Unraveling Crystallization Mechanisms and Electronic Structure of Phase‐Change Materials by Large‐Scale Ab Initio Simulations
Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive desc...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 11; pp. e2109139 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2Te4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials.
The crystallization mechanism of GeSb2Te4 is described via ab initio computer simulations with system sizes of more than 1000 atoms. The smooth overlap of atomic positions kernel is utilized to reveal the evolution of both geometrical and chemical order during crystallization. The connection between structural and electronic properties of the recrystallized models is studied. |
---|---|
AbstractList | Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb
Te
based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials. Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2Te4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials. Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2 Te4 based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials.Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2 Te4 based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials. Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2Te4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials. The crystallization mechanism of GeSb2Te4 is described via ab initio computer simulations with system sizes of more than 1000 atoms. The smooth overlap of atomic positions kernel is utilized to reveal the evolution of both geometrical and chemical order during crystallization. The connection between structural and electronic properties of the recrystallized models is studied. Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb 2 Te 4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials. |
Author | Zhou, Yuxing Ma, En Xu, Yazhi Zhang, Wei Mazzarello, Riccardo Deringer, Volker L. Wang, Xu‐Dong |
Author_xml | – sequence: 1 givenname: Yazhi surname: Xu fullname: Xu, Yazhi organization: RWTH Aachen University – sequence: 2 givenname: Yuxing surname: Zhou fullname: Zhou, Yuxing organization: University of Oxford – sequence: 3 givenname: Xu‐Dong surname: Wang fullname: Wang, Xu‐Dong organization: Xi'an Jiaotong University – sequence: 4 givenname: Wei surname: Zhang fullname: Zhang, Wei email: wzhang0@mail.xjtu.edu.cn organization: Pengcheng National Laboratory in Guangzhou – sequence: 5 givenname: En surname: Ma fullname: Ma, En organization: Xi'an Jiaotong University – sequence: 6 givenname: Volker L. surname: Deringer fullname: Deringer, Volker L. organization: University of Oxford – sequence: 7 givenname: Riccardo orcidid: 0000-0003-2319-375X surname: Mazzarello fullname: Mazzarello, Riccardo email: riccardo.mazzarello@uniroma1.it organization: Sapienza University of Rome |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34994023$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPAliWyxIbNBP_MOPEyCgUqJQIpdD26Y99JXXk8xZ4BhRW8Ac_Ik-A0pUiVEKu7uN-5P-eckZPQByTkOWczzph4DbaDmWCCM82lfkQmvBK8KJmuTsiEaVkVWpWLU3KW0jVjTCumnpBTWWpdMiEn5MdliPAFvQs7uor7NID37hsMrg90g-YKgktdohAsPfdohtgHZ-h2iKMZxoi0b-nHK0j46_vPVYZ3SDcwYHTgE232dA1xd-htDXiky4ZeBJdn063rRn-7JT0lj9tM47O7OiWXb88_rd4X6w_vLlbLdWHK_FmBUPFqDtW8tNoaxrVRaBujuQFlpW3njDW8QaUaLdGIuUG7QNNCCyhQo5FT8uo49yb2n0dMQ925ZNB7CNiPqRaKL4RUgouMvnyAXvdjDPm6TMls3ULnOiUv7qix6dDWN9F1EPf1H3MzMDsCJvYpRWzvEc7qQ3r1Ib36Pr0sKB8IjBtuXRoiOP9vmT7KvjqP-_8sqZdvNsu_2t_RdbNO |
CitedBy_id | crossref_primary_10_1002_adfm_202407239 crossref_primary_10_1002_adfm_202403476 crossref_primary_10_1038_s41598_024_53192_z crossref_primary_10_1103_PhysRevB_106_184103 crossref_primary_10_1038_s41928_023_01030_x crossref_primary_10_1063_5_0174722 crossref_primary_10_1021_acs_jpcc_4c05157 crossref_primary_10_3390_en17143591 crossref_primary_10_1039_D4CS01031K crossref_primary_10_1016_j_mattod_2023_08_001 crossref_primary_10_1002_anie_202403842 crossref_primary_10_1002_pssa_202300921 crossref_primary_10_1002_eem2_12755 crossref_primary_10_1016_j_apsusc_2022_154104 crossref_primary_10_1002_pssr_202200496 crossref_primary_10_1016_j_apsusc_2023_158401 crossref_primary_10_1002_pssr_202200433 crossref_primary_10_1038_s41524_024_01217_6 crossref_primary_10_1002_advs_202300901 crossref_primary_10_1038_s41467_024_45327_7 crossref_primary_10_1002_pssa_202300456 crossref_primary_10_1080_14686996_2023_2252725 crossref_primary_10_1016_j_mser_2024_100825 crossref_primary_10_1088_2631_7990_ad1575 crossref_primary_10_1021_acs_jctc_4c01012 crossref_primary_10_1038_s41524_023_01098_1 crossref_primary_10_1002_mgea_62 crossref_primary_10_1002_ange_202403842 crossref_primary_10_1364_OME_462846 crossref_primary_10_1021_acs_chemmater_3c00524 crossref_primary_10_1039_D3NR03536K crossref_primary_10_1002_admt_202200214 |
Cites_doi | 10.1109/JPROC.2010.2070050 10.1038/s41565-021-00881-9 10.1016/j.actamat.2021.117135 10.1021/acs.jpclett.8b01067 10.1149/1.2409482 10.1016/j.pmatsci.2010.12.002 10.1063/1.4949011 10.1039/D1NR03432D 10.1016/j.actamat.2021.117123 10.1557/mrc.2018.131 10.1002/adma.201502295 10.1063/1.348620 10.1038/s41563-020-0777-6 10.1038/s41578-018-0076-x 10.1016/j.commatsci.2019.04.028 10.1063/1.1502915 10.1002/adfm.201500830 10.1002/anie.201703114 10.1038/natrevmats.2016.34 10.1073/pnas.1107464108 10.1103/PhysRevB.73.045210 10.1038/ncomms8467 10.1002/pssa.200982664 10.1038/nphoton.2017.126 10.1063/1.4748881 10.1038/s41586-020-03072-z 10.1103/PhysRevB.86.144113 10.1021/acs.chemmater.8b01900 10.1002/jcc.20484 10.1002/adma.202006221 10.1103/PhysRevLett.21.1450 10.1038/s41427-020-00246-z 10.1016/j.cpc.2004.12.014 10.1557/mrs.2019.201 10.1126/science.aao3212 10.1002/wcms.1159 10.1016/j.mssp.2021.106102 10.1038/s41928-018-0092-2 10.1016/j.mssp.2021.105948 10.1557/mrs.2015.227 10.1126/science.aaq0476 10.1021/acs.chemmater.9b00510 10.1002/adfm.202009803 10.1021/jz402268v 10.1038/s41586-018-0180-5 10.1002/pssr.201800558 10.1039/C8CP07446A 10.1103/PhysRevLett.98.066401 10.1021/nl201040y 10.1109/TED.2017.2746342 10.1038/s41578-019-0159-3 10.1103/PhysRevB.87.184115 10.1557/mrs.2019.203 10.1103/PhysRevB.83.113201 10.1038/nmat2157 10.1063/1.1314323 10.1002/adma.201902765 10.1038/srep06529 10.1002/aelm.201800914 10.1103/PhysRevB.90.184109 10.1016/j.mssp.2021.106080 10.1021/acs.chemrev.5b00744 10.1103/PhysRevB.94.134105 10.1002/adfm.201500849 10.1002/adma.201101060 10.1021/acs.chemrev.1c00021 10.1021/acsami.6b08700 10.1103/PhysRevLett.107.145702 10.1039/C9NA00366E 10.1103/PhysRevMaterials.3.033603 10.1103/PhysRevB.93.115201 10.1039/C6CP00415F 10.1002/pssr.201800578 10.1073/pnas.202427399 10.1038/nmat2934 10.1103/PhysRevMaterials.2.043401 10.1038/s41467-019-10980-w 10.1088/1361-6463/ab83ba 10.1021/acs.chemmater.7b01595 10.1039/fd9960400093 10.1103/PhysRevLett.77.3865 10.1038/nmat2009 10.1103/PhysRevB.92.054201 10.1038/s41565-020-0655-z 10.1209/0295-5075/95/27002 10.1126/science.1221561 10.1103/PhysRevLett.102.075504 10.1021/acs.chemmater.9b02598 10.1126/science.aay0291 10.1039/D0TC00096E 10.1002/adfm.202003419 10.1021/acs.jpcb.8b06476 10.1021/cr900040x 10.1103/PhysRevB.54.1703 10.1038/srep13496 10.1021/acs.chemrev.0c01195 10.1038/srep23843 10.1002/advs.201500117 10.1063/1.3493110 10.1038/s41524-021-00496-7 10.1038/nmat3456 10.1002/adma.202106868 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202109139 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34994023 10_1002_adma_202109139 ADMA202109139 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: 111 Project 2.0 funderid: BP2018008 – fundername: German Science Foundation funderid: SFB 917 – fundername: National Natural Science Foundation of China funderid: 61774123 – fundername: National Natural Science Foundation of China grantid: 61774123 – fundername: 111 Project 2.0 grantid: BP2018008 – fundername: German Science Foundation grantid: SFB 917 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4139-ea5157a574d9dc019c6edbc91ca6d3df700b1be66b93ec27ced8ecfafae2e9ec3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:27:57 EDT 2025 Fri Jul 25 05:06:46 EDT 2025 Wed Feb 19 02:25:56 EST 2025 Tue Jul 01 02:33:12 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:25:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | neuromorphic applications Anderson insulators phase-change materials metal-insulator transitions |
Language | English |
License | Attribution 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4139-ea5157a574d9dc019c6edbc91ca6d3df700b1be66b93ec27ced8ecfafae2e9ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2319-375X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109139 |
PMID | 34994023 |
PQID | 2639948926 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2618236212 proquest_journals_2639948926 pubmed_primary_34994023 crossref_primary_10_1002_adma_202109139 crossref_citationtrail_10_1002_adma_202109139 wiley_primary_10_1002_adma_202109139_ADMA202109139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 98 2018; 122 2021; 20 2013; 4 2006; 73 2010; 108 2016; 108 2019; 10 2019; 13 2000; 88 2002; 99 2020; 15 2008; 7 2019; 366 2011; 10 2020; 12 2011; 56 2021; 121 1996; 104 2012; 12 2012; 11 1968; 21 2017; 358 2019; 165 1996; 77 2020; 8 2018; 9 2020; 5 2018; 8 2018; 2 2014; 4 2021; 31 2021; 33 2020; 53 2018; 1 2015; 40 2019; 21 2006; 27 2010; 110 2022; 34 2007; 6 2002; 92 2018; 30 2011; 23 2016; 116 2012; 336 2015; 2 2017; 64 2021; 7 2019; 4 2015; 6 2019; 3 2015; 5 2014; 90 2012; 101 2019; 5 2019; 31 2010; 207 2013; 87 2015; 92 2019; 1 2021; 589 2011; 83 2016; 94 2016; 93 2017; 29 2016; 18 2007; 98 1996; 54 2021; 13 2021; 16 2016; 6 2015; 25 2016; 1 2015; 27 2011; 108 1991; 69 2011; 107 2021; 135 2020; 30 2019; 44 2005; 167 2018; 558 2021; 136 2017; 11 2007; 154 2021; 216 2011; 95 2017; 56 2009; 102 2021; 133 2016; 8 2012; 86 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 336 start-page: 1566 year: 2012 publication-title: Science – volume: 358 start-page: 1423 year: 2017 publication-title: Science – volume: 10 start-page: 202 year: 2011 publication-title: Nat. Mater. – volume: 121 start-page: 9722 year: 2021 publication-title: Chem. Rev. – volume: 99 year: 2002 publication-title: Proc. Natl. Acad. Sci. USA – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 108 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 661 year: 2021 publication-title: Nat. Nanotechnol. – volume: 83 year: 2011 publication-title: Phys. Rev. B – volume: 56 start-page: 379 year: 2011 publication-title: Prog. Mater. Sci. – volume: 366 start-page: 210 year: 2019 publication-title: Science – volume: 154 start-page: H139 year: 2007 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 6529 year: 2014 publication-title: Sci. Rep. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 6390 year: 2015 publication-title: Adv. Funct. Mater. – volume: 165 start-page: 51 year: 2019 publication-title: Comput. Mater. Sci. – volume: 167 start-page: 103 year: 2005 publication-title: Comput. Phys. Commun. – volume: 27 start-page: 1676 year: 2006 publication-title: J. Comput. Chem. – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 358 start-page: 1386 year: 2017 publication-title: Science – volume: 104 start-page: 93 year: 1996 publication-title: Faraday Discuss. – volume: 12 start-page: 63 year: 2020 publication-title: NPG Asia Mater. – volume: 6 start-page: 824 year: 2007 publication-title: Nat. Mater. – volume: 7 start-page: 399 year: 2008 publication-title: Nat. Mater. – volume: 11 start-page: 952 year: 2012 publication-title: Nat. Mater. – volume: 133 year: 2021 publication-title: Mater. Sci. Semicond. Process. – volume: 31 start-page: 4008 year: 2019 publication-title: Chem. Mater. – volume: 64 start-page: 4374 year: 2017 publication-title: IEEE Trans. Electron Dev. – volume: 69 start-page: 2849 year: 1991 publication-title: J. Appl. Phys. – volume: 589 start-page: 59 year: 2021 publication-title: Nature – volume: 40 start-page: 856 year: 2015 publication-title: MRS Bull. – volume: 30 start-page: 4770 year: 2018 publication-title: Chem. Mater. – volume: 7 start-page: 29 year: 2021 publication-title: npj Comput. Mater. – volume: 135 year: 2021 publication-title: Mater. Sci. Semicond. Process. – volume: 11 start-page: 465 year: 2017 publication-title: Nat. Photonics – volume: 98 start-page: 2201 year: 2010 publication-title: Proc. IEEE – volume: 12 start-page: 2179 year: 2012 publication-title: Nano Lett. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 10 start-page: 3065 year: 2019 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 95 year: 2011 publication-title: Europhys. Lett. – volume: 21 start-page: 1450 year: 1968 publication-title: Phys. Rev. Lett. – volume: 73 year: 2006 publication-title: Phys. Rev. B – volume: 92 start-page: 3584 year: 2002 publication-title: J. Appl. Phys. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 54 start-page: 1703 year: 1996 publication-title: Phys. Rev. B – volume: 88 start-page: 7020 year: 2000 publication-title: J. Appl. Phys. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 1 start-page: 3836 year: 2019 publication-title: Nanoscale Adv. – volume: 27 start-page: 5477 year: 2015 publication-title: Adv. Mater. – volume: 558 start-page: 60 year: 2018 publication-title: Nature – volume: 216 year: 2021 publication-title: Acta Mater. – volume: 31 start-page: 8794 year: 2019 publication-title: Chem. Mater. – volume: 20 start-page: 750 year: 2021 publication-title: Nat. Mater. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 173 year: 2020 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 2985 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 8 start-page: 1018 year: 2018 publication-title: MRS Commun. – volume: 44 start-page: 721 year: 2019 publication-title: MRS Bull. – volume: 8 start-page: 3646 year: 2020 publication-title: J. Mater. Chem. C – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 21 start-page: 4494 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 25 start-page: 6407 year: 2015 publication-title: Adv. Funct. Mater. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 53 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 4 start-page: 4241 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 207 start-page: 510 year: 2010 publication-title: Phys. Status Solidi A – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 44 start-page: 686 year: 2019 publication-title: MRS Bull. – volume: 110 start-page: 240 year: 2010 publication-title: Chem. Rev. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 3408 year: 2011 publication-title: Adv. Mater. – volume: 116 start-page: 7078 year: 2016 publication-title: Chem. Rev. – volume: 1 start-page: 333 year: 2018 publication-title: Nat. Electron. – volume: 15 start-page: 529 year: 2020 publication-title: Nat. Nanotechnol. – volume: 121 start-page: 9759 year: 2021 publication-title: Chem. Rev. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 136 year: 2021 publication-title: Mater. Sci. Semicond. Process. – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 4 start-page: 15 year: 2014 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 7467 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 150 year: 2019 publication-title: Nat. Rev. Mater. – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 29 start-page: 6749 year: 2017 publication-title: Chem. Mater. – volume: 108 year: 2010 publication-title: J. Appl. Phys. – volume: 122 start-page: 8998 year: 2018 publication-title: J. Phys. Chem. B – volume: 13 year: 2019 publication-title: Phys. Status Solidi RRL – ident: e_1_2_8_4_1 doi: 10.1109/JPROC.2010.2070050 – ident: e_1_2_8_10_1 doi: 10.1038/s41565-021-00881-9 – ident: e_1_2_8_66_1 doi: 10.1016/j.actamat.2021.117135 – ident: e_1_2_8_62_1 doi: 10.1021/acs.jpclett.8b01067 – ident: e_1_2_8_45_1 doi: 10.1149/1.2409482 – ident: e_1_2_8_85_1 doi: 10.1016/j.pmatsci.2010.12.002 – ident: e_1_2_8_46_1 doi: 10.1063/1.4949011 – ident: e_1_2_8_74_1 doi: 10.1039/D1NR03432D – ident: e_1_2_8_89_1 doi: 10.1016/j.actamat.2021.117123 – ident: e_1_2_8_30_1 doi: 10.1557/mrc.2018.131 – ident: e_1_2_8_90_1 doi: 10.1002/adma.201502295 – ident: e_1_2_8_19_1 doi: 10.1063/1.348620 – ident: e_1_2_8_72_1 doi: 10.1038/s41563-020-0777-6 – ident: e_1_2_8_14_1 doi: 10.1038/s41578-018-0076-x – ident: e_1_2_8_39_1 doi: 10.1016/j.commatsci.2019.04.028 – ident: e_1_2_8_41_1 doi: 10.1063/1.1502915 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.201500830 – ident: e_1_2_8_70_1 doi: 10.1002/anie.201703114 – ident: e_1_2_8_86_1 doi: 10.1038/natrevmats.2016.34 – ident: e_1_2_8_102_1 doi: 10.1073/pnas.1107464108 – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevB.73.045210 – ident: e_1_2_8_77_1 doi: 10.1038/ncomms8467 – ident: e_1_2_8_23_1 doi: 10.1002/pssa.200982664 – ident: e_1_2_8_8_1 doi: 10.1038/nphoton.2017.126 – ident: e_1_2_8_40_1 doi: 10.1063/1.4748881 – ident: e_1_2_8_65_1 doi: 10.1038/s41586-020-03072-z – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevB.86.144113 – ident: e_1_2_8_42_1 doi: 10.1021/acs.chemmater.8b01900 – ident: e_1_2_8_57_1 doi: 10.1002/jcc.20484 – ident: e_1_2_8_80_1 doi: 10.1002/adma.202006221 – ident: e_1_2_8_1_1 doi: 10.1103/PhysRevLett.21.1450 – ident: e_1_2_8_38_1 doi: 10.1038/s41427-020-00246-z – ident: e_1_2_8_96_1 doi: 10.1016/j.cpc.2004.12.014 – ident: e_1_2_8_5_1 doi: 10.1557/mrs.2019.201 – ident: e_1_2_8_34_1 doi: 10.1126/science.aao3212 – ident: e_1_2_8_97_1 doi: 10.1002/wcms.1159 – ident: e_1_2_8_32_1 doi: 10.1016/j.mssp.2021.106102 – ident: e_1_2_8_16_1 doi: 10.1038/s41928-018-0092-2 – ident: e_1_2_8_69_1 doi: 10.1016/j.mssp.2021.105948 – ident: e_1_2_8_100_1 doi: 10.1557/mrs.2015.227 – ident: e_1_2_8_35_1 doi: 10.1126/science.aaq0476 – ident: e_1_2_8_37_1 doi: 10.1021/acs.chemmater.9b00510 – ident: e_1_2_8_83_1 doi: 10.1002/adfm.202009803 – ident: e_1_2_8_73_1 doi: 10.1021/jz402268v – ident: e_1_2_8_13_1 doi: 10.1038/s41586-018-0180-5 – ident: e_1_2_8_7_1 doi: 10.1002/pssr.201800558 – ident: e_1_2_8_92_1 doi: 10.1039/C8CP07446A – ident: e_1_2_8_95_1 doi: 10.1103/PhysRevLett.98.066401 – ident: e_1_2_8_12_1 doi: 10.1021/nl201040y – ident: e_1_2_8_20_1 doi: 10.1109/TED.2017.2746342 – ident: e_1_2_8_17_1 doi: 10.1038/s41578-019-0159-3 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevB.87.184115 – ident: e_1_2_8_9_1 doi: 10.1557/mrs.2019.203 – ident: e_1_2_8_68_1 doi: 10.1103/PhysRevB.83.113201 – ident: e_1_2_8_22_1 doi: 10.1038/nmat2157 – ident: e_1_2_8_44_1 doi: 10.1063/1.1314323 – ident: e_1_2_8_71_1 doi: 10.1002/adma.201902765 – ident: e_1_2_8_58_1 doi: 10.1038/srep06529 – ident: e_1_2_8_21_1 doi: 10.1002/aelm.201800914 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevB.90.184109 – ident: e_1_2_8_94_1 doi: 10.1016/j.mssp.2021.106080 – ident: e_1_2_8_84_1 doi: 10.1021/acs.chemrev.5b00744 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevB.94.134105 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.201500849 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201101060 – ident: e_1_2_8_61_1 doi: 10.1021/acs.chemrev.1c00021 – ident: e_1_2_8_91_1 doi: 10.1021/acsami.6b08700 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevLett.107.145702 – ident: e_1_2_8_43_1 doi: 10.1039/C9NA00366E – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevMaterials.3.033603 – ident: e_1_2_8_79_1 doi: 10.1103/PhysRevB.93.115201 – ident: e_1_2_8_60_1 doi: 10.1039/C6CP00415F – ident: e_1_2_8_52_1 doi: 10.1002/pssr.201800578 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.202427399 – ident: e_1_2_8_49_1 doi: 10.1038/nmat2934 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevMaterials.2.043401 – ident: e_1_2_8_76_1 doi: 10.1038/s41467-019-10980-w – ident: e_1_2_8_6_1 doi: 10.1088/1361-6463/ab83ba – ident: e_1_2_8_81_1 doi: 10.1021/acs.chemmater.7b01595 – ident: e_1_2_8_56_1 doi: 10.1039/fd9960400093 – ident: e_1_2_8_98_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_3_1 doi: 10.1038/nmat2009 – ident: e_1_2_8_78_1 doi: 10.1103/PhysRevB.92.054201 – ident: e_1_2_8_15_1 doi: 10.1038/s41565-020-0655-z – ident: e_1_2_8_48_1 doi: 10.1209/0295-5075/95/27002 – ident: e_1_2_8_25_1 doi: 10.1126/science.1221561 – ident: e_1_2_8_101_1 doi: 10.1103/PhysRevLett.102.075504 – ident: e_1_2_8_36_1 doi: 10.1021/acs.chemmater.9b02598 – ident: e_1_2_8_93_1 doi: 10.1126/science.aay0291 – ident: e_1_2_8_63_1 doi: 10.1039/D0TC00096E – ident: e_1_2_8_18_1 doi: 10.1002/adfm.202003419 – ident: e_1_2_8_75_1 doi: 10.1021/acs.jpcb.8b06476 – ident: e_1_2_8_2_1 doi: 10.1021/cr900040x – ident: e_1_2_8_99_1 doi: 10.1103/PhysRevB.54.1703 – ident: e_1_2_8_54_1 doi: 10.1038/srep13496 – ident: e_1_2_8_87_1 doi: 10.1021/acs.chemrev.0c01195 – ident: e_1_2_8_50_1 doi: 10.1038/srep23843 – ident: e_1_2_8_55_1 doi: 10.1002/advs.201500117 – ident: e_1_2_8_88_1 doi: 10.1063/1.3493110 – ident: e_1_2_8_64_1 doi: 10.1038/s41524-021-00496-7 – ident: e_1_2_8_53_1 doi: 10.1038/nmat3456 – ident: e_1_2_8_82_1 doi: 10.1002/adma.202106868 |
SSID | ssj0009606 |
Score | 2.577208 |
Snippet | Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form... Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2109139 |
SubjectTerms | Anderson insulators Anderson localization Antimony Antisite defects Chalcogenides Conduction bands Crystal defects Crystallization Electronic properties Electronic structure Low temperature Materials science metal–insulator transitions neuromorphic applications phase‐change materials Tellurium Transport properties |
Title | Unraveling Crystallization Mechanisms and Electronic Structure of Phase‐Change Materials by Large‐Scale Ab Initio Simulations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109139 https://www.ncbi.nlm.nih.gov/pubmed/34994023 https://www.proquest.com/docview/2639948926 https://www.proquest.com/docview/2618236212 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BT3Dg_TCUapGQOG2brDd-HKPSqiCCKkKk3qx9zIqK1EF1cign-Af8Rn4JM17HbUAICY7Wzsr27szON_bMNwAvDLkRj1kmgy601DhKpdUhlcoXSNFEUQwHXCg8eZcdzfSbk9HJlSr-yA_Rf3Bjy2jPazZwY5u9S9JQ41veIBWZLekQ5oQtRkXvL_mjGJ63ZHvpSJaZLtasjQO1tzl90yv9BjU3kWvreg5vg1k_dMw4-bS7Wtpd9-UXPsf_eas7cKvDpWIcFekuXMP6Hty8wlZ4H77Nau5VxPXrYv_8gmDlfN5VcYoJcgXxaXPWCFN7cdA31xHTlqB2dY5iEcTxR3KaP75-jzUNYmKW0QCEvRBvOSedxqakNSjGVrzmvKaFmJ6edS3GmgcwOzz4sH8kuw4O0pFzLCUagku5GeXal94RmnQZeuvKoTOZT33IBwM7tKQqtkzRqdwhqYgLJhhUWKJLH8JWvajxMQhPoRXLGQI8WgVlQl6ELA_BlUb53CQg1ztYuY7enLtszKtIzKwqXtqqX9oEXvbynyOxxx8lt9cKUXUG3lSKkZ0uSpUl8LwfJtPk_y2mxsWKZYbcTp7AQQKPoiL1t0op0qTQPU1Aterwl2eoxq8m4_7qyb9Mego3FJdutPlz27BFu4_PCFAt7Q5cV_p4pzWdn51LHFU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAH3g_TAouExMltst74cYxKqxTiCpFG4mbtU1SkDmqSQznBP-hv7C_pzK7tEhBCgqO1s_J6PeP5Zj3zDcBriW7E2DSNnchFLOwgiZVwScxNbjGayPN-jwqFy8N0NBXvPg3abEKqhQn8EN2BG1mG_16TgdOB9M4Va6g0njiIB2rL63CD2nr7qOrjFYMUAXRPt5cM4iIVecvb2OM76_PX_dJvYHMdu3rns38XVLvskHPyZXu1VNv62y-Mjv_1XPfgTgNN2TDo0n24ZusHcPsnwsKH8GNaU7siKmFnu6dniCxns6aQk5WWioiPFycLJmvD9rr-OmziOWpXp5bNHfvwGf3mxffzUNbASrkMNsDUGRtTWjqOTVBxLBsqdkCpTXM2OT5puowtHsF0f-9odxQ3TRxijf6xiK1ExJTJQSZMYTQCSp1ao3TR1zI1iXFZr6f6CrVFFYnVPNMWtUQ76aTltrA6eQwb9by2T4EZjK5ITiLmEdxx6bLcpZlzupDcZDKCuH2FlW4YzqnRxqwK3My8oq2tuq2N4E0n_zVwe_xRcqvViKqx8UXFCdyJvOBpBK-6YbRO-uUiaztfkUyfOsojPojgSdCk7lYJBpsYvScRcK8Pf1lDNXxbDrurZ_8y6SXcHB2V42p8cPh-E25xquTw6XRbsIGaYJ8jvlqqF96CLgGVhh-Z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BkRAcKN-YFlgkJE7bOuvN2j5GTaMWmqoiROrNWu-HqEidqkkO5QT_gN_YX9IZr-M2IIQER2t3ZXv9xvPGnnkD8E6jG7FOKe5lJrl03YSX0idc2MxhNJFlnZgKhYeHam8sPxx3j29U8Qd9iPaDG1lG_b4mAz-zfvtaNFTbWjdIBGXL23BHqjgjXPc_XQtIET-v1faSLs-VzJayjbHYXl2_6pZ-45qr1LX2PYN10MurDiknX7cW83LLfPtF0PF_bushPGiIKesFJD2CW656DPdvyBU-gR_jipoVUQE72zm_QF45mTRlnGzoqIT4ZHY6Y7qybLftrsNGtULt4tyxqWdHX9BrXn7_GYoa2FDPgwWw8oIdUFI6jo0QNo71SrZPiU1TNjo5bXqMzZ7CeLD7eWePNy0cuEHvmHOnkS-luptKm1uDdNIoZ0uTd4xWNrE-jeOyUyJWyjxxRqTGIUaM11474XJnkmewVk0r9wKYxdiK5mlkPFJ4oX2aeZV6b3ItbKoj4MsnWJhG35zabEyKoMwsCtraot3aCN6388-CsscfZ24uAVE0Fj4rBFE7meVCRfC2HUbbpB8uunLTBc3pUD95ZAcRPA9Aak-VYKiJsXsSgajh8JdrKHr9Ya89evkvi97A3aP-oDjYP_y4AfcElXHUuXSbsIZAcK-QXM3L17X9XAFAox5R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+Crystallization+Mechanisms+and+Electronic+Structure+of+Phase%E2%80%90Change+Materials+by+Large%E2%80%90Scale+Ab+Initio+Simulations&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Yazhi&rft.au=Zhou%2C+Yuxing&rft.au=Wang%2C+Xu%E2%80%90Dong&rft.au=Zhang%2C+Wei&rft.date=2022-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202109139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202109139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |