_nar_gkae613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-09
PublicationDateYYYYMMDD 2024-09-09
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Owczarzy (2024090903560610200_B36) 2008; 47
Cameron (2024090903560610200_B53) 2017; 14
Jung (2024090903560610200_B35) 2017; 170
Murugan (2024090903560610200_B31) 2021; 49
Kim (2024090903560610200_B13) 2016; 34
Chen (2024090903560610200_B32) 2018; 360
Weigel (2024090903560610200_B44) 2006; 30
Aronesty (2024090903560610200_B26) 2013; 7
Singh (2024090903560610200_B20) 2018; 115
Grubbs (2024090903560610200_B50) 2002; 15
Naqvi (2024090903560610200_B46) 2022; 18
Murugan (2024090903560610200_B2) 2017; 68
Zetsche (2024090903560610200_B1) 2015; 163
Kleinstiver (2024090903560610200_B12) 2016; 34
Baba (2024090903560610200_B29) 2006; 2
Lazzarotto (2024090903560610200_B52) 2020; 38
Lee (2024090903560610200_B4) 2022; 47
Schneider (2024090903560610200_B25) 2012; 9
Fu (2024090903560610200_B16) 2019; 4
Cofsky (2024090903560610200_B8) 2020; 9
Marino (2024090903560610200_B34) 2022; 50
Jacob (2024090903560610200_B30) 1954; 87
Saha (2024090903560610200_B45) 2020; 60
Hossain (2024090903560610200_B48) 2021; 29
Xu (2024090903560610200_B37) 1997; 25
Maeshima (2024090903560610200_B51) 2018; 28
Phan (2024090903560610200_B38) 2019; 616
Singh (2024090903560610200_B47) 2023; 51
Deveau (2024090903560610200_B21) 2008; 190
Froschauer (2024090903560610200_B24) 2004; 237
Son (2024090903560610200_B9) 2021; 118
Murugan (2024090903560610200_B14) 2020; 295
Schelling (2024090903560610200_B22) 2023; 21
Eggers (2024090903560610200_B43) 2024; 187
Paul (2024090903560610200_B3) 2020; 43
Swarts (2024090903560610200_B6) 2019; 73
Sashital (2024090903560610200_B18) 2012; 46
Szczelkun (2024090903560610200_B40) 2014; 111
Li (2024090903560610200_B33) 2018; 28
Rutkauskas (2024090903560610200_B39) 2015; 10
Semenova (2024090903560610200_B19) 2011; 108
Sternberg (2024090903560610200_B17) 2014; 507
Tyrrell (2024090903560610200_B23) 2013; 52
Stella (2024090903560610200_B7) 2018; 175
Stella (2024090903560610200_B10) 2017; 546
Westra (2024090903560610200_B41) 2012; 46
Newton (2024090903560610200_B42) 2023; 83
Wu (2024090903560610200_B49) 2021; 12
Martin (2024090903560610200_B27) 2023; 679
Jones (2024090903560610200_B15) 2021; 39
Gong (2024090903560610200_B28) 2018; 22
Swarts (2024090903560610200_B5) 2017; 66
Strohkendl (2024090903560610200_B11) 2018; 71
38076861 - bioRxiv. 2024 Jan 17:2023.11.29.569287. doi: 10.1101/2023.11.29.569287
References_xml – volume: 38
  start-page: 1317
  year: 2020
  ident: 2024090903560610200_B52
  article-title: CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0555-7
– volume: 47
  start-page: 464
  year: 2022
  ident: 2024090903560610200_B4
  article-title: Creating memories: molecular mechanisms of CRISPR adaptation
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2022.02.004
– volume: 507
  start-page: 62
  year: 2014
  ident: 2024090903560610200_B17
  article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
  publication-title: Nature
  doi: 10.1038/nature13011
– volume: 115
  start-page: 5444
  year: 2018
  ident: 2024090903560610200_B20
  article-title: Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a)
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1718686115
– volume: 237
  start-page: 49
  year: 2004
  ident: 2024090903560610200_B24
  article-title: Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica
  publication-title: FEMS Microbiol. Lett.
– volume: 616
  start-page: 61
  year: 2019
  ident: 2024090903560610200_B38
  article-title: Fluorescence-based methods for measuring target interference by CRISPR-Cas systems
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2018.10.027
– volume: 50
  start-page: 6414
  year: 2022
  ident: 2024090903560610200_B34
  article-title: CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac462
– volume: 4
  start-page: 888
  year: 2019
  ident: 2024090903560610200_B16
  article-title: Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-019-0382-0
– volume: 163
  start-page: 759
  year: 2015
  ident: 2024090903560610200_B1
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 9
  start-page: e55143
  year: 2020
  ident: 2024090903560610200_B8
  article-title: CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks
  publication-title: eLife
  doi: 10.7554/eLife.55143
– volume: 108
  start-page: 10098
  year: 2011
  ident: 2024090903560610200_B19
  article-title: Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1104144108
– volume: 18
  start-page: 1014
  year: 2022
  ident: 2024090903560610200_B46
  article-title: CRISPR–Cas12a-mediated DNA clamping triggers target-strand cleavage
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-022-01082-8
– volume: 71
  start-page: 816
  year: 2018
  ident: 2024090903560610200_B11
  article-title: Kinetic basis for DNA target specificity of CRISPR-Cas12a
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.043
– volume: 52
  start-page: 8777
  year: 2013
  ident: 2024090903560610200_B23
  article-title: The cellular environment stabilizes adenine Riboswitch RNA structure
  publication-title: Biochemistry
  doi: 10.1021/bi401207q
– volume: 46
  start-page: 606
  year: 2012
  ident: 2024090903560610200_B18
  article-title: Mechanism of foreign DNA selection in a bacterial adaptive immune system
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.03.020
– volume: 10
  start-page: 1534
  year: 2015
  ident: 2024090903560610200_B39
  article-title: Directional R-loop formation by the CRISPR-cas surveillance complex cascade provides efficient off-target site rejection
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.01.067
– volume: 12
  start-page: e0136121
  year: 2021
  ident: 2024090903560610200_B49
  article-title: Bacteriophage T4 escapes CRISPR attack by minihomology recombination and repair
  publication-title: mBio
  doi: 10.1128/mBio.01361-21
– volume: 118
  start-page: e2113747118
  year: 2021
  ident: 2024090903560610200_B9
  article-title: Mg(2+)-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2113747118
– volume: 49
  start-page: 4037
  year: 2021
  ident: 2024090903560610200_B31
  article-title: Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR-Cas9 variants
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab163
– volume: 30
  start-page: 321
  year: 2006
  ident: 2024090903560610200_B44
  article-title: Bacteriophage replication modules
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2006.00015.x
– volume: 28
  start-page: 444
  year: 2018
  ident: 2024090903560610200_B51
  article-title: A transient rise in free Mg2+ ions released from ATP-Mg hydrolysis contributes to mitotic chromosome condensation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.12.035
– volume: 47
  start-page: 5336
  year: 2008
  ident: 2024090903560610200_B36
  article-title: Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations
  publication-title: Biochemistry
  doi: 10.1021/bi702363u
– volume: 66
  start-page: 221
  year: 2017
  ident: 2024090903560610200_B5
  article-title: Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.03.016
– volume: 73
  start-page: 589
  year: 2019
  ident: 2024090903560610200_B6
  article-title: Mechanistic insights into the cis- and trans-Acting DNase activities of Cas12a
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.11.021
– volume: 25
  start-page: 4067
  year: 1997
  ident: 2024090903560610200_B37
  article-title: Winding of the DNA helix by divalent metal ions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.20.4067
– volume: 175
  start-page: 1856
  year: 2018
  ident: 2024090903560610200_B7
  article-title: Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.045
– volume: 187
  start-page: 3249
  year: 2024
  ident: 2024090903560610200_B43
  article-title: Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9
  publication-title: Cell
  doi: 10.1016/j.cell.2024.04.031
– volume: 111
  start-page: 9798
  year: 2014
  ident: 2024090903560610200_B40
  article-title: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1402597111
– volume: 29
  start-page: 1482
  year: 2021
  ident: 2024090903560610200_B48
  article-title: Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.09.001
– volume: 679
  start-page: 97
  year: 2023
  ident: 2024090903560610200_B27
  article-title: Optimized protocols for the characterization of Cas12a activities
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2022.08.048
– volume: 14
  start-page: 600
  year: 2017
  ident: 2024090903560610200_B53
  article-title: Mapping the genomic landscape of CRISPR–Cas9 cleavage
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4284
– volume: 2
  start-page: 2006.0008
  year: 2006
  ident: 2024090903560610200_B29
  article-title: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100050
– volume: 360
  start-page: 436
  year: 2018
  ident: 2024090903560610200_B32
  article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
  publication-title: Science
  doi: 10.1126/science.aar6245
– volume: 46
  start-page: 595
  year: 2012
  ident: 2024090903560610200_B41
  article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by cascade and Cas3
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.03.018
– volume: 295
  start-page: 5538
  year: 2020
  ident: 2024090903560610200_B14
  article-title: CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.012933
– volume: 28
  start-page: 491
  year: 2018
  ident: 2024090903560610200_B33
  article-title: CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0022-x
– volume: 546
  start-page: 559
  year: 2017
  ident: 2024090903560610200_B10
  article-title: Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage
  publication-title: Nature
  doi: 10.1038/nature22398
– volume: 51
  start-page: 8730
  year: 2023
  ident: 2024090903560610200_B47
  article-title: A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad636
– volume: 43
  start-page: 8
  year: 2020
  ident: 2024090903560610200_B3
  article-title: CRISPR-Cas12a: functional overview and applications
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2019.10.005
– volume: 83
  start-page: 3533
  year: 2023
  ident: 2024090903560610200_B42
  article-title: Negative DNA supercoiling induces genome-wide Cas9 off-target activity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.09.008
– volume: 87
  start-page: 653
  year: 1954
  ident: 2024090903560610200_B30
  article-title: [Genetic study of a temperate bacteriophage of Escherichia coli. l. The genetic system of the bacteriophage]
  publication-title: Ann. Inst. Pasteur (Paris).
– volume: 21
  start-page: e3002065
  year: 2023
  ident: 2024090903560610200_B22
  article-title: CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3002065
– volume: 60
  start-page: 6427
  year: 2020
  ident: 2024090903560610200_B45
  article-title: Molecular dynamics reveals a DNA-induced dynamic switch triggering activation of CRISPR-Cas12a
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00929
– volume: 7
  start-page: 1
  year: 2013
  ident: 2024090903560610200_B26
  article-title: Comparison of sequencing utility programs
  publication-title: Open Bioinforma. J.
  doi: 10.2174/1875036201307010001
– volume: 9
  start-page: 671
  year: 2012
  ident: 2024090903560610200_B25
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 39
  start-page: 84
  year: 2021
  ident: 2024090903560610200_B15
  article-title: Massively parallel kinetic profiling of natural and engineered CRISPR nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0646-5
– volume: 190
  start-page: 1390
  year: 2008
  ident: 2024090903560610200_B21
  article-title: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01412-07
– volume: 22
  start-page: 359
  year: 2018
  ident: 2024090903560610200_B28
  article-title: DNA unwinding is the primary determinant of CRISPR-Cas9 activity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.12.041
– volume: 68
  start-page: 15
  year: 2017
  ident: 2024090903560610200_B2
  article-title: The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.09.007
– volume: 34
  start-page: 869
  year: 2016
  ident: 2024090903560610200_B12
  article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3620
– volume: 15
  start-page: 251
  year: 2002
  ident: 2024090903560610200_B50
  article-title: Intracellular magnesium and magnesium buffering
  publication-title: Biometals
  doi: 10.1023/A:1016026831789
– volume: 34
  start-page: 863
  year: 2016
  ident: 2024090903560610200_B13
  article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3609
– volume: 170
  start-page: 35
  year: 2017
  ident: 2024090903560610200_B35
  article-title: Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.044
– reference: 38076861 - bioRxiv. 2024 Jan 17:2023.11.29.569287. doi: 10.1101/2023.11.29.569287
SSID ssj0014154
Score 2.4904437
Snippet Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9343
SubjectTerms NAR Breakthrough
Title CRISPR-Cas12a exhibits metal-dependent specificity switching
URI https://www.ncbi.nlm.nih.gov/pubmed/39019776
https://www.proquest.com/docview/3082307578
https://pubmed.ncbi.nlm.nih.gov/PMC11381342
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB60F72I1ld91AjiQQjtZre7XfAiRamCD2oLvYXsZqNFm4qJiP_e2U1arBQ9ZxLCTML3zc7MNwAnoqmjJG5Rv2mE8ZnEX0opqyLKNLJjBKA2tbPDt3e8O2A3w9awbJDNFpTwJW2k0Xvj6SUy3C2nRfi1Evn9--GsWIAYVKhEOVFN1i7H8H7dOwc8c8NsPzjl79bIH1hztQ5rJUn0LoqobsCSSauweZFigjz-8k4917bpzsOrsNKZrmzbhPNO7_rxoed3oowEkWfs8utRnnljgxTbn-67zT07XmlbhJCBe9nnKHf9lFswuLrsd7p-uR7B14g8uU8MoYYFmsbG6IAJKoiRMmlJrbmIVUuamCstpCFMBYrEAhNGqZTkRAkVI0_ahko6Sc0ueCrmWiSUR1xY9UipENVpO5GMJRz5Da3B2dR3oS61w-0Ki9ewqGHTEB0dlo6uwcnM-K2QzFhsdoRB-NvieBqgEB1pKxlRaiYfWeg0dppWir8GO0XAZg-yhzhIankN2nOhnBlYQe35K-no2QlrE4L8hbJg799X24fVANmNazaTB1DJ3z_MIbKTXNVhWTQv6y63r7vv9BvA0OS7
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-Cas12a+exhibits+metal-dependent+specificity+switching&rft.jtitle=Nucleic+acids+research&rft.au=Nguyen%2C+Giang+T&rft.au=Schelling%2C+Michael+A&rft.au=Raju%2C+Akshara&rft.au=Buscher%2C+Kathryn+A&rft.date=2024-09-09&rft.eissn=1362-4962&rft_id=info:doi/10.1093%2Fnar%2Fgkae613&rft_id=info%3Apmid%2F39019776&rft.externalDocID=39019776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon