Lipoplex‐Functionalized Thin‐Film Surface Coating Based on Extracellular Matrix Components as Local Gene Delivery System to Control Osteogenic Stem Cell Differentiation

A gene‐activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin‐film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabrica...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 12; no. 5; pp. e2201978 - n/a
Main Authors Husteden, Catharina, Brito Barrera, Yazmin A., Tegtmeyer, Sophia, Borges, João, Giselbrecht, Julia, Menzel, Matthias, Langner, Andreas, Mano, João F., Schmelzer, Christian E. H., Wölk, Christian, Groth, Thomas
Format Journal Article
LanguageEnglish
Published Germany 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A gene‐activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin‐film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabricated by layer‐by‐layer assembly. For further functionalization, DNA/lipid‐nanoparticles (lipoplexes) are incorporated into the multilayers. The polyelectrolyte multilayer fabrication and lipoplex deposition are analyzed by surface sensitive analytical methods that demonstrate successful thin‐film formation, fibrillar structuring of collagen, and homogenous embedding of lipoplexes. Culture of mesenchymal stem cells on the lipoplex functionalized multilayer results in excellent attachment and growth of them, and also, their ability to take up cargo like fluorescence‐labelled DNA from lipoplexes. The functionalization of the multilayer with lipoplexes encapsulating DNA encoding for transient expression of bone morphogenetic protein 2 induces osteogenic differentiation of mesenchymal stem cells, which is shown by mRNA quantification for osteogenic genes and histochemical staining. In summary, the novel gene‐functionalized and extracellular matrix mimicking multilayer composed of collagen I, chondroitin sulfate, and lipoplexes, represents a smart surface functionalization that holds great promise for tissue engineering constructs and implant coatings to promote regeneration of bone and other tissues. An extracellular matrix‐inspired polyelectrolyte multilayer film is functionalized with lipoplexes and used as gene activated biomaterial surface coating for application in regenerative medicine. Collagen I‐chondroitin sulfate multilayers with embedded lipoplexes having plasmids encoding for bone morphogenic protein 2 gene promote adhesion and growth of mesenchymal stem cells and transfect them efficiently inducing their osteogenic differentiation.
AbstractList A gene-activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin-film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabricated by layer-by-layer assembly. For further functionalization, DNA/lipid-nanoparticles (lipoplexes) are incorporated into the multilayers. The polyelectrolyte multilayer fabrication and lipoplex deposition are analyzed by surface sensitive analytical methods that demonstrate successful thin-film formation, fibrillar structuring of collagen, and homogenous embedding of lipoplexes. Culture of mesenchymal stem cells on the lipoplex functionalized multilayer results in excellent attachment and growth of them, and also, their ability to take up cargo like fluorescence-labelled DNA from lipoplexes. The functionalization of the multilayer with lipoplexes encapsulating DNA encoding for transient expression of bone morphogenetic protein 2 induces osteogenic differentiation of mesenchymal stem cells, which is shown by mRNA quantification for osteogenic genes and histochemical staining. In summary, the novel gene-functionalized and extracellular matrix mimicking multilayer composed of collagen I, chondroitin sulfate, and lipoplexes, represents a smart surface functionalization that holds great promise for tissue engineering constructs and implant coatings to promote regeneration of bone and other tissues.
A gene‐activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin‐film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabricated by layer‐by‐layer assembly. For further functionalization, DNA/lipid‐nanoparticles (lipoplexes) are incorporated into the multilayers. The polyelectrolyte multilayer fabrication and lipoplex deposition are analyzed by surface sensitive analytical methods that demonstrate successful thin‐film formation, fibrillar structuring of collagen, and homogenous embedding of lipoplexes. Culture of mesenchymal stem cells on the lipoplex functionalized multilayer results in excellent attachment and growth of them, and also, their ability to take up cargo like fluorescence‐labelled DNA from lipoplexes. The functionalization of the multilayer with lipoplexes encapsulating DNA encoding for transient expression of bone morphogenetic protein 2 induces osteogenic differentiation of mesenchymal stem cells, which is shown by mRNA quantification for osteogenic genes and histochemical staining. In summary, the novel gene‐functionalized and extracellular matrix mimicking multilayer composed of collagen I, chondroitin sulfate, and lipoplexes, represents a smart surface functionalization that holds great promise for tissue engineering constructs and implant coatings to promote regeneration of bone and other tissues. An extracellular matrix‐inspired polyelectrolyte multilayer film is functionalized with lipoplexes and used as gene activated biomaterial surface coating for application in regenerative medicine. Collagen I‐chondroitin sulfate multilayers with embedded lipoplexes having plasmids encoding for bone morphogenic protein 2 gene promote adhesion and growth of mesenchymal stem cells and transfect them efficiently inducing their osteogenic differentiation.
Author Groth, Thomas
Wölk, Christian
Brito Barrera, Yazmin A.
Husteden, Catharina
Borges, João
Langner, Andreas
Mano, João F.
Tegtmeyer, Sophia
Schmelzer, Christian E. H.
Giselbrecht, Julia
Menzel, Matthias
Author_xml – sequence: 1
  givenname: Catharina
  surname: Husteden
  fullname: Husteden, Catharina
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 2
  givenname: Yazmin A.
  surname: Brito Barrera
  fullname: Brito Barrera, Yazmin A.
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 3
  givenname: Sophia
  surname: Tegtmeyer
  fullname: Tegtmeyer, Sophia
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 4
  givenname: João
  orcidid: 0000-0003-0126-8482
  surname: Borges
  fullname: Borges, João
  organization: University of Aveiro
– sequence: 5
  givenname: Julia
  surname: Giselbrecht
  fullname: Giselbrecht, Julia
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 6
  givenname: Matthias
  orcidid: 0000-0003-2294-0573
  surname: Menzel
  fullname: Menzel, Matthias
  organization: Fraunhofer Institute for Microstructure of Materials and Systems (IMWS)
– sequence: 7
  givenname: Andreas
  surname: Langner
  fullname: Langner, Andreas
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 8
  givenname: João F.
  orcidid: 0000-0002-2342-3765
  surname: Mano
  fullname: Mano, João F.
  organization: University of Aveiro
– sequence: 9
  givenname: Christian E. H.
  orcidid: 0000-0002-1180-0201
  surname: Schmelzer
  fullname: Schmelzer, Christian E. H.
  organization: Fraunhofer Institute for Microstructure of Materials and Systems (IMWS)
– sequence: 10
  givenname: Christian
  orcidid: 0000-0002-8067-7307
  surname: Wölk
  fullname: Wölk, Christian
  email: christian.woelk@medizin.uni-leipzig.de
  organization: Leipzig University
– sequence: 11
  givenname: Thomas
  orcidid: 0000-0001-6647-9657
  surname: Groth
  fullname: Groth, Thomas
  email: thomas.groth@pharmazie.uni-halle.de
  organization: Martin Luther University Halle‐Wittenberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36377486$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1OwzAQhS0E4qd0yxL5Ai22kzjOsvQXqVUXLevIdexi5NiRk0LLiiNwEE7FSXBU6Gw8M-_T08jvBpxbZyUAdxj1MULkgRcvZZ8gQhDOUnYGrgnOSI_QJDs_9TG6At26fkWhaIIpw5fgKqJRmsaMXoPvua5cZeT-5_NrsrOi0c5yoz9kAdcv2rZbbUq42nnFhYRDxxttt_CR14FwFo73jQ-CMTvDPVzwxut9oMoqXGqbGvIazp3gBk6llXAkjX6T_gBXh7qRJWxcYG3jnYHLsHBbabWAq1YaBk840kpJH4w0bw-7BReKm1p2_94OeJ6M18NZb76cPg0H856IccR6VDGWZrRAsYriGDEheJEQhWLBkk0WRUKQTZLiVBFBC8IxziRKKeKSp1kimIo64P7oW-02pSzyyuuS-0P-_20ByI7AuzbycNIxyttc8jaX_JRLPhjNFqcp-gVMN4g5
CitedBy_id crossref_primary_10_1039_D3CS00786C
crossref_primary_10_1007_s40820_023_01228_w
crossref_primary_10_1039_D3TB00796K
crossref_primary_10_3389_fcell_2023_1209047
crossref_primary_10_1208_s12249_024_02850_6
crossref_primary_10_2174_0113894501285598240216065627
ContentType Journal Article
Copyright 2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
Copyright_xml – notice: 2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/adhm.202201978
DatabaseName Wiley Online Library
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID 36377486
ADHM202201978
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: 2020.00758.CEECIND
– fundername: Ministério da Ciência, Tecnologia e Ensino Superior
  funderid: PTDC/QUI‐OUT/30658/2017; CENTRO‐01‐0145‐FEDER‐030658
– fundername: Consejo Nacional de Ciencia y Tecnología ‐ México
– fundername: Programa Operacional Regional do Centro – Centro 2020
  funderid: FEDER
– fundername: Centro de Investigação em Materiais Cerâmicos e Compósitos ‐ Avairo Institute of Materials
  funderid: UIDB/50011/2020; UIDP/50011/2020; LA/P/0006/2020
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 396823779
– fundername: Deutscher Akademischer Austauschdienst
– fundername: European Regional Development Fund
  funderid: AGRIPOLY
– fundername: Ministerium für Wissenschaft und Wirtschaft, Land Sachsen‐Anhalt
  funderid: AGRIPOLY
– fundername: Ministério da Educação e Ciência
GroupedDBID 05W
0R~
1OC
24P
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
31~
AASGY
ACBWZ
ASPBG
AVWKF
AZFZN
C45
CGR
CUY
CVF
ECM
EIF
EJD
GODZA
NPM
OVD
TEORI
ID FETCH-LOGICAL-c4138-6f88796d04f34408ccad52f04c85b933cc2b5717f2c6d2a119e0760aea795c8f3
IEDL.DBID 24P
ISSN 2192-2640
IngestDate Tue Aug 27 13:49:55 EDT 2024
Sat Aug 24 01:01:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords chondroitin sulfate
osteogenic differentiation
collagen I
bone morphogenic protein 2
human adipose-derived mesenchymal stem cells
polyelectrolyte multilayers
lipoplexes
Language English
License Attribution
2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4138-6f88796d04f34408ccad52f04c85b933cc2b5717f2c6d2a119e0760aea795c8f3
ORCID 0000-0001-6647-9657
0000-0003-2294-0573
0000-0002-2342-3765
0000-0003-0126-8482
0000-0002-1180-0201
0000-0002-8067-7307
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201978
PMID 36377486
PageCount 20
ParticipantIDs pubmed_primary_36377486
wiley_primary_10_1002_adhm_202201978_ADHM202201978
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2023
References 2001; 386
2019; 2019
1998; 280
2009; 84
2013; 4
2021; 23
2018; 282
2019; 10
2004; 25
2007; 581
2015; 220
2008; 7
2004; 6
2020; 12
2020; 56
2020; 11
2011; 17
2008; 2
2013; 5
2017; 9
2014; 67
2017; 116
2013; 9
2003; 55
2013; 19
2010; 22
2020; 7
2013; 14
2018; 5
2018; 4
1991; 46
2021; 236
2002; 83
2004; 570
2013; 434
2017; 34
2006; 1758
2020; 9
2014; 15
2008; 26
2003; 4
2016; 41
2022; 74
2016; 236
2011; 28
2012; 258
2008; 60
2010; 6
2007; 25
2017; 248
2009; 326
2015; 5
2015; 16
2019; 5
2019; 30
2005; 310
2007; 121
2019; 35
2018; 541
2015; 96
2013; 228
2015; 10
2008
2011; 32
2015; 205
2014; 40
2016; 17
2014; 1840
2001; 25
2014; 114
2015; 68
2015; 26
2018; 18
2012; 113
2019; 86
2010; 658
2022; 8
2015; 63
2021; 19
1999; 32
2021; 131
2014; 100
1976; 16
2016; 8
2006; 221
2012; 8
2016; 22
References_xml – volume: 8
  start-page: 42
  year: 2016
  publication-title: Polymers
– volume: 5
  start-page: 6610
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 1758
  start-page: 419
  year: 2006
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 55
  start-page: 1531
  year: 2003
  publication-title: Adv. Drug Delivery Rev.
– volume: 131
  year: 2021
  publication-title: Mater. Sci. Eng., C
– volume: 658
  start-page: 43
  year: 2010
  publication-title: Adv. Exp. Med. Biol.
– volume: 310
  start-page: 1139
  year: 2005
  publication-title: Science
– volume: 22
  start-page: 284
  year: 2016
  publication-title: Tissue Eng., Part B
– volume: 280
  start-page: 1455
  year: 1998
  publication-title: Science
– volume: 221
  start-page: 203
  year: 2006
  publication-title: J Microsc.
– volume: 15
  start-page: 4272
  year: 2014
  publication-title: Biomacromolecules
– volume: 4
  start-page: 117
  year: 2013
  publication-title: Stem Cell Res. Ther.
– volume: 205
  start-page: 181
  year: 2015
  publication-title: J. Controlled Release
– volume: 570
  start-page: 142
  year: 2004
  publication-title: Surf. Sci.
– volume: 25
  start-page: 619
  year: 2007
  publication-title: Annu. Rev. Immunol.
– volume: 2
  start-page: 81
  year: 2008
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 68
  start-page: 665
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 236
  start-page: 1
  year: 2016
  publication-title: J. Controlled Release
– volume: 8
  year: 2022
  publication-title: Front. Mater.
– volume: 40
  start-page: S33
  year: 2014
  publication-title: J. Endod.
– volume: 236
  start-page: 1
  year: 2021
  publication-title: Transl. Res.
– volume: 10
  start-page: 350
  year: 2019
  publication-title: Cell Death Dis.
– volume: 60
  start-page: 979
  year: 2008
  publication-title: Adv. Drug Delivery Rev.
– volume: 16
  start-page: 1055
  year: 1976
  publication-title: Biophys. J.
– volume: 7
  start-page: 816
  year: 2008
  publication-title: Nat. Mater.
– volume: 56
  start-page: 4672
  year: 2020
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1
  year: 2008
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 18
  year: 2018
  publication-title: Macromol. Biosci.
– volume: 113
  start-page: 3672
  year: 2012
  publication-title: J. Cell. Biochem.
– volume: 41
  start-page: 86
  year: 2016
  publication-title: Acta Biomater.
– volume: 22
  start-page: 175
  year: 2010
  publication-title: Adv. Mater.
– volume: 11
  start-page: 757
  year: 2020
  publication-title: Front. Pharmacol.
– volume: 14
  start-page: 1696
  year: 2013
  publication-title: Biomacromolecules
– volume: 16
  start-page: 9
  year: 2015
  publication-title: BMC Cell Biol.
– volume: 9
  start-page: 5431
  year: 2013
  publication-title: Acta Biomater.
– volume: 19
  year: 2013
  publication-title: Chemistry
– volume: 12
  start-page: 1949
  year: 2020
  publication-title: Polymers
– volume: 7
  year: 2020
  publication-title: Mater. Today Bio
– volume: 34
  start-page: 1152
  year: 2017
  publication-title: Pharm. Res.
– volume: 6
  start-page: 210
  year: 2010
  publication-title: Acta Biomater.
– volume: 5
  start-page: 524
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 220
  start-page: 295
  year: 2015
  publication-title: J. Controlled Release
– volume: 17
  start-page: 1949
  year: 2016
  publication-title: Biomacromolecules
– volume: 96
  start-page: 349
  year: 2015
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 282
  start-page: 140
  year: 2018
  publication-title: J. Controlled Release
– volume: 35
  start-page: 4613
  year: 2019
  publication-title: Langmuir
– volume: 12
  start-page: 8963
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  year: 2015
  publication-title: Nanotechnology
– volume: 26
  start-page: 1440
  year: 2008
  publication-title: J. Orthop. Res.
– volume: 83
  start-page: 556
  year: 2002
  publication-title: Biophys. J.
– volume: 63
  start-page: 177
  year: 2015
  publication-title: Biomaterials
– volume: 121
  start-page: 91
  year: 2007
  publication-title: J. Controlled Release
– volume: 386
  start-page: 95
  year: 2001
  publication-title: Arch. Biochem. Biophys.
– volume: 32
  start-page: 2317
  year: 1999
  publication-title: Macromolecules
– volume: 114
  start-page: 8883
  year: 2014
  publication-title: Chem. Rev.
– volume: 25
  start-page: 402
  year: 2001
  publication-title: Methods
– volume: 17
  start-page: 440
  year: 2011
  publication-title: Microsc. Microanal.
– volume: 5
  start-page: 197
  year: 2018
  publication-title: Regener. Biomater.
– start-page: 201
  year: 2008
  end-page: 265
– volume: 25
  start-page: 2721
  year: 2004
  publication-title: Biomaterials
– volume: 326
  start-page: 1216
  year: 2009
  publication-title: Science
– volume: 67
  start-page: 23
  year: 2014
  publication-title: Bone
– volume: 100
  start-page: S107
  year: 2014
  publication-title: Orthop. Traumatol.: Surg. Res.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 46
  start-page: 321
  year: 1991
  publication-title: Macromol. Symp.
– volume: 4
  start-page: 346
  year: 2003
  publication-title: Nat. Rev. Genet.
– volume: 116
  start-page: 95
  year: 2017
  publication-title: Biomaterials
– volume: 434
  start-page: 110
  year: 2013
  publication-title: Colloids Surf. A
– volume: 86
  start-page: 247
  year: 2019
  publication-title: Acta Biomater.
– volume: 541
  start-page: 81
  year: 2018
  publication-title: Int. J. Pharm.
– volume: 10
  year: 2015
  publication-title: PLoS One
– volume: 19
  start-page: 90
  year: 2021
  publication-title: J. Genet. Eng. Biotechnol.
– volume: 4
  start-page: 1820
  year: 2018
  publication-title: ACS Biomater. Sci. Eng.
– volume: 2019
  year: 2019
  publication-title: Stem Cells Int.
– volume: 23
  start-page: 852
  year: 2021
  publication-title: Cytotherapy
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 228
  start-page: 330
  year: 2013
  publication-title: J. Cell. Physiol.
– volume: 30
  start-page: 703
  year: 2019
  publication-title: J. Craniofacial Surg.
– volume: 74
  start-page: 8
  year: 2022
  publication-title: Curr. Opin. Biotechnol.
– volume: 581
  start-page: 4172
  year: 2007
  publication-title: FEBS Lett.
– volume: 84
  start-page: 893
  year: 2009
  publication-title: Mayo Clin. Proc.
– volume: 1840
  start-page: 2506
  year: 2014
  publication-title: Bioch. Biophys. Acta
– volume: 6
  start-page: 4305
  year: 2010
  publication-title: Acta Biomater.
– volume: 32
  start-page: 1446
  year: 2011
  publication-title: Biomaterials
– volume: 8
  start-page: 3191
  year: 2012
  publication-title: Acta Biomater.
– volume: 248
  start-page: 20
  year: 2017
  publication-title: Adv. Colloid Interface Sci.
– volume: 6
  start-page: 483
  year: 2004
  publication-title: Dev. Cell
– volume: 9
  start-page: 971
  year: 2020
  publication-title: Nanotechnol. Rev.
– volume: 258
  start-page: 9918
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 1328
  year: 2011
  publication-title: Pharm. Res.
SSID ssj0000651681
Score 2.3843236
Snippet A gene‐activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin‐film coating is based on...
A gene-activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin-film coating is based on...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e2201978
SubjectTerms bone morphogenic protein 2
Cell Differentiation
chondroitin sulfate
Chondroitin Sulfates
Collagen
collagen I
Collagen Type I - genetics
DNA - metabolism
Extracellular Matrix - metabolism
Gene Transfer Techniques
human adipose‐derived mesenchymal stem cells
lipoplexes
Osteogenesis
osteogenic differentiation
polyelectrolyte multilayers
Polyelectrolytes
Title Lipoplex‐Functionalized Thin‐Film Surface Coating Based on Extracellular Matrix Components as Local Gene Delivery System to Control Osteogenic Stem Cell Differentiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201978
https://www.ncbi.nlm.nih.gov/pubmed/36377486
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF61cKEHVP5aaKnmwNWKvWsv9hESogglFAki5WbtrxqpjaNgpMCJR-BBeCqehBlvatJrL5bslVfWzux-s-Nvv2HsRFiMQnVmo1gY3KB446K8cD4S_tRx6T0iCuU7RldyME4vJ9lk7RR_0IdoE240M5r1mia40nedd9FQZX_RSXKOCIY7oY9sE2ObnPyap9dtlgUBNpFNpVKcmZzoXPFf5caYd_7tYg2D1uPUBmj6n9n2KkKEs2DSHfbBzXbZpzXdwD32MpzOifi9fH167iMwhXze9NFZoDqc9HT6-w_c3C-8Mg66lSJyM5wjYlmoZnCxrBeKUvbEQYURqfQvgVaGaka8ClB3MCSMAxKlhh4OFDr8AwR1c6gr6AaCO_zEBxW64NTADTV1sU_orWqu1MHq-2zcv7jtDqJV2YXIIKLlkfS48BTSxqkXVI8abWwz7uPU5JkuhDCG6wx3gZ4bablKksLR7z3l1GmRmdyLA7Yxw-_9ykAZ47UpUiuVT7PEasRLnRa5UIlJdJwesi9hyMt50NYohRQYkObykPHGBm1DkFfmJdmsbG1WnvUGo_bu6H9e-sa2qIR8YGJ_Zxv14t4dY6BR6x-NL-H16nr0BiMB0SI
link.rule.ids 315,786,790,11589,27957,27958,46087,46511
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECZSZ2gzFEmTtG6b9IasgiVSYqQxtWM4iZ0EsA10Eyj-IAZay3BkwO3UR-iD9Kn6JL0THcVdO4qECIHH43c8ffyOsTNhMAotEhOEQuMBxWkbpJl1gXDnlkvnEFEo3zG6lYNpfP0leWIT0l0Yrw_RJNzIM-r9mhycEtKdZ9VQZR7oKjlHCMOj0Au2S2W9yTd5fN-kWRBhI1mXKkXX5MTnCp-kG0Pe-XeILRDaDlRrpOnvs9ebEBEuvE0P2I6dv2F7W8KBh-z3cLYg5vf6z89ffUQmn9Cb_bAGqBAntc6-foPxaumUttAtFbGb4TNCloFyDpfraqkoZ08kVBiRTP8aaGso50SsAPUIQwI5IFVq6OFM4Yr_Dl7eHKoSup7hDnfYUOIanGkYU1cXx4TepuhK5c1-xKb9y0l3EGzqLgQaIS0NpMOdJ5MmjJ2ggtRoZJNwF8Y6TYpMCK15keAx0HEtDVdRlFn6v6esOs8SnTpxzFpz_N53DJTWrtBZbKRycRKZAgGziLNUqEhHRRi32Vs_5fnCi2vkQgqMSFPZZry2QdPh9ZV5TjbLG5vlF73BqHl6_z8vfWIvB5PRMB9e3d58YK-onrynZX9krWq5sicYdVTFab2u_gJqz9N3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELb4kar2UAGFdsvfHHqNSGzHJEe6y2qBXUCiSNwixz9ipXaz2gZp21MfoQ_Sp-JJmImXsL1yjK1Ykcf2NzP5_A1jX4RFL7RMbRQLgwGKNy7Kcucj4Y8dV94jolC-Y3SpBrfy_C69W7rFH_Qh2oQb7YzmvKYNPrX-6EU0VNt7uknOEcEwElpl61LFGYVfXF63WRYE2EQ1lUpxZ3Kic8XPyo0xP_p_iCUMWvZTG6Dpb7D3Cw8RToJJN9mKm2yxd0u6gR_Yv-F4SsTv-eOfv30EppDPG_92FqgOJ7WOv_-Am4eZ18ZBt9JEboaviFgWqgmczuuZppQ9cVBhRCr9c6CToZoQrwL0TxgSxgGJUkMPJwoX_C8I6uZQV9ANBHe4woYKl-DYwA11dXFM6C1qrtTB6tvstn_6rTuIFmUXIoOIlkXK48GTKxtLL6geNdrYptzH0mRpmQthDC9TjAI9N8pynSS5o9972unjPDWZFztsbYLf-4mBNsaXJpdWaS_TxJaIl6XMM6ETk5Sx7LCPYcqLadDWKIQS6JBmqsN4Y4O2I8gr84JsVrQ2K056g1H79Pk1Lx2yN9e9fjE8u7zYZW-pmnwgZe-xtXr24PbR56jLg2ZZPQFX8NKp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipoplex%E2%80%90Functionalized+Thin%E2%80%90Film+Surface+Coating+Based+on+Extracellular+Matrix+Components+as+Local+Gene+Delivery+System+to+Control+Osteogenic+Stem+Cell+Differentiation&rft.jtitle=Advanced+healthcare+materials&rft.au=Husteden%2C+Catharina&rft.au=Brito+Barrera%2C+Yazmin+A.&rft.au=Tegtmeyer%2C+Sophia&rft.au=Borges%2C+Jo%C3%A3o&rft.date=2023-02-01&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=12&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadhm.202201978&rft.externalDBID=10.1002%252Fadhm.202201978&rft.externalDocID=ADHM202201978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon