Unraveling Crystallization Mechanisms and Electronic Structure of Phase‐Change Materials by Large‐Scale Ab Initio Simulations

Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive desc...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 11; pp. e2109139 - n/a
Main Authors Xu, Yazhi, Zhou, Yuxing, Wang, Xu‐Dong, Zhang, Wei, Ma, En, Deringer, Volker L., Mazzarello, Riccardo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2Te4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials. The crystallization mechanism of GeSb2Te4 is described via ab initio computer simulations with system sizes of more than 1000 atoms. The smooth overlap of atomic positions kernel is utilized to reveal the evolution of both geometrical and chemical order during crystallization. The connection between structural and electronic properties of the recrystallized models is studied.
AbstractList Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb Te based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials.
Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2Te4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials.
Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2 Te4 based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials.Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2 Te4 based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials.
Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2Te4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials. The crystallization mechanism of GeSb2Te4 is described via ab initio computer simulations with system sizes of more than 1000 atoms. The smooth overlap of atomic positions kernel is utilized to reveal the evolution of both geometrical and chemical order during crystallization. The connection between structural and electronic properties of the recrystallized models is studied.
Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form rocksalt‐like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb 2 Te 4 based on realistic, quantum‐mechanically based (“ab initio”) computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as‐crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb‐rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt‐like chalcogenides that exhibit self‐doping, since they can explain the origin of Anderson insulating behavior in both p‐ and n‐doped chalcogenide materials.
Author Zhou, Yuxing
Ma, En
Xu, Yazhi
Zhang, Wei
Mazzarello, Riccardo
Deringer, Volker L.
Wang, Xu‐Dong
Author_xml – sequence: 1
  givenname: Yazhi
  surname: Xu
  fullname: Xu, Yazhi
  organization: RWTH Aachen University
– sequence: 2
  givenname: Yuxing
  surname: Zhou
  fullname: Zhou, Yuxing
  organization: University of Oxford
– sequence: 3
  givenname: Xu‐Dong
  surname: Wang
  fullname: Wang, Xu‐Dong
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wzhang0@mail.xjtu.edu.cn
  organization: Pengcheng National Laboratory in Guangzhou
– sequence: 5
  givenname: En
  surname: Ma
  fullname: Ma, En
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Volker L.
  surname: Deringer
  fullname: Deringer, Volker L.
  organization: University of Oxford
– sequence: 7
  givenname: Riccardo
  orcidid: 0000-0003-2319-375X
  surname: Mazzarello
  fullname: Mazzarello, Riccardo
  email: riccardo.mazzarello@uniroma1.it
  organization: Sapienza University of Rome
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34994023$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPAliWyxIbNBP_MOPEyCgUqJQIpdD26Y99JXXk8xZ4BhRW8Ac_Ik-A0pUiVEKu7uN-5P-eckZPQByTkOWczzph4DbaDmWCCM82lfkQmvBK8KJmuTsiEaVkVWpWLU3KW0jVjTCumnpBTWWpdMiEn5MdliPAFvQs7uor7NID37hsMrg90g-YKgktdohAsPfdohtgHZ-h2iKMZxoi0b-nHK0j46_vPVYZ3SDcwYHTgE232dA1xd-htDXiky4ZeBJdn063rRn-7JT0lj9tM47O7OiWXb88_rd4X6w_vLlbLdWHK_FmBUPFqDtW8tNoaxrVRaBujuQFlpW3njDW8QaUaLdGIuUG7QNNCCyhQo5FT8uo49yb2n0dMQ925ZNB7CNiPqRaKL4RUgouMvnyAXvdjDPm6TMls3ULnOiUv7qix6dDWN9F1EPf1H3MzMDsCJvYpRWzvEc7qQ3r1Ib36Pr0sKB8IjBtuXRoiOP9vmT7KvjqP-_8sqZdvNsu_2t_RdbNO
CitedBy_id crossref_primary_10_1002_adfm_202407239
crossref_primary_10_1002_adfm_202403476
crossref_primary_10_1038_s41598_024_53192_z
crossref_primary_10_1103_PhysRevB_106_184103
crossref_primary_10_1038_s41928_023_01030_x
crossref_primary_10_1063_5_0174722
crossref_primary_10_1021_acs_jpcc_4c05157
crossref_primary_10_3390_en17143591
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1016_j_mattod_2023_08_001
crossref_primary_10_1002_anie_202403842
crossref_primary_10_1002_pssa_202300921
crossref_primary_10_1002_eem2_12755
crossref_primary_10_1016_j_apsusc_2022_154104
crossref_primary_10_1002_pssr_202200496
crossref_primary_10_1016_j_apsusc_2023_158401
crossref_primary_10_1002_pssr_202200433
crossref_primary_10_1038_s41524_024_01217_6
crossref_primary_10_1002_advs_202300901
crossref_primary_10_1038_s41467_024_45327_7
crossref_primary_10_1002_pssa_202300456
crossref_primary_10_1080_14686996_2023_2252725
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1088_2631_7990_ad1575
crossref_primary_10_1021_acs_jctc_4c01012
crossref_primary_10_1038_s41524_023_01098_1
crossref_primary_10_1002_mgea_62
crossref_primary_10_1002_ange_202403842
crossref_primary_10_1364_OME_462846
crossref_primary_10_1021_acs_chemmater_3c00524
crossref_primary_10_1039_D3NR03536K
crossref_primary_10_1002_admt_202200214
Cites_doi 10.1109/JPROC.2010.2070050
10.1038/s41565-021-00881-9
10.1016/j.actamat.2021.117135
10.1021/acs.jpclett.8b01067
10.1149/1.2409482
10.1016/j.pmatsci.2010.12.002
10.1063/1.4949011
10.1039/D1NR03432D
10.1016/j.actamat.2021.117123
10.1557/mrc.2018.131
10.1002/adma.201502295
10.1063/1.348620
10.1038/s41563-020-0777-6
10.1038/s41578-018-0076-x
10.1016/j.commatsci.2019.04.028
10.1063/1.1502915
10.1002/adfm.201500830
10.1002/anie.201703114
10.1038/natrevmats.2016.34
10.1073/pnas.1107464108
10.1103/PhysRevB.73.045210
10.1038/ncomms8467
10.1002/pssa.200982664
10.1038/nphoton.2017.126
10.1063/1.4748881
10.1038/s41586-020-03072-z
10.1103/PhysRevB.86.144113
10.1021/acs.chemmater.8b01900
10.1002/jcc.20484
10.1002/adma.202006221
10.1103/PhysRevLett.21.1450
10.1038/s41427-020-00246-z
10.1016/j.cpc.2004.12.014
10.1557/mrs.2019.201
10.1126/science.aao3212
10.1002/wcms.1159
10.1016/j.mssp.2021.106102
10.1038/s41928-018-0092-2
10.1016/j.mssp.2021.105948
10.1557/mrs.2015.227
10.1126/science.aaq0476
10.1021/acs.chemmater.9b00510
10.1002/adfm.202009803
10.1021/jz402268v
10.1038/s41586-018-0180-5
10.1002/pssr.201800558
10.1039/C8CP07446A
10.1103/PhysRevLett.98.066401
10.1021/nl201040y
10.1109/TED.2017.2746342
10.1038/s41578-019-0159-3
10.1103/PhysRevB.87.184115
10.1557/mrs.2019.203
10.1103/PhysRevB.83.113201
10.1038/nmat2157
10.1063/1.1314323
10.1002/adma.201902765
10.1038/srep06529
10.1002/aelm.201800914
10.1103/PhysRevB.90.184109
10.1016/j.mssp.2021.106080
10.1021/acs.chemrev.5b00744
10.1103/PhysRevB.94.134105
10.1002/adfm.201500849
10.1002/adma.201101060
10.1021/acs.chemrev.1c00021
10.1021/acsami.6b08700
10.1103/PhysRevLett.107.145702
10.1039/C9NA00366E
10.1103/PhysRevMaterials.3.033603
10.1103/PhysRevB.93.115201
10.1039/C6CP00415F
10.1002/pssr.201800578
10.1073/pnas.202427399
10.1038/nmat2934
10.1103/PhysRevMaterials.2.043401
10.1038/s41467-019-10980-w
10.1088/1361-6463/ab83ba
10.1021/acs.chemmater.7b01595
10.1039/fd9960400093
10.1103/PhysRevLett.77.3865
10.1038/nmat2009
10.1103/PhysRevB.92.054201
10.1038/s41565-020-0655-z
10.1209/0295-5075/95/27002
10.1126/science.1221561
10.1103/PhysRevLett.102.075504
10.1021/acs.chemmater.9b02598
10.1126/science.aay0291
10.1039/D0TC00096E
10.1002/adfm.202003419
10.1021/acs.jpcb.8b06476
10.1021/cr900040x
10.1103/PhysRevB.54.1703
10.1038/srep13496
10.1021/acs.chemrev.0c01195
10.1038/srep23843
10.1002/advs.201500117
10.1063/1.3493110
10.1038/s41524-021-00496-7
10.1038/nmat3456
10.1002/adma.202106868
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202109139
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34994023
10_1002_adma_202109139
ADMA202109139
Genre article
Journal Article
GrantInformation_xml – fundername: 111 Project 2.0
  funderid: BP2018008
– fundername: German Science Foundation
  funderid: SFB 917
– fundername: National Natural Science Foundation of China
  funderid: 61774123
– fundername: National Natural Science Foundation of China
  grantid: 61774123
– fundername: 111 Project 2.0
  grantid: BP2018008
– fundername: German Science Foundation
  grantid: SFB 917
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4139-ea5157a574d9dc019c6edbc91ca6d3df700b1be66b93ec27ced8ecfafae2e9ec3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:27:57 EDT 2025
Fri Jul 25 05:06:46 EDT 2025
Wed Feb 19 02:25:56 EST 2025
Tue Jul 01 02:33:12 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:25:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords neuromorphic applications
Anderson insulators
phase-change materials
metal-insulator transitions
Language English
License Attribution
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4139-ea5157a574d9dc019c6edbc91ca6d3df700b1be66b93ec27ced8ecfafae2e9ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2319-375X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109139
PMID 34994023
PQID 2639948926
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2618236212
proquest_journals_2639948926
pubmed_primary_34994023
crossref_primary_10_1002_adma_202109139
crossref_citationtrail_10_1002_adma_202109139
wiley_primary_10_1002_adma_202109139_ADMA202109139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 98
2018; 122
2021; 20
2013; 4
2006; 73
2010; 108
2016; 108
2019; 10
2019; 13
2000; 88
2002; 99
2020; 15
2008; 7
2019; 366
2011; 10
2020; 12
2011; 56
2021; 121
1996; 104
2012; 12
2012; 11
1968; 21
2017; 358
2019; 165
1996; 77
2020; 8
2018; 9
2020; 5
2018; 8
2018; 2
2014; 4
2021; 31
2021; 33
2020; 53
2018; 1
2015; 40
2019; 21
2006; 27
2010; 110
2022; 34
2007; 6
2002; 92
2018; 30
2011; 23
2016; 116
2012; 336
2015; 2
2017; 64
2021; 7
2019; 4
2015; 6
2019; 3
2015; 5
2014; 90
2012; 101
2019; 5
2019; 31
2010; 207
2013; 87
2015; 92
2019; 1
2021; 589
2011; 83
2016; 94
2016; 93
2017; 29
2016; 18
2007; 98
1996; 54
2021; 13
2021; 16
2016; 6
2015; 25
2016; 1
2015; 27
2011; 108
1991; 69
2011; 107
2021; 135
2020; 30
2019; 44
2005; 167
2018; 558
2021; 136
2017; 11
2007; 154
2021; 216
2011; 95
2017; 56
2009; 102
2021; 133
2016; 8
2012; 86
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 336
  start-page: 1566
  year: 2012
  publication-title: Science
– volume: 358
  start-page: 1423
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 202
  year: 2011
  publication-title: Nat. Mater.
– volume: 121
  start-page: 9722
  year: 2021
  publication-title: Chem. Rev.
– volume: 99
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 108
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 661
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 83
  year: 2011
  publication-title: Phys. Rev. B
– volume: 56
  start-page: 379
  year: 2011
  publication-title: Prog. Mater. Sci.
– volume: 366
  start-page: 210
  year: 2019
  publication-title: Science
– volume: 154
  start-page: H139
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 6529
  year: 2014
  publication-title: Sci. Rep.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 6390
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 165
  start-page: 51
  year: 2019
  publication-title: Comput. Mater. Sci.
– volume: 167
  start-page: 103
  year: 2005
  publication-title: Comput. Phys. Commun.
– volume: 27
  start-page: 1676
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 358
  start-page: 1386
  year: 2017
  publication-title: Science
– volume: 104
  start-page: 93
  year: 1996
  publication-title: Faraday Discuss.
– volume: 12
  start-page: 63
  year: 2020
  publication-title: NPG Asia Mater.
– volume: 6
  start-page: 824
  year: 2007
  publication-title: Nat. Mater.
– volume: 7
  start-page: 399
  year: 2008
  publication-title: Nat. Mater.
– volume: 11
  start-page: 952
  year: 2012
  publication-title: Nat. Mater.
– volume: 133
  year: 2021
  publication-title: Mater. Sci. Semicond. Process.
– volume: 31
  start-page: 4008
  year: 2019
  publication-title: Chem. Mater.
– volume: 64
  start-page: 4374
  year: 2017
  publication-title: IEEE Trans. Electron Dev.
– volume: 69
  start-page: 2849
  year: 1991
  publication-title: J. Appl. Phys.
– volume: 589
  start-page: 59
  year: 2021
  publication-title: Nature
– volume: 40
  start-page: 856
  year: 2015
  publication-title: MRS Bull.
– volume: 30
  start-page: 4770
  year: 2018
  publication-title: Chem. Mater.
– volume: 7
  start-page: 29
  year: 2021
  publication-title: npj Comput. Mater.
– volume: 135
  year: 2021
  publication-title: Mater. Sci. Semicond. Process.
– volume: 11
  start-page: 465
  year: 2017
  publication-title: Nat. Photonics
– volume: 98
  start-page: 2201
  year: 2010
  publication-title: Proc. IEEE
– volume: 12
  start-page: 2179
  year: 2012
  publication-title: Nano Lett.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 10
  start-page: 3065
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 95
  year: 2011
  publication-title: Europhys. Lett.
– volume: 21
  start-page: 1450
  year: 1968
  publication-title: Phys. Rev. Lett.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. B
– volume: 92
  start-page: 3584
  year: 2002
  publication-title: J. Appl. Phys.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 1703
  year: 1996
  publication-title: Phys. Rev. B
– volume: 88
  start-page: 7020
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 3836
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 27
  start-page: 5477
  year: 2015
  publication-title: Adv. Mater.
– volume: 558
  start-page: 60
  year: 2018
  publication-title: Nature
– volume: 216
  year: 2021
  publication-title: Acta Mater.
– volume: 31
  start-page: 8794
  year: 2019
  publication-title: Chem. Mater.
– volume: 20
  start-page: 750
  year: 2021
  publication-title: Nat. Mater.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 173
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 2985
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 1018
  year: 2018
  publication-title: MRS Commun.
– volume: 44
  start-page: 721
  year: 2019
  publication-title: MRS Bull.
– volume: 8
  start-page: 3646
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 4494
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 25
  start-page: 6407
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 53
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 4
  start-page: 4241
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 207
  start-page: 510
  year: 2010
  publication-title: Phys. Status Solidi A
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 686
  year: 2019
  publication-title: MRS Bull.
– volume: 110
  start-page: 240
  year: 2010
  publication-title: Chem. Rev.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3408
  year: 2011
  publication-title: Adv. Mater.
– volume: 116
  start-page: 7078
  year: 2016
  publication-title: Chem. Rev.
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 15
  start-page: 529
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 121
  start-page: 9759
  year: 2021
  publication-title: Chem. Rev.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  year: 2021
  publication-title: Mater. Sci. Semicond. Process.
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 4
  start-page: 15
  year: 2014
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 7467
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 150
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 6749
  year: 2017
  publication-title: Chem. Mater.
– volume: 108
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 122
  start-page: 8998
  year: 2018
  publication-title: J. Phys. Chem. B
– volume: 13
  year: 2019
  publication-title: Phys. Status Solidi RRL
– ident: e_1_2_8_4_1
  doi: 10.1109/JPROC.2010.2070050
– ident: e_1_2_8_10_1
  doi: 10.1038/s41565-021-00881-9
– ident: e_1_2_8_66_1
  doi: 10.1016/j.actamat.2021.117135
– ident: e_1_2_8_62_1
  doi: 10.1021/acs.jpclett.8b01067
– ident: e_1_2_8_45_1
  doi: 10.1149/1.2409482
– ident: e_1_2_8_85_1
  doi: 10.1016/j.pmatsci.2010.12.002
– ident: e_1_2_8_46_1
  doi: 10.1063/1.4949011
– ident: e_1_2_8_74_1
  doi: 10.1039/D1NR03432D
– ident: e_1_2_8_89_1
  doi: 10.1016/j.actamat.2021.117123
– ident: e_1_2_8_30_1
  doi: 10.1557/mrc.2018.131
– ident: e_1_2_8_90_1
  doi: 10.1002/adma.201502295
– ident: e_1_2_8_19_1
  doi: 10.1063/1.348620
– ident: e_1_2_8_72_1
  doi: 10.1038/s41563-020-0777-6
– ident: e_1_2_8_14_1
  doi: 10.1038/s41578-018-0076-x
– ident: e_1_2_8_39_1
  doi: 10.1016/j.commatsci.2019.04.028
– ident: e_1_2_8_41_1
  doi: 10.1063/1.1502915
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.201500830
– ident: e_1_2_8_70_1
  doi: 10.1002/anie.201703114
– ident: e_1_2_8_86_1
  doi: 10.1038/natrevmats.2016.34
– ident: e_1_2_8_102_1
  doi: 10.1073/pnas.1107464108
– ident: e_1_2_8_67_1
  doi: 10.1103/PhysRevB.73.045210
– ident: e_1_2_8_77_1
  doi: 10.1038/ncomms8467
– ident: e_1_2_8_23_1
  doi: 10.1002/pssa.200982664
– ident: e_1_2_8_8_1
  doi: 10.1038/nphoton.2017.126
– ident: e_1_2_8_40_1
  doi: 10.1063/1.4748881
– ident: e_1_2_8_65_1
  doi: 10.1038/s41586-020-03072-z
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevB.86.144113
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.chemmater.8b01900
– ident: e_1_2_8_57_1
  doi: 10.1002/jcc.20484
– ident: e_1_2_8_80_1
  doi: 10.1002/adma.202006221
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRevLett.21.1450
– ident: e_1_2_8_38_1
  doi: 10.1038/s41427-020-00246-z
– ident: e_1_2_8_96_1
  doi: 10.1016/j.cpc.2004.12.014
– ident: e_1_2_8_5_1
  doi: 10.1557/mrs.2019.201
– ident: e_1_2_8_34_1
  doi: 10.1126/science.aao3212
– ident: e_1_2_8_97_1
  doi: 10.1002/wcms.1159
– ident: e_1_2_8_32_1
  doi: 10.1016/j.mssp.2021.106102
– ident: e_1_2_8_16_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_8_69_1
  doi: 10.1016/j.mssp.2021.105948
– ident: e_1_2_8_100_1
  doi: 10.1557/mrs.2015.227
– ident: e_1_2_8_35_1
  doi: 10.1126/science.aaq0476
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.chemmater.9b00510
– ident: e_1_2_8_83_1
  doi: 10.1002/adfm.202009803
– ident: e_1_2_8_73_1
  doi: 10.1021/jz402268v
– ident: e_1_2_8_13_1
  doi: 10.1038/s41586-018-0180-5
– ident: e_1_2_8_7_1
  doi: 10.1002/pssr.201800558
– ident: e_1_2_8_92_1
  doi: 10.1039/C8CP07446A
– ident: e_1_2_8_95_1
  doi: 10.1103/PhysRevLett.98.066401
– ident: e_1_2_8_12_1
  doi: 10.1021/nl201040y
– ident: e_1_2_8_20_1
  doi: 10.1109/TED.2017.2746342
– ident: e_1_2_8_17_1
  doi: 10.1038/s41578-019-0159-3
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevB.87.184115
– ident: e_1_2_8_9_1
  doi: 10.1557/mrs.2019.203
– ident: e_1_2_8_68_1
  doi: 10.1103/PhysRevB.83.113201
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat2157
– ident: e_1_2_8_44_1
  doi: 10.1063/1.1314323
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201902765
– ident: e_1_2_8_58_1
  doi: 10.1038/srep06529
– ident: e_1_2_8_21_1
  doi: 10.1002/aelm.201800914
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevB.90.184109
– ident: e_1_2_8_94_1
  doi: 10.1016/j.mssp.2021.106080
– ident: e_1_2_8_84_1
  doi: 10.1021/acs.chemrev.5b00744
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevB.94.134105
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.201500849
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201101060
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.chemrev.1c00021
– ident: e_1_2_8_91_1
  doi: 10.1021/acsami.6b08700
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.107.145702
– ident: e_1_2_8_43_1
  doi: 10.1039/C9NA00366E
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevMaterials.3.033603
– ident: e_1_2_8_79_1
  doi: 10.1103/PhysRevB.93.115201
– ident: e_1_2_8_60_1
  doi: 10.1039/C6CP00415F
– ident: e_1_2_8_52_1
  doi: 10.1002/pssr.201800578
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.202427399
– ident: e_1_2_8_49_1
  doi: 10.1038/nmat2934
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevMaterials.2.043401
– ident: e_1_2_8_76_1
  doi: 10.1038/s41467-019-10980-w
– ident: e_1_2_8_6_1
  doi: 10.1088/1361-6463/ab83ba
– ident: e_1_2_8_81_1
  doi: 10.1021/acs.chemmater.7b01595
– ident: e_1_2_8_56_1
  doi: 10.1039/fd9960400093
– ident: e_1_2_8_98_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat2009
– ident: e_1_2_8_78_1
  doi: 10.1103/PhysRevB.92.054201
– ident: e_1_2_8_15_1
  doi: 10.1038/s41565-020-0655-z
– ident: e_1_2_8_48_1
  doi: 10.1209/0295-5075/95/27002
– ident: e_1_2_8_25_1
  doi: 10.1126/science.1221561
– ident: e_1_2_8_101_1
  doi: 10.1103/PhysRevLett.102.075504
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.chemmater.9b02598
– ident: e_1_2_8_93_1
  doi: 10.1126/science.aay0291
– ident: e_1_2_8_63_1
  doi: 10.1039/D0TC00096E
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.202003419
– ident: e_1_2_8_75_1
  doi: 10.1021/acs.jpcb.8b06476
– ident: e_1_2_8_2_1
  doi: 10.1021/cr900040x
– ident: e_1_2_8_99_1
  doi: 10.1103/PhysRevB.54.1703
– ident: e_1_2_8_54_1
  doi: 10.1038/srep13496
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.chemrev.0c01195
– ident: e_1_2_8_50_1
  doi: 10.1038/srep23843
– ident: e_1_2_8_55_1
  doi: 10.1002/advs.201500117
– ident: e_1_2_8_88_1
  doi: 10.1063/1.3493110
– ident: e_1_2_8_64_1
  doi: 10.1038/s41524-021-00496-7
– ident: e_1_2_8_53_1
  doi: 10.1038/nmat3456
– ident: e_1_2_8_82_1
  doi: 10.1002/adma.202106868
SSID ssj0009606
Score 2.577208
Snippet Ge–Sb–Te (“GST”) alloys are leading phase‐change materials for digital memories and neuro‐inspired computing. Upon fast crystallization, these materials form...
Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2109139
SubjectTerms Anderson insulators
Anderson localization
Antimony
Antisite defects
Chalcogenides
Conduction bands
Crystal defects
Crystallization
Electronic properties
Electronic structure
Low temperature
Materials science
metal–insulator transitions
neuromorphic applications
phase‐change materials
Tellurium
Transport properties
Title Unraveling Crystallization Mechanisms and Electronic Structure of Phase‐Change Materials by Large‐Scale Ab Initio Simulations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109139
https://www.ncbi.nlm.nih.gov/pubmed/34994023
https://www.proquest.com/docview/2639948926
https://www.proquest.com/docview/2618236212
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BT3Dg_TCUapGQOG2brDd-HKPSqiCCKkKk3qx9zIqK1EF1cign-Af8Rn4JM17HbUAICY7Wzsr27szON_bMNwAvDLkRj1kmgy601DhKpdUhlcoXSNFEUQwHXCg8eZcdzfSbk9HJlSr-yA_Rf3Bjy2jPazZwY5u9S9JQ41veIBWZLekQ5oQtRkXvL_mjGJ63ZHvpSJaZLtasjQO1tzl90yv9BjU3kWvreg5vg1k_dMw4-bS7Wtpd9-UXPsf_eas7cKvDpWIcFekuXMP6Hty8wlZ4H77Nau5VxPXrYv_8gmDlfN5VcYoJcgXxaXPWCFN7cdA31xHTlqB2dY5iEcTxR3KaP75-jzUNYmKW0QCEvRBvOSedxqakNSjGVrzmvKaFmJ6edS3GmgcwOzz4sH8kuw4O0pFzLCUagku5GeXal94RmnQZeuvKoTOZT33IBwM7tKQqtkzRqdwhqYgLJhhUWKJLH8JWvajxMQhPoRXLGQI8WgVlQl6ELA_BlUb53CQg1ztYuY7enLtszKtIzKwqXtqqX9oEXvbynyOxxx8lt9cKUXUG3lSKkZ0uSpUl8LwfJtPk_y2mxsWKZYbcTp7AQQKPoiL1t0op0qTQPU1Aterwl2eoxq8m4_7qyb9Mego3FJdutPlz27BFu4_PCFAt7Q5cV_p4pzWdn51LHFU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAH3g_TAouExMltst74cYxKqxTiCpFG4mbtU1SkDmqSQznBP-hv7C_pzK7tEhBCgqO1s_J6PeP5Zj3zDcBriW7E2DSNnchFLOwgiZVwScxNbjGayPN-jwqFy8N0NBXvPg3abEKqhQn8EN2BG1mG_16TgdOB9M4Va6g0njiIB2rL63CD2nr7qOrjFYMUAXRPt5cM4iIVecvb2OM76_PX_dJvYHMdu3rns38XVLvskHPyZXu1VNv62y-Mjv_1XPfgTgNN2TDo0n24ZusHcPsnwsKH8GNaU7siKmFnu6dniCxns6aQk5WWioiPFycLJmvD9rr-OmziOWpXp5bNHfvwGf3mxffzUNbASrkMNsDUGRtTWjqOTVBxLBsqdkCpTXM2OT5puowtHsF0f-9odxQ3TRxijf6xiK1ExJTJQSZMYTQCSp1ao3TR1zI1iXFZr6f6CrVFFYnVPNMWtUQ76aTltrA6eQwb9by2T4EZjK5ITiLmEdxx6bLcpZlzupDcZDKCuH2FlW4YzqnRxqwK3My8oq2tuq2N4E0n_zVwe_xRcqvViKqx8UXFCdyJvOBpBK-6YbRO-uUiaztfkUyfOsojPojgSdCk7lYJBpsYvScRcK8Pf1lDNXxbDrurZ_8y6SXcHB2V42p8cPh-E25xquTw6XRbsIGaYJ8jvlqqF96CLgGVhh-Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BkRAcKN-YFlgkJE7bOuvN2j5GTaMWmqoiROrNWu-HqEidqkkO5QT_gN_YX9IZr-M2IIQER2t3ZXv9xvPGnnkD8E6jG7FOKe5lJrl03YSX0idc2MxhNJFlnZgKhYeHam8sPxx3j29U8Qd9iPaDG1lG_b4mAz-zfvtaNFTbWjdIBGXL23BHqjgjXPc_XQtIET-v1faSLs-VzJayjbHYXl2_6pZ-45qr1LX2PYN10MurDiknX7cW83LLfPtF0PF_bushPGiIKesFJD2CW656DPdvyBU-gR_jipoVUQE72zm_QF45mTRlnGzoqIT4ZHY6Y7qybLftrsNGtULt4tyxqWdHX9BrXn7_GYoa2FDPgwWw8oIdUFI6jo0QNo71SrZPiU1TNjo5bXqMzZ7CeLD7eWePNy0cuEHvmHOnkS-luptKm1uDdNIoZ0uTd4xWNrE-jeOyUyJWyjxxRqTGIUaM11474XJnkmewVk0r9wKYxdiK5mlkPFJ4oX2aeZV6b3ItbKoj4MsnWJhG35zabEyKoMwsCtraot3aCN6388-CsscfZ24uAVE0Fj4rBFE7meVCRfC2HUbbpB8uunLTBc3pUD95ZAcRPA9Aak-VYKiJsXsSgajh8JdrKHr9Ya89evkvi97A3aP-oDjYP_y4AfcElXHUuXSbsIZAcK-QXM3L17X9XAFAox5R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+Crystallization+Mechanisms+and+Electronic+Structure+of+Phase%E2%80%90Change+Materials+by+Large%E2%80%90Scale+Ab+Initio+Simulations&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Yazhi&rft.au=Zhou%2C+Yuxing&rft.au=Wang%2C+Xu%E2%80%90Dong&rft.au=Zhang%2C+Wei&rft.date=2022-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202109139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202109139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon