The Reaction of o‐Benzyne with Vinylacetylene: An Unexplored Way to Produce Naphthalene

The mechanism and kinetics of the reaction of ortho‐benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)‐F12/cc‐pVTZ‐f12//B3LYP/6‐311G(d,p) calculations of the pertinent potential energy surface combined with Rice‐Ramsperger‐Kassel‐Marcus ‐ Master Equation calcul...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 23; no. 2; pp. e202100758 - n/a
Main Authors Monluc, Lisa, Nikolayev, Anatoliy A., Medvedkov, Iakov A., Azyazov, Valeriy N., Morozov, Alexander N., Mebel, Alexander M.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism and kinetics of the reaction of ortho‐benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)‐F12/cc‐pVTZ‐f12//B3LYP/6‐311G(d,p) calculations of the pertinent potential energy surface combined with Rice‐Ramsperger‐Kassel‐Marcus ‐ Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C4H4 to one of the C atoms of the triple bond in ortho‐benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six‐membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1‐ or 2‐naphthyl radicals. The o‐C6H4+C4H4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31–32 kcal mol−1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9–11 kcal mol−1. Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1‐ and 2‐naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho‐benzyne and vinylacetylene are available. New way to naphthalene: Electronic structure calculations of the potential energy surface for the reaction of ortho‐benzyne with vinylacetylene combined with RRKM‐ME calculations of reaction rate constants at various temperatures and pressures show that the reaction represents a viable source of the naphthalene core under conditions where the concentrations of o‐C6H4 and C4H4 are sufficient.
AbstractList The mechanism and kinetics of the reaction of ortho‐benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)‐F12/cc‐pVTZ‐f12//B3LYP/6‐311G(d,p) calculations of the pertinent potential energy surface combined with Rice‐Ramsperger‐Kassel‐Marcus ‐ Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C4H4 to one of the C atoms of the triple bond in ortho‐benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six‐membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1‐ or 2‐naphthyl radicals. The o‐C6H4+C4H4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31–32 kcal mol−1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9–11 kcal mol−1. Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1‐ and 2‐naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho‐benzyne and vinylacetylene are available.
Abstract The mechanism and kinetics of the reaction of ortho ‐benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)‐F12/cc‐pVTZ‐f12//B3LYP/6‐311G(d,p) calculations of the pertinent potential energy surface combined with Rice‐Ramsperger‐Kassel‐Marcus ‐ Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C 4 H 4 to one of the C atoms of the triple bond in ortho ‐benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six‐membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1‐ or 2‐naphthyl radicals. The o ‐C 6 H 4 +C 4 H 4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31–32 kcal mol −1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9–11 kcal mol −1 . Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1‐ and 2‐naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho ‐benzyne and vinylacetylene are available.
The mechanism and kinetics of the reaction of ortho‐benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)‐F12/cc‐pVTZ‐f12//B3LYP/6‐311G(d,p) calculations of the pertinent potential energy surface combined with Rice‐Ramsperger‐Kassel‐Marcus ‐ Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C4H4 to one of the C atoms of the triple bond in ortho‐benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six‐membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1‐ or 2‐naphthyl radicals. The o‐C6H4+C4H4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31–32 kcal mol−1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9–11 kcal mol−1. Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1‐ and 2‐naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho‐benzyne and vinylacetylene are available. New way to naphthalene: Electronic structure calculations of the potential energy surface for the reaction of ortho‐benzyne with vinylacetylene combined with RRKM‐ME calculations of reaction rate constants at various temperatures and pressures show that the reaction represents a viable source of the naphthalene core under conditions where the concentrations of o‐C6H4 and C4H4 are sufficient.
The mechanism and kinetics of the reaction of ortho-benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) calculations of the pertinent potential energy surface combined with Rice-Ramsperger-Kassel-Marcus - Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C H to one of the C atoms of the triple bond in ortho-benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six-membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1- or 2-naphthyl radicals. The o-C H +C H reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31-32 kcal mol to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9-11 kcal mol . Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1- and 2-naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho-benzyne and vinylacetylene are available.
Author Monluc, Lisa
Azyazov, Valeriy N.
Nikolayev, Anatoliy A.
Medvedkov, Iakov A.
Mebel, Alexander M.
Morozov, Alexander N.
Author_xml – sequence: 1
  givenname: Lisa
  surname: Monluc
  fullname: Monluc, Lisa
  organization: Florida State University
– sequence: 2
  givenname: Anatoliy A.
  surname: Nikolayev
  fullname: Nikolayev, Anatoliy A.
  organization: Lebedev Physical Institute
– sequence: 3
  givenname: Iakov A.
  surname: Medvedkov
  fullname: Medvedkov, Iakov A.
  organization: Lebedev Physical Institute
– sequence: 4
  givenname: Valeriy N.
  orcidid: 0000-0001-9341-4656
  surname: Azyazov
  fullname: Azyazov, Valeriy N.
  organization: Lebedev Physical Institute
– sequence: 5
  givenname: Alexander N.
  surname: Morozov
  fullname: Morozov, Alexander N.
  organization: Florida International University
– sequence: 6
  givenname: Alexander M.
  orcidid: 0000-0002-7233-3133
  surname: Mebel
  fullname: Mebel, Alexander M.
  email: mebela@fiu.edu
  organization: Florida International University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34767677$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLHEEQx5ugxEdyzVEavOSyaz-np72ZJUZBjAQf5NT01tQwI7Pd4zzYjKd8BD-jn8RZdqPgJdShquBXf4rfHtkKMSAhXzibcsbEEdQFTAUT42J0-oHsciXtxCSKb21mJaTeIXtte88YS5nhH8mOVCYZy-yS39cF0l_ooStjoDGn8fnv0zcMj0NAuiy7gt6WYag8YDdUGPCYngR6E_BPXcUGM3rnB9pFetXErAekl74uusKvyE9kO_dVi583fZ_cnH6_np1NLn7-OJ-dXExAcZlOtExBaA8CU2-FNolVwMFbnuWZNXmWATDPwUoNwLWyci7ZPFEGDeZczDO5T76uc-smPvTYdm5RtoBV5QPGvnVCW6MsZzoZ0cN36H3smzB-50QyKuTGpOlITdcUNLFtG8xd3ZQL3wyOM7eS7lbS3av08eBgE9vPF5i94v8sj4BdA8uywuE_cW52dTZ7C38BAxqQPg
CitedBy_id crossref_primary_10_1016_j_combustflame_2023_112623
crossref_primary_10_1016_j_combustflame_2022_112574
crossref_primary_10_1016_j_pecs_2023_101076
crossref_primary_10_1039_D1CP05476G
crossref_primary_10_1002_ange_202300907
crossref_primary_10_1016_j_fuel_2023_128873
crossref_primary_10_1002_anie_202300907
Cites_doi 10.1063/1.3473743
10.1063/1.4726455
10.1039/c2cp41002h
10.1021/acs.jpca.8b09640
10.1021/j100095a033
10.1063/1.3054300
10.1063/1.1724823
10.1002/ange.200390119
10.1002/anie.200390151
10.1021/jp910604b
10.1021/acs.jpca.6b09735
10.1063/1.3633329
10.1063/1.433837
10.1071/CH10179
10.1021/jp208368a
10.1016/j.proci.2016.07.013
10.1002/wcms.82
10.1021/ja00517a004
10.1002/cphc.201801154
10.1063/1.1700424
10.1002/kin.20625
10.1039/c1cp22601k
10.1016/S0082-0784(00)80552-4
10.1021/acs.jpca.7b05562
10.1524/zpch.2009.6042
10.1021/jp1031064
10.1088/0004-637X/728/2/141
10.1071/CH10074
10.1103/PhysRevB.37.785
10.1063/1.456153
10.1021/jp0508608
10.1021/jp4060704
10.1021/acs.jpca.9b10705
10.1063/1.1676275
10.1016/S0082-0784(85)80578-6
10.1021/acs.jpclett.0c00374
10.1063/1.2409927
10.1063/1.470529
10.1063/1.481132
10.1021/jp970723d
10.1063/1.464913
10.1063/1.2817618
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
K9.
7X8
DOI 10.1002/cphc.202100758
DatabaseName PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage n/a
ExternalDocumentID 10_1002_cphc_202100758
34767677
CPHC202100758
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  funderid: 14.Y26.31.0020
– fundername: US Department of Energy, Basic Energy Sciences
  funderid: DE-FG02-04ER15570
– fundername: US Department of Energy, Basic Energy Sciences
  grantid: DE-FG02-04ER15570
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 14.Y26.31.0020
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
NPM
AAYXX
CITATION
K9.
7X8
ID FETCH-LOGICAL-c4138-538c25ac2e8a9257694c1ca91dfd97fddcc0a1c935cc15493b30b647e7ef12bd3
IEDL.DBID DR2
ISSN 1439-4235
IngestDate Fri Aug 16 06:08:46 EDT 2024
Thu Oct 10 19:09:57 EDT 2024
Fri Aug 23 02:09:01 EDT 2024
Sat Sep 28 08:23:19 EDT 2024
Sat Aug 24 00:58:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ortho-benzyne
Ab initio calculations
polycyclic aromatic hydrocarbons
rate constant
potential energy surface
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4138-538c25ac2e8a9257694c1ca91dfd97fddcc0a1c935cc15493b30b647e7ef12bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9341-4656
0000-0002-7233-3133
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/cphc.202100758
PMID 34767677
PQID 2621017788
PQPubID 986334
PageCount 8
ParticipantIDs proquest_miscellaneous_2597491056
proquest_journals_2621017788
crossref_primary_10_1002_cphc_202100758
pubmed_primary_34767677
wiley_primary_10_1002_cphc_202100758_CPHC202100758
PublicationCentury 2000
PublicationDate January 19, 2022
PublicationDateYYYYMMDD 2022-01-19
PublicationDate_xml – month: 01
  year: 2022
  text: January 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 126
2018; 122
2004; 120
2011; 135
2007; 127
1979; 101
2000; 28
1988; 37
1977; 66
2011; 13
2003 2003; 42 115
2020; 124
2020; 11
2009; 130
2000; 112
2012; 14
1985; 20
2010; 63
2011; 133
1952; 20
2012; 2
2019; 20
2011; 728
2017; 36
2010; 114
1993; 98
1997; 101
1989; 90
2013; 117
2011; 44
2005; 109
2009; 223
1995; 103
2017; 121
2012; 136
2012; 116
1994; 98
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 120
  start-page: 9918
  year: 2004
  end-page: 9924
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 5451
  year: 1995
  end-page: 5460
  publication-title: J. Chem. Phys.
– volume: 728
  start-page: 141
  year: 2011
  publication-title: Astrophys. J.
– volume: 114
  start-page: 8240
  year: 2010
  end-page: 8261
  publication-title: J. Phys. Chem. A.
– volume: 114
  start-page: 4881
  year: 2010
  end-page: 4890
  publication-title: J. Phys. Chem. A.
– volume: 136
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 21308
  year: 2011
  end-page: 21318
  publication-title: Phys. Chem. Chem. Phys.
– volume: 117
  start-page: 12146
  year: 2013
  end-page: 12154
  publication-title: J. Phys. Chem. A.
– volume: 120
  start-page: 7008
  year: 2004
  end-page: 7017
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 919
  year: 2017
  end-page: 926
  publication-title: Proc. Int. Combust. Inst.
– volume: 127
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 126
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 63
  start-page: 1007
  year: 2010
  end-page: 1012
  publication-title: Aust. J. Chem.
– volume: 223
  start-page: 387
  year: 2009
  end-page: 407
  publication-title: Z. Phys. Chem.
– volume: 122
  start-page: 9563
  year: 2018
  end-page: 9571
  publication-title: J. Phys. Chem. A.
– volume: 11
  start-page: 2859
  year: 2020
  end-page: 2863
  publication-title: J. Phys. Chem. Lett.
– volume: 20
  start-page: 791
  year: 2019
  end-page: 797
  publication-title: ChemPhysChem.
– volume: 36
  start-page: 919
  year: 2017
  end-page: 926
  publication-title: Proc. Combust. Inst.
– volume: 20
  start-page: 887
  year: 1985
  end-page: 901
  publication-title: Proc. Combust. Inst.
– volume: 121
  start-page: 901
  year: 2017
  end-page: 926
  publication-title: J. Phys. Chem. A.
– volume: 101
  start-page: 6810
  year: 1979
  end-page: 6814
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 5546
  year: 2000
  end-page: 5557
  publication-title: J. Chem. Phys.
– volume: 42 115
  start-page: 502 518
  year: 2003 2003
  end-page: 528 546
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 124
  start-page: 824
  year: 2020
  end-page: 835
  publication-title: J. Phys. Chem. A
– volume: 130
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 206
  year: 2011
  end-page: 218
  publication-title: Int. J. Chem. Kinet.
– volume: 121
  start-page: 5921
  year: 2017
  end-page: 5931
  publication-title: J. Phys. Chem. A.
– volume: 116
  start-page: 1183
  year: 2012
  end-page: 1190
  publication-title: J. Phys. Chem. A.
– volume: 28
  start-page: 1545
  year: 2000
  end-page: 1555
  publication-title: Proc. Combust. Inst.
– volume: 109
  start-page: 4646
  year: 2005
  end-page: 4656
  publication-title: J. Phys. Chem. A.
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 66
  start-page: 4745
  year: 1977
  end-page: 4757
  publication-title: J. Chem. Phys.
– volume: 133
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 9722
  year: 2012
  end-page: 9728
  publication-title: Phys. Chem. Chem. Phys.
– volume: 135
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  publication-title: J. Chem. Phys.
– volume: 90
  start-page: 1007
  year: 1989
  end-page: 1023
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 11465
  year: 1994
  end-page: 11489
  publication-title: J. Phys. Chem.
– volume: 101
  start-page: 6790
  year: 1997
  end-page: 6797
  publication-title: J. Phys. Chem. A.
– volume: 20
  start-page: 359
  year: 1952
  end-page: 364
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 242
  year: 2012
  end-page: 253
  publication-title: WIREs Comput. Mol. Sci.
– volume: 63
  start-page: 979
  year: 2010
  end-page: 986
  publication-title: Aust. J. Chem.
– ident: e_1_2_8_9_1
  doi: 10.1063/1.3473743
– ident: e_1_2_8_10_1
  doi: 10.1063/1.4726455
– ident: e_1_2_8_16_1
  doi: 10.1039/c2cp41002h
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.jpca.8b09640
– ident: e_1_2_8_6_1
  doi: 10.1021/j100095a033
– ident: e_1_2_8_11_1
– ident: e_1_2_8_26_1
  doi: 10.1063/1.3054300
– ident: e_1_2_8_24_1
  doi: 10.1063/1.1724823
– ident: e_1_2_8_1_2
  doi: 10.1002/ange.200390119
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.200390151
– ident: e_1_2_8_28_1
  doi: 10.1021/jp910604b
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.jpca.6b09735
– ident: e_1_2_8_31_1
  doi: 10.1063/1.3633329
– ident: e_1_2_8_41_1
  doi: 10.1063/1.433837
– ident: e_1_2_8_2_1
  doi: 10.1071/CH10179
– ident: e_1_2_8_32_1
– ident: e_1_2_8_18_1
  doi: 10.1021/jp208368a
– ident: e_1_2_8_40_1
  doi: 10.1016/j.proci.2016.07.013
– ident: e_1_2_8_33_1
  doi: 10.1002/wcms.82
– ident: e_1_2_8_37_1
  doi: 10.1021/ja00517a004
– ident: e_1_2_8_21_1
  doi: 10.1002/cphc.201801154
– ident: e_1_2_8_36_1
  doi: 10.1063/1.1700424
– ident: e_1_2_8_29_1
  doi: 10.1002/kin.20625
– ident: e_1_2_8_43_1
  doi: 10.1039/c1cp22601k
– ident: e_1_2_8_8_1
  doi: 10.1016/S0082-0784(00)80552-4
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.jpca.7b05562
– ident: e_1_2_8_19_1
  doi: 10.1524/zpch.2009.6042
– ident: e_1_2_8_4_1
  doi: 10.1021/jp1031064
– ident: e_1_2_8_5_1
  doi: 10.1088/0004-637X/728/2/141
– ident: e_1_2_8_44_1
  doi: 10.1071/CH10074
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_8_35_1
– ident: e_1_2_8_27_1
  doi: 10.1063/1.456153
– ident: e_1_2_8_39_1
  doi: 10.1021/jp0508608
– ident: e_1_2_8_34_1
  doi: 10.1021/jp4060704
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.jpca.9b10705
– ident: e_1_2_8_42_1
  doi: 10.1063/1.1676275
– ident: e_1_2_8_13_1
  doi: 10.1016/S0082-0784(85)80578-6
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.jpclett.0c00374
– ident: e_1_2_8_45_1
  doi: 10.1063/1.2409927
– ident: e_1_2_8_38_1
  doi: 10.1063/1.470529
– ident: e_1_2_8_12_1
  doi: 10.1016/j.proci.2016.07.013
– ident: e_1_2_8_30_1
  doi: 10.1063/1.481132
– ident: e_1_2_8_7_1
  doi: 10.1021/jp970723d
– ident: e_1_2_8_23_1
  doi: 10.1063/1.464913
– ident: e_1_2_8_25_1
  doi: 10.1063/1.2817618
SSID ssj0008071
Score 2.4529917
Snippet The mechanism and kinetics of the reaction of ortho‐benzyne with vinylacetylene have been studied by ab initio and density functional...
The mechanism and kinetics of the reaction of ortho-benzyne with vinylacetylene have been studied by ab initio and density functional...
Abstract The mechanism and kinetics of the reaction of ortho ‐benzyne with vinylacetylene have been studied by ab initio and density functional...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202100758
SubjectTerms Ab initio calculations
Chemical bonds
Exothermic reactions
Mathematical analysis
Naphthalene
ortho-benzyne
polycyclic aromatic hydrocarbons
Potential energy
potential energy surface
Radicals
rate constant
Rate constants
Title The Reaction of o‐Benzyne with Vinylacetylene: An Unexplored Way to Produce Naphthalene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202100758
https://www.ncbi.nlm.nih.gov/pubmed/34767677
https://www.proquest.com/docview/2621017788
https://search.proquest.com/docview/2597491056
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQF3qh0EJZfipXQuIUSBwnjrnBCrSqVIQQy88psp2xFiE5KzZ7WE48As_YJ6kn2YRue6hEpVyi2HLs8cx8Y3s-E7JvZOa1RsjAxib0AQq3gYZIB0JZAKEhlRyzkX9cpIMh_36X3P2Wxd_wQ3QLbqgZtb1GBVd6cvRGGmrGI6QgZLjNn2C2L7LpISq6euOPysIm4uK43cnipGVtDNnRYvVFr_QX1FxErrXrOf9IVPvTzYmTx8NppQ_N8x98jv_TqzWyOsel9KSZSOtkCdwnstJvr4P7TO79hKJX0ORB0NLS8ufL6ym455kDiqu59ObBzXBRvpp5TwbH9MTRoYP6jB8U9FbNaFXSy5phFuiFGo-qkcKSG2R4fnbdHwTzexkC411eFngbaViiDINMSQxYJDeRUTIqbCGFLQpjQhUZGSfGIANcrONQp1yAABsxXcSbZNmVDrYItcYInuhYc-4fbwuY8n33EInzxEKW9shBK5d83NBv5A3RMstxqPJuqHpktxVbPlfDSc5ShibHh_k98q377AcOd0WUg3Lqy2BI5UFT4hv70oi7ayrmAgntRI-wWmj_-Ie8fznod2_b76m0Qz4wTLAIoyCSu2S5eprCnoc9lf5aT-1fP0T6Bg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcUqbOHYccysL1QLtqqq6PE6R7Yy1qFKyKtnD9sRP4DfyS_Akm1QLBySQcrFiy4_xPO35DPDC6TxwjdKRT10cHBThI4uJjZTxiMpipgVlIx9Ns8lMvP8s-9uElAvT4UMMATfijFZeE4NTQHrvEjXULeaEQcjpnF_mV-Fa4HlJvPnm5BJBKo87n0vQgSdPZY_bGPO9zfabeukPY3PTdm2Vz8FNsP2wuzsnZ7vLxu66i98QHf9rXrfgxto0ZfvdXroNV7C6A9vj_kW4u_Al7Cl2gl0qBKs9q39-__Eaq4tVhYwCuuzj12pFcflmFZQZvmL7FZtV2F7zw5J9MivW1Oy4BZlFNjWLeTM3VPMezA7eno4n0fpphsgFrZdHQUw6Lo3jmBtNPosWLnFGJ6UvtfJl6VxsEqdT6RyBwKU2jW0mFCr0Cbdleh-2qrrCh8C8c0pIm1ohwhfEATdh7sFKEkJ6zLMRvOwJUyw6BI6iw1rmBS1VMSzVCHZ6uhVrTvxW8IyT1Ame_gieD7_DwtHBiKmwXoY65FUFu0mGzh509B66SoUiTDs1At5S7S9jKMbHk_FQevQvjZ7B9uT06LA4fDf98Biuc8q3iJMo0Tuw1Zwv8Umwghr7tN3nvwD0LP4m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8i4LBYyExCltYjtxzK1sWS2v1apioZwi2xlrq0rOimYP2xM_gd_IL8FONikLBySQcrFiy4_xPO35DPDcyNxzjZCRZSb2Dgq3kcZER0JZRKExkzxkI3-YZOMZf3uSnvySxd_iQ_QBt8AZjbwODL4o7cElaKhZzAMEIQ3H_Gl-Fa7xjNHgfh0dXwJI5XHrcvFw3klZ2sE2xvRgs_2mWvrD1tw0XRvdM7oJqht1e-XkbH9Z631z8Rug4_9M6xbsrA1TctjupNtwBd0duDHs3oO7C1_8jiLH2CZCkMqS6se376_QXawckhDOJZ9O3SpE5euVV2X4khw6MnPYXPLDknxWK1JXZNpAzCKZqMW8nqtQ8x7MRq8_DsfR-mGGyHidl0deSBqaKkMxVzJ4LJKbxCiZlLaUwpalMbFKjGSpMQECjmkW64wLFGgTqkt2H7Zc5fABEGuM4KlmmnP_eWFAlZ-7t5E4Ty3m2QBedHQpFi3-RtEiLdMiLFXRL9UA9jqyFWs-PC9oRoPM8X7-AJ71v_3ChWMR5bBa-jrBp_JWU-o7223J3XfFuAiIdmIAtCHaX8ZQDKfjYV96-C-NnsL16dGoeP9m8u4RbNOQbBEnUSL3YKv-usTH3gSq9ZNml_8E9qf81Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Reaction+of+o-Benzyne+with+Vinylacetylene%3A+An+Unexplored+Way+to+Produce+Naphthalene&rft.jtitle=Chemphyschem&rft.au=Monluc%2C+Lisa&rft.au=Nikolayev%2C+Anatoliy+A&rft.au=Medvedkov%2C+Iakov+A&rft.au=Azyazov%2C+Valeriy+N&rft.date=2022-01-19&rft.eissn=1439-7641&rft.volume=23&rft.issue=2&rft.spage=e202100758&rft.epage=e202100758&rft_id=info:doi/10.1002%2Fcphc.202100758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon