High Efficiency Conversion of Regenerated Cellulose Hydrogel Directly to Functionalized Cellulose Nanoparticles

This article provides a novel and efficient method of “self‐assembly/modification/dispersion” for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broaden...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 38; no. 23
Main Authors Wang, Han‐Qing, Tan, Huang, Hua, Sun, Liu, Zheng‐Ying, Yang, Wei, Yang, Ming‐Bo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article provides a novel and efficient method of “self‐assembly/modification/dispersion” for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self‐assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self‐assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery. A novel and efficient method for the preparation of functionalized cellulose nanoparticles based on regenerated cellulose hydrogel is reported in this article. This approach contains no acid hydrolysis, no solvent exchange for the functionalization, and simplifies the preparation of functionalized cellulose nanoparticles to a certain extent. Obtained functionalized cellulose nanoparticles possess excellent properties.
AbstractList This article provides a novel and efficient method of “self‐assembly/modification/dispersion” for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self‐assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self‐assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery.
This article provides a novel and efficient method of "self-assembly/modification/dispersion" for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self-assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self-assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery.This article provides a novel and efficient method of "self-assembly/modification/dispersion" for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self-assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self-assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery.
This article provides a novel and efficient method of “self‐assembly/modification/dispersion” for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self‐assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self‐assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery. A novel and efficient method for the preparation of functionalized cellulose nanoparticles based on regenerated cellulose hydrogel is reported in this article. This approach contains no acid hydrolysis, no solvent exchange for the functionalization, and simplifies the preparation of functionalized cellulose nanoparticles to a certain extent. Obtained functionalized cellulose nanoparticles possess excellent properties.
Author Liu, Zheng‐Ying
Wang, Han‐Qing
Tan, Huang
Hua, Sun
Yang, Ming‐Bo
Yang, Wei
Author_xml – sequence: 1
  givenname: Han‐Qing
  surname: Wang
  fullname: Wang, Han‐Qing
  organization: Sichuan University
– sequence: 2
  givenname: Huang
  surname: Tan
  fullname: Tan, Huang
  organization: Sichuan University
– sequence: 3
  givenname: Sun
  surname: Hua
  fullname: Hua, Sun
  organization: Sichuan University
– sequence: 4
  givenname: Zheng‐Ying
  surname: Liu
  fullname: Liu, Zheng‐Ying
  organization: Sichuan University
– sequence: 5
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: Sichuan University
– sequence: 6
  givenname: Ming‐Bo
  orcidid: 0000-0001-7425-7843
  surname: Yang
  fullname: Yang, Ming‐Bo
  email: yangmb@scu.edu.cn
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29083103$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFF4sIly9hO7PhYpS2LVECq4Gy5znhx5Y0XOwGFX49X24KohDh5Ds8zGr_vKTka44iEvKSwogDs7dYku2JAJUAD6gk5oS2jNVdMHpUZGKsp5-KYnOZ8BwBdA-wZOWYKOk6Bn5C49puv1aVz3noc7VL1cfyOKfs4VtFVN7jBEZOZcKh6DGEOMWO1XoYUNxiqC5_QTmGpplhdzaOdimaC__kX_dGMcWfS5G3A_Jw8dSZkfHH_npEvV5ef-3V9_end-_78urYN5apGhkoKHDhDSh2AYiBFB7ztjAAByBuLjmJrbSsbg8KZwSjpjLLdretA8DPy5rB3l-K3GfOktz7bcpMZMc5ZU9VKKaTs2oK-foTexTmVf-wpyVgjuOgK9eqemm-3OOhd8iX7RT9EWYDmANgUc07otPWT2ScyJeODpqD3jel9Y_p3Y0VbPdIeNv9TUAfhhw-4_IfWH85v-j_uL7yKqXw
CitedBy_id crossref_primary_10_1002_smll_202004702
crossref_primary_10_1080_21691401_2018_1518910
crossref_primary_10_1002_pi_5675
crossref_primary_10_1016_j_ijbiomac_2023_125119
crossref_primary_10_1002_marc_202100608
crossref_primary_10_1039_C9NR05309C
crossref_primary_10_1016_j_powtec_2018_01_010
crossref_primary_10_1021_acssuschemeng_0c03492
Cites_doi 10.1002/marc.201400382
10.1002/anie.200460587
10.1016/j.fbp.2015.11.004
10.1039/C5RA23182E
10.1039/C4TB00956H
10.1021/acssuschemeng.5b01489
10.1002/app.39538
10.1021/bm400752k
10.1016/j.progpolymsci.2015.07.003
10.1021/cr900339w
10.1016/j.carbpol.2014.08.110
10.1039/b808639g
10.1016/j.indcrop.2016.03.013
10.1007/s10570-015-0761-5
10.1039/C5GC00563A
10.1002/marc.201300588
10.1021/bm400219u
10.1007/s10570-012-9847-5
10.1039/c2jm32373g
10.1002/adfm.201503858
10.1016/j.biortech.2017.01.070
10.1002/marc.200600463
10.1002/marc.201100230
10.1021/acsami.5b00498
10.1016/j.powtec.2014.04.039
10.1002/marc.200300308
10.1021/acs.macromol.5b00117
10.1021/bm5013458
10.1016/j.carbpol.2011.08.084
10.1016/j.indcrop.2016.01.012
10.1039/c2ra01071b
10.1021/acssuschemeng.5b01171
10.1016/j.carbpol.2010.10.043
10.1021/bm200551p
10.1007/s10570-013-0096-z
10.1039/C6NR09494E
10.1039/C5GC03031E
10.1016/j.biortech.2016.05.106
10.1002/app.1964.070080322
10.1016/j.carbpol.2015.01.054
10.1016/j.carbpol.2015.06.041
10.1039/C6PY01515H
10.1039/C0SM00142B
10.3390/polym2040728
10.1021/acs.langmuir.6b03765
10.1002/marc.200300268
10.1039/C5GC00689A
10.1016/j.colsurfb.2008.05.007
10.1002/app.1964.070080323
10.1002/anie.201001273
10.1007/s10570-014-0476-z
10.1016/j.carbpol.2012.05.026
10.1016/j.jcis.2014.05.011
10.1002/app.27061
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201700409
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 29083103
10_1002_marc_201700409
MARC201700409
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51421061
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4139-e2e976ed32e11f009207680358a6060e34cef1e5cc574ae6fada97fa9c8bf8063
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 01:27:06 EDT 2025
Fri Jul 25 10:47:55 EDT 2025
Wed Feb 19 02:43:39 EST 2025
Tue Jul 01 03:31:37 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Wed Jan 22 17:00:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords functionalization
self-assembly
nanoparticles
regenerated cellulose hydrogels
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4139-e2e976ed32e11f009207680358a6060e34cef1e5cc574ae6fada97fa9c8bf8063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7425-7843
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/marc.201700409
PMID 29083103
PQID 1972246368
PQPubID 1016394
PageCount 7
ParticipantIDs proquest_miscellaneous_1957767785
proquest_journals_1972246368
pubmed_primary_29083103
crossref_citationtrail_10_1002_marc_201700409
crossref_primary_10_1002_marc_201700409
wiley_primary_10_1002_marc_201700409_MARC201700409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
2017-Dec
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 21
1964; 8
2004; 25
2008; 107
2011; 12
2017; 232
2014; 131
2017; 9
2014; 22
2015; 48
2013; 14
2014; 2
2017; 33
2006; 27
2015; 132
2010; 110
2014; 15
2008; 66
2010; 2
2012; 22
2012; 20
2015; 17
2015; 123
2011; 83
2016; 98
2016; 53
2011; 32
2016; 93
2016; 18
2014; 430
2015; 7
2005; 44
2011; 7
2016; 4
2017; 97
2016; 6
2016; 7
2012; 90
2012; 2
2015; 115
2013; 34
2015; 22
2011; 50
2014; 35
2016; 216
2014; 261
2016; 26
2012; 87
2009; 38
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
Duan B. (e_1_2_7_44_1) 2014; 131
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 7
  start-page: 303
  year: 2011
  publication-title: Soft Matter
– volume: 4
  start-page: 2470
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 2
  start-page: 728
  year: 2010
  publication-title: Polymer
– volume: 132
  start-page: 311
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 98
  start-page: 95
  year: 2016
  publication-title: Food. Bioprod. Process.
– volume: 38
  start-page: 2046
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 2706
  year: 2015
  publication-title: Macromolecules
– volume: 17
  start-page: 4239
  year: 2015
  publication-title: Green Chem.
– volume: 9
  start-page: 1763
  year: 2017
  publication-title: Nanoscale
– volume: 25
  start-page: 916
  year: 2004
  publication-title: Macromol. Rapid Commun.
– volume: 35
  start-page: 1747
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 2
  start-page: 3403
  year: 2012
  publication-title: RSC Adv.
– volume: 20
  start-page: 873
  year: 2012
  publication-title: Cellulose
– volume: 83
  start-page: 1766
  year: 2011
  publication-title: Carbohydr. Polym.
– volume: 15
  start-page: 4551
  year: 2014
  publication-title: Biomacromolecules
– volume: 2
  start-page: 6749
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 93
  start-page: 88
  year: 2016
  publication-title: Ind. Crops Prod.
– volume: 32
  start-page: 1299
  year: 2011
  publication-title: Macromol. Rapid Commun.
– volume: 123
  start-page: 256
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 261
  start-page: 232
  year: 2014
  publication-title: Powder Technol.
– volume: 131
  start-page: 39538
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 216
  start-page: 1066
  year: 2016
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 1311
  year: 1964
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 1973
  year: 2016
  publication-title: RSC Adv.
– volume: 33
  start-page: 1583
  year: 2017
  publication-title: Langmuir
– volume: 18
  start-page: 1465
  year: 2016
  publication-title: Green Chem.
– volume: 8
  start-page: 1325
  year: 1964
  publication-title: J. Appl. Polym. Sci.
– volume: 22
  start-page: 15732
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 97
  start-page: 664
  year: 2017
  publication-title: Ind. Crop. Prod.
– volume: 34
  start-page: 1767
  year: 2013
  publication-title: Macromol. Rapid Commun.
– volume: 27
  start-page: 1670
  year: 2006
  publication-title: Macromol. Rapid Commun.
– volume: 87
  start-page: 1131
  year: 2012
  publication-title: Carbohydr. Polym.
– volume: 44
  start-page: 3358
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 430
  start-page: 157
  year: 2014
  publication-title: J. Colloid Interface Sci.
– volume: 115
  start-page: 457
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 21
  start-page: 383
  year: 2013
  publication-title: Cellulose
– volume: 53
  start-page: 169
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 4
  start-page: 1538
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  start-page: 3130
  year: 2013
  publication-title: Biomacromolecules
– volume: 110
  start-page: 3479
  year: 2010
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2788
  year: 2011
  publication-title: Biomacromolecules
– volume: 22
  start-page: 483
  year: 2014
  publication-title: Cellulose
– volume: 7
  start-page: 5006
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 232
  start-page: 254
  year: 2017
  publication-title: Bioresour. Technol.
– volume: 107
  start-page: 1029
  year: 2008
  publication-title: J. Appl. Polym. Sci.
– volume: 22
  start-page: 3773
  year: 2015
  publication-title: Cellulose
– volume: 26
  start-page: 792
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 6383
  year: 2016
  publication-title: Polym. Chem.
– volume: 17
  start-page: 3941
  year: 2015
  publication-title: Green Chem.
– volume: 90
  start-page: 735
  year: 2012
  publication-title: Carbohydr. Polym.
– volume: 14
  start-page: 1223
  year: 2013
  publication-title: Biomacromolecules
– volume: 50
  start-page: 5438
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 771
  year: 2004
  publication-title: Macromol. Rapid Commun.
– volume: 66
  start-page: 26
  year: 2008
  publication-title: Colloids Surf., B
– ident: e_1_2_7_18_1
  doi: 10.1002/marc.201400382
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.200460587
– ident: e_1_2_7_7_1
  doi: 10.1016/j.fbp.2015.11.004
– ident: e_1_2_7_49_1
  doi: 10.1039/C5RA23182E
– ident: e_1_2_7_31_1
  doi: 10.1039/C4TB00956H
– ident: e_1_2_7_13_1
  doi: 10.1021/acssuschemeng.5b01489
– volume: 131
  start-page: 39538
  year: 2014
  ident: e_1_2_7_44_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.39538
– ident: e_1_2_7_36_1
  doi: 10.1021/bm400752k
– ident: e_1_2_7_5_1
  doi: 10.1016/j.progpolymsci.2015.07.003
– ident: e_1_2_7_11_1
  doi: 10.1021/cr900339w
– ident: e_1_2_7_29_1
  doi: 10.1016/j.carbpol.2014.08.110
– ident: e_1_2_7_28_1
  doi: 10.1039/b808639g
– ident: e_1_2_7_21_1
  doi: 10.1016/j.indcrop.2016.03.013
– ident: e_1_2_7_41_1
  doi: 10.1007/s10570-015-0761-5
– ident: e_1_2_7_53_1
  doi: 10.1039/C5GC00563A
– ident: e_1_2_7_10_1
  doi: 10.1002/marc.201300588
– ident: e_1_2_7_25_1
  doi: 10.1021/bm400219u
– ident: e_1_2_7_20_1
  doi: 10.1007/s10570-012-9847-5
– ident: e_1_2_7_43_1
  doi: 10.1039/c2jm32373g
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201503858
– ident: e_1_2_7_12_1
  doi: 10.1016/j.biortech.2017.01.070
– ident: e_1_2_7_34_1
  doi: 10.1002/marc.200600463
– ident: e_1_2_7_4_1
  doi: 10.1002/marc.201100230
– ident: e_1_2_7_30_1
  doi: 10.1021/acsami.5b00498
– ident: e_1_2_7_40_1
  doi: 10.1016/j.powtec.2014.04.039
– ident: e_1_2_7_35_1
  doi: 10.1002/marc.200300308
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.macromol.5b00117
– ident: e_1_2_7_27_1
  doi: 10.1021/bm5013458
– ident: e_1_2_7_26_1
  doi: 10.1016/j.carbpol.2011.08.084
– ident: e_1_2_7_51_1
  doi: 10.1016/j.indcrop.2016.01.012
– ident: e_1_2_7_19_1
  doi: 10.1039/c2ra01071b
– ident: e_1_2_7_33_1
  doi: 10.1021/acssuschemeng.5b01171
– ident: e_1_2_7_32_1
  doi: 10.1016/j.carbpol.2010.10.043
– ident: e_1_2_7_37_1
  doi: 10.1021/bm200551p
– ident: e_1_2_7_54_1
  doi: 10.1007/s10570-013-0096-z
– ident: e_1_2_7_23_1
  doi: 10.1039/C6NR09494E
– ident: e_1_2_7_42_1
  doi: 10.1039/C5GC03031E
– ident: e_1_2_7_6_1
  doi: 10.1016/j.biortech.2016.05.106
– ident: e_1_2_7_47_1
  doi: 10.1002/app.1964.070080322
– ident: e_1_2_7_17_1
  doi: 10.1016/j.carbpol.2015.01.054
– ident: e_1_2_7_3_1
  doi: 10.1016/j.carbpol.2015.06.041
– ident: e_1_2_7_39_1
  doi: 10.1039/C6PY01515H
– ident: e_1_2_7_16_1
  doi: 10.1039/C0SM00142B
– ident: e_1_2_7_1_1
  doi: 10.3390/polym2040728
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.langmuir.6b03765
– ident: e_1_2_7_9_1
  doi: 10.1002/marc.200300268
– ident: e_1_2_7_48_1
  doi: 10.1039/C5GC00689A
– ident: e_1_2_7_50_1
  doi: 10.1016/j.colsurfb.2008.05.007
– ident: e_1_2_7_46_1
  doi: 10.1002/app.1964.070080323
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201001273
– ident: e_1_2_7_22_1
  doi: 10.1007/s10570-014-0476-z
– ident: e_1_2_7_14_1
  doi: 10.1016/j.carbpol.2012.05.026
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jcis.2014.05.011
– ident: e_1_2_7_52_1
  doi: 10.1002/app.27061
SSID ssj0008402
Score 2.2811491
Snippet This article provides a novel and efficient method of “self‐assembly/modification/dispersion” for the preparation of functionalized cellulose nanoparticles...
This article provides a novel and efficient method of "self-assembly/modification/dispersion" for the preparation of functionalized cellulose nanoparticles...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Cellulose
Cellulose - chemistry
Dimethyl sulfoxide
Drug Carriers - chemistry
Drug delivery
Drug delivery systems
Drug Delivery Systems - methods
Fillers
functionalization
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogels
Hydrophobic and Hydrophilic Interactions
Nanoparticles
Nanoparticles - chemistry
Organic solvents
Particle size
Polymers
regenerated cellulose hydrogels
Self-assembly
Strings
Thermal stability
Title High Efficiency Conversion of Regenerated Cellulose Hydrogel Directly to Functionalized Cellulose Nanoparticles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201700409
https://www.ncbi.nlm.nih.gov/pubmed/29083103
https://www.proquest.com/docview/1972246368
https://www.proquest.com/docview/1957767785
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734fkSrrCB4ijbJbpscJbQUoR6KQm9hk0yKGBqx7UF_vTPZJFpFBL0lZJbd7Gu-2Z35BuDCUcjMTtom1ZvakoO4AuX1bNLuXZl6UmnJAc6ju-7wQd5O1ORTFL_hh2gO3HhllPs1L3Adz68_SEOZ6oFds5ifvYzgY4ctRkXjD_4osl7MdSdZXGSMdWvWxo57vVp8VSt9g5qryLVUPYMt0HWjjcfJ09VyEV8lb1_4HP_zV9uwWeFScWMm0g6s4WwX1sM6HdweFOwRIvol4wSHa4qQ_dXLwzZRZGKM05LAmgCsCDHPl3kxRzF8TV-KKebC7Kz5q1gUYkCq1JxAPr6tSNNOTyZ85am3Dw-D_n04tKtsDXZCijCw0UWCNph6LjpOxlxOfMnX8ZSvyUjqoCcTzBxUSaJ6UmM306kOepkOEj_OfEJKB9CaFTM8ApGmWexJgpKpdKTLDrJ-HBDuQwJzHarGArserSipqMw5o0YeGRJmN-JujJputOCykX82JB4_SrbrwY-qxTyPODOby8RqvgXnzWfqfr5b0TMsliyjmBep5ysLDs2kaapyA5POzQK3HPpf2hCNbsZh83b8l0InsMHPxu2mDa3FyxJPCTwt4rNygbwDGh4PgA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcH0YNefD_icwXBU2qT7LbJUaKlPuqhWPAW8pgUMTSi7aH99M5kk0gVEfTYdkPS3ezOf3ZnfgNwZilkslNokulNTMlJXJ5y2iZZ95ZMHKlCyQnOvYdWdyBvn1QVTci5MJoPUW-48cwo1mue4LwhffFJDWXWA8dmMaCdU_iWuKw34_Ov-p8EKfJf9IEn-VzkjrUqbmPTvpi_ft4ufROb89q1MD6dNYiqx9YxJy-NyThqxLMvRMd__a91WC2lqbjU79IGLOBoE5b9qiLcFuQcFCKuC-gEZ2wKn0PWi_02kaeij8OCYU0aVviYZZMsf0fRnSZv-RAzoRfXbCrGueiQNdWbkM-zuda02JMXXwbrbcOgc_3od82yYIMZky30TLSR1A0mjo2WlTLOic_5mo5yQ_KTmujIGFMLVRyrtgyxlYZJ6LXT0IvdKHVJLO3A4igf4R6IJEkjR5KaTKQlbY6RdSOPpB-SnmvSbQwwq-EK4pJmzkU1skBzmO2AuzGou9GA87r9q-Z4_NjysBr9oJzP7wEXZ7OZreYacFr_TN3PxyvhCPMJt1GMRmq7yoBd_dbUt7I9XdHNALsY-1-eIehd9v360_5fLjqB5e5j7z64v3m4O4AV_l5H4RzC4vhtgkekpcbRcTFbPgASNBOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-KQtuXaqttU7XdgtCnaD52c8mjRI_rhyJHBd_CJjs5pOEievdw99d3JptETymCfUwyy272a36zO_MbgH1fITM7aZdUr3ElB3ElKhy4pN0jaUKptOQA59OzaHQhf1yqy3tR_JYfoj9w45XR7Ne8wK9NeXhHGspUD-yaxfzsHMG3LiMv4eQNx-M7AikyX-x9J5lcZI1FHW2jFxyull9VS4-w5ip0bXTPcAN012rrcvLnYD7LD4rlA0LH__mtTXjTAlNxZGfSW3iB03fwKu3ywW1BzS4h4qShnOB4TZGyw3pz2ibqUoxx0jBYE4IVKVbVvKpvUYwW5qaeYCXs1lotxKwWQ9Kl9gjyarkiTVs92fCtq942XAxPfqcjt03X4BakCRMXAyRsgyYM0PdLJnPiWz4vVLEmK8nDUBZY-qiKQg2kxqjURieDUidFnJcxQaX3sDatp_gRhDFlHkrCkkb6MmAP2ThPCPghoTmPqnHA7UYrK1ouc06pUWWWhTnIuBuzvhsd-NbLX1sWj39K7naDn7Wr-Tbj1GwBM6vFDnztP1P38-WKnmI9ZxnFxEiDWDnwwU6avqogsfncHAiaoX-iDdnp0Tjtnz49p9AXeHl-PMx-fT_7uQOv-bV1wdmFtdnNHPcISM3yz81a-QvASxJL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Efficiency+Conversion+of+Regenerated+Cellulose+Hydrogel+Directly+to+Functionalized+Cellulose+Nanoparticles&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Wang%2C+Han%E2%80%90Qing&rft.au=Tan%2C+Huang&rft.au=Hua%2C+Sun&rft.au=Liu%2C+Zheng%E2%80%90Ying&rft.date=2017-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=38&rft.issue=23&rft_id=info:doi/10.1002%2Fmarc.201700409&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_201700409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon