Nuclear Factor-kappaB Gates Nav1.7 Channels in DRG Neurons via Protein-Protein Interaction

It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rat...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 19; pp. 623 - 633
Main Authors Xie, Man-Xiu, Zhang, Xiao-Long, Xu, Jing, Zeng, Wei-An, Li, Dai, Xu, Ting, Pang, Rui-Ping, Ma, Ke, Liu, Xian-Guo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 27.09.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms. [Display omitted] •NF-κB p-p65 interacts with Nav1.7 in the membrane of DRG neurons•The interaction is reversible, depending on the cytoplasmic p-p65 content•Reducing cytoplasmic p-p65 rapidly attenuates the interaction and Nav1.7 currents•The rapid effect on Nav1.7 channels is independent of p-p65 nuclear translocation Biological Sciences; Neuroscience; Molecular Neuroscience; Cellular Neuroscience
AbstractList It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 ( p -p65), an active form of NF-κB subunit, reversibly interacted with Na v 1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Na v 1.7 currents by slowing inactivation of Na v 1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p -p65 and enhanced Na v 1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Na v 1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Na v 1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms. • NF-κB p -p65 interacts with Na v 1.7 in the membrane of DRG neurons • The interaction is reversible, depending on the cytoplasmic p -p65 content • Reducing cytoplasmic p -p65 rapidly attenuates the interaction and Na v 1.7 currents • The rapid effect on Na v 1.7 channels is independent of p -p65 nuclear translocation Biological Sciences; Neuroscience; Molecular Neuroscience; Cellular Neuroscience
It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms. [Display omitted] •NF-κB p-p65 interacts with Nav1.7 in the membrane of DRG neurons•The interaction is reversible, depending on the cytoplasmic p-p65 content•Reducing cytoplasmic p-p65 rapidly attenuates the interaction and Nav1.7 currents•The rapid effect on Nav1.7 channels is independent of p-p65 nuclear translocation Biological Sciences; Neuroscience; Molecular Neuroscience; Cellular Neuroscience
It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms.It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms.
It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms. : Biological Sciences; Neuroscience; Molecular Neuroscience; Cellular Neuroscience Subject Areas: Biological Sciences, Neuroscience, Molecular Neuroscience, Cellular Neuroscience
Author Zeng, Wei-An
Xu, Jing
Ma, Ke
Xie, Man-Xiu
Zhang, Xiao-Long
Pang, Rui-Ping
Li, Dai
Liu, Xian-Guo
Xu, Ting
AuthorAffiliation 5 Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
3 Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 91603, China
4 Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Road 2, Guangzhou 510080, China
2 Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China
AuthorAffiliation_xml – name: 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China
– name: 3 Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 91603, China
– name: 4 Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Road 2, Guangzhou 510080, China
– name: 5 Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
– name: 2 Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
Author_xml – sequence: 1
  givenname: Man-Xiu
  surname: Xie
  fullname: Xie, Man-Xiu
  organization: Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China
– sequence: 2
  givenname: Xiao-Long
  surname: Zhang
  fullname: Zhang, Xiao-Long
  organization: Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
– sequence: 3
  givenname: Jing
  surname: Xu
  fullname: Xu, Jing
  organization: Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
– sequence: 4
  givenname: Wei-An
  surname: Zeng
  fullname: Zeng, Wei-An
  organization: Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China
– sequence: 5
  givenname: Dai
  surname: Li
  fullname: Li, Dai
  organization: Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
– sequence: 6
  givenname: Ting
  surname: Xu
  fullname: Xu, Ting
  organization: Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
– sequence: 7
  givenname: Rui-Ping
  surname: Pang
  fullname: Pang, Rui-Ping
  organization: Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
– sequence: 8
  givenname: Ke
  surname: Ma
  fullname: Ma, Ke
  email: marke72@163.com
  organization: Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 91603, China
– sequence: 9
  givenname: Xian-Guo
  orcidid: 0000-0002-4352-8687
  surname: Liu
  fullname: Liu, Xian-Guo
  email: liuxg@mail.sysu.edu.cn
  organization: Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
BookMark eNp9kUFvEzEQhVeoiJbSP8Bpj1x2GXu9a6-EkCDQEKkKCMGFizWxZ1uHjZ3am0j8exwSJMqhkqWxxu99Gs97Xpz54KkoXjKoGbDu9bp2ybiaA-trUDUw-aS44K3qKwDBz_65nxdXKa0BgOcj-u5Zcd4wITrO24vix3JnRsJYXqOZQqx-4naL78s5TpTKJe5ZLcvZHXpPYyqdLz98nZdL2sXgU7l3WH6JYSLnq1MtF36imFEu-BfF0wHHRFenell8v_74bfapuvk8X8ze3VRGsEZWslVgezF0IAbW9oBGDp2w3QqNUU1jGIqVMYwNcgUGAG1PApiwEnuS3SCby2Jx5NqAa72NboPxlw7o9J9GiLca4-TyNzWtDBdNp3pFKISyqkfJWouW-pYLYzPr7ZG13a02ZA35KeL4APrwxbs7fRv2upOH2dsMeHUCxHC_ozTpTc6JxhE9hV3SnCtoWwmdylJ1lJoYUoo0aOMmPGwuk92oGehD0nqtD0nrQ9IalM5JZyv_z_p3wkdNb46mHCXtHUWdFeQNWRfJTHlb7jH7b0hDwqg
CitedBy_id crossref_primary_10_2147_JIR_S330894
crossref_primary_10_1016_j_joca_2020_10_008
crossref_primary_10_1111_joa_13406
crossref_primary_10_1177_1744806920917242
crossref_primary_10_1016_j_neulet_2020_135446
crossref_primary_10_3390_cells12111508
crossref_primary_10_1038_s41598_022_06554_4
crossref_primary_10_1016_j_fbio_2021_100935
crossref_primary_10_1097_j_pain_0000000000003189
crossref_primary_10_1186_s40779_024_00520_z
crossref_primary_10_14814_phy2_15933
crossref_primary_10_1186_s13293_024_00660_w
crossref_primary_10_3390_ijms23137191
crossref_primary_10_1523_JNEUROSCI_1963_21_2022
crossref_primary_10_1002_jsp2_1124
crossref_primary_10_1038_s41467_021_21731_1
crossref_primary_10_2147_JIR_S379093
crossref_primary_10_1186_s12974_021_02155_6
crossref_primary_10_1016_j_jot_2025_01_016
crossref_primary_10_1515_hsz_2021_0403
crossref_primary_10_1016_j_celrep_2024_113685
crossref_primary_10_1097_j_pain_0000000000002055
crossref_primary_10_1097_j_pain_0000000000002176
Cites_doi 10.1016/j.tins.2007.08.004
10.1016/j.jphysparis.2014.05.002
10.1186/s12974-015-0349-x
10.1213/ANE.0000000000000085
10.1038/306436a0
10.1007/978-3-642-41588-3_6
10.1038/nri.2017.142
10.1128/MCB.23.8.2680-2698.2003
10.1016/j.neuron.2019.01.047
10.1124/jpet.116.238469
10.1016/j.neuron.2006.10.006
10.1096/fj.08-109355
10.1038/nature05413
10.1242/jcs.130013
10.1523/JNEUROSCI.0304-12.2012
10.1111/j.1742-4658.2011.08015.x
10.1152/jn.2002.88.3.1387
10.1002/cne.21484
10.1124/mol.108.047670
10.1146/annurev-neuro-060909-153234
10.1073/pnas.0611364104
10.1523/JNEUROSCI.3858-05.2006
10.1016/j.pain.2010.06.005
10.1152/jn.00238.2017
10.1517/14728222.2014.989834
10.1124/pr.57.4.4
10.1038/ncomms1795
10.1016/j.tins.2004.11.002
10.1093/emboj/cdg332
10.1523/JNEUROSCI.0899-17.2017
10.1073/pnas.0404915101
10.1073/pnas.1220844110
10.1016/j.brainres.2010.09.048
10.1152/jn.2002.88.3.1393
10.1016/j.celrep.2013.12.033
10.1523/JNEUROSCI.2663-16.2018
10.1016/j.neuint.2014.05.012
10.1016/j.neuron.2007.08.005
10.4049/jimmunol.0803003
10.1016/j.neures.2011.06.009
10.1038/nature09975
10.1002/ijc.30381
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.08.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 633
ExternalDocumentID oai_doaj_org_article_ebc2436898ea448d89a715dade9524cd
PMC6715905
10_1016_j_isci_2019_08_017
S2589004219302950
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4137-7580d94f604f1590ac7f64d6bacc833c1a4bcc11f7b0c00ad9e4014d7a9e76f73
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:30:39 EDT 2025
Thu Aug 21 13:57:17 EDT 2025
Fri Jul 11 10:42:32 EDT 2025
Tue Jul 01 01:03:26 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Tue May 16 22:28:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biological Sciences
Neuroscience
Cellular Neuroscience
Molecular Neuroscience
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4137-7580d94f604f1590ac7f64d6bacc833c1a4bcc11f7b0c00ad9e4014d7a9e76f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
ORCID 0000-0002-4352-8687
OpenAccessLink https://doaj.org/article/ebc2436898ea448d89a715dade9524cd
PMID 31446225
PQID 2280557068
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ebc2436898ea448d89a715dade9524cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6715905
proquest_miscellaneous_2280557068
crossref_citationtrail_10_1016_j_isci_2019_08_017
crossref_primary_10_1016_j_isci_2019_08_017
elsevier_sciencedirect_doi_10_1016_j_isci_2019_08_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationTitle iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Simpson, Ferguson (bib32) 2017; 118
He, Zang, Chen, Pang, Xu, Zhou, Wei, Li, Xin, Qin (bib13) 2010; 151
Hayakawa, Miyashita, Sakamoto, Kitagawa, Tanaka, Yasuda, Karin, Kikugawa (bib12) 2003; 22
Li, North, Rhines, Tatsui, Rao, Edwards, Cassidy, Harrison, Johansson, Zhang (bib18) 2018; 38
Nassar, Stirling, Forlani, Baker, Matthews, Dickenson, Wood (bib27) 2004; 101
Salles, Romano, Freudenthal (bib29) 2014; 108
Jarvis, Honore, Shieh, Chapman, Joshi, Zhang, Kort, Carroll, Marron, Atkinson (bib42) 2007; 104
Catterall, Goldin, Waxman (bib3) 2005; 57
Tamura, Nemoto, Maruta, Onizuka, Yanagita, Wada, Murakami, Tsuneyoshi (bib34) 2014; 118
Lilienbaum, Israel (bib19) 2003; 23
Shields, Cheng, Uceyler, Sommer, Dib-Hajj, Waxman (bib31) 2012; 32
Heckscher, Fetter, Marek, Albin, Davis (bib14) 2007; 55
Meffert, Baltimore (bib23) 2005; 28
McCormack, Santos, Chapman, Krafte, Marron, West, Krambis, Antonio, Zellmer, Printzenhoff (bib21) 2013; 110
Dib-Hajj, Cummins, Black, Waxman (bib7) 2007; 30
Liu, Li, Brull, Zhang (bib20) 2002; 88
Dib-Hajj, Cummins, Black, Waxman (bib8) 2010; 33
Srinivasan, Lahiri (bib33) 2015; 19
Aldrich, Corey, Stevens (bib1) 1983; 306
Zang, He, Xin, Pang, Wei, Zhou, Li, Liu (bib39) 2010; 1363
Schmalhofer, Calhoun, Burrows, Bailey, Kohler, Weinglass, Kaczorowski, Garcia, Koltzenburg, Priest (bib30) 2008; 74
Morinville, Fundin, Meury, Jureus, Sandberg, Krupp, Ahmad, O'Donnell (bib26) 2007; 504
Niederberger, Geisslinger (bib28) 2008; 22
Minett, Falk, Santana-Varela, Bogdanov, Nassar, Heegaard, Wood (bib24) 2014; 6
Huang, Zang, Zhou, Gui, Liu, Zhong (bib15) 2014; 75
McDermott, Weir, Themistocleous, Segerdahl, Blesneac, Baskozos, Clark, Millar, Peck, Ebner (bib22) 2019; 101
Xia, Huang, Huang, Sun, Dong, Su, Zhang, Wang, Lin, Shi (bib38) 2016; 139
Cox, Reimann, Nicholas, Thornton, Roberts, Springell, Karbani, Jafri, Mannan, Raashid (bib6) 2006; 444
Jin, Gereau (bib16) 2006; 26
Zhang, Li, Liu, Brull (bib40) 2002; 88
Taniguchi, Karin (bib35) 2018; 18
Chahine, O'Leary (bib4) 2014; 221
Fujikawa, Nishitani, Ibuki, Kobayashi, Matsumura (bib11) 2011; 71
Dresselhaus, Boersma, Meffert (bib9) 2018; 38
Fertleman, Baker, Parker, Moffatt, Elmslie, Abrahamsen, Ostman, Klugbauer, Wood, Gardiner (bib10) 2006; 52
Minett, Nassar, Clark, Passmore, Dickenson, Wang, Malcangio, Wood (bib25) 2012; 3
Wajant, Scheurich (bib36) 2011; 278
Chen, Sheng, Guo, Gao, Zhao, Dai, Wang, Li (bib5) 2015; 12
Weiss, Pyrski, Jacobi, Bufe, Willnecker, Schick, Zizzari, Gossage, Greer, Leinders-Zufall (bib37) 2011; 472
Zsiros, Kis-Toth, Hajdu, Gaspar, Bielanska, Felipe, Rajnavolgyi, Panyi (bib41) 2009; 183
Kocmalova, Kollarik, Canning, Ru, Adam Herbstsomer, Meeker, Fonquerna, Aparici, Miralpeix, Chi (bib17) 2017; 361
Campbell, Main, Fitzgerald (bib2) 2013; 126
Li (10.1016/j.isci.2019.08.017_bib18) 2018; 38
Kocmalova (10.1016/j.isci.2019.08.017_bib17) 2017; 361
Salles (10.1016/j.isci.2019.08.017_bib29) 2014; 108
Simpson (10.1016/j.isci.2019.08.017_bib32) 2017; 118
Srinivasan (10.1016/j.isci.2019.08.017_bib33) 2015; 19
Dib-Hajj (10.1016/j.isci.2019.08.017_bib7) 2007; 30
Nassar (10.1016/j.isci.2019.08.017_bib27) 2004; 101
Zhang (10.1016/j.isci.2019.08.017_bib40) 2002; 88
Fujikawa (10.1016/j.isci.2019.08.017_bib11) 2011; 71
Lilienbaum (10.1016/j.isci.2019.08.017_bib19) 2003; 23
Weiss (10.1016/j.isci.2019.08.017_bib37) 2011; 472
Liu (10.1016/j.isci.2019.08.017_bib20) 2002; 88
Xia (10.1016/j.isci.2019.08.017_bib38) 2016; 139
McCormack (10.1016/j.isci.2019.08.017_bib21) 2013; 110
Niederberger (10.1016/j.isci.2019.08.017_bib28) 2008; 22
He (10.1016/j.isci.2019.08.017_bib13) 2010; 151
Catterall (10.1016/j.isci.2019.08.017_bib3) 2005; 57
Chen (10.1016/j.isci.2019.08.017_bib5) 2015; 12
Heckscher (10.1016/j.isci.2019.08.017_bib14) 2007; 55
Cox (10.1016/j.isci.2019.08.017_bib6) 2006; 444
Minett (10.1016/j.isci.2019.08.017_bib25) 2012; 3
Wajant (10.1016/j.isci.2019.08.017_bib36) 2011; 278
Chahine (10.1016/j.isci.2019.08.017_bib4) 2014; 221
Meffert (10.1016/j.isci.2019.08.017_bib23) 2005; 28
Schmalhofer (10.1016/j.isci.2019.08.017_bib30) 2008; 74
Taniguchi (10.1016/j.isci.2019.08.017_bib35) 2018; 18
Fertleman (10.1016/j.isci.2019.08.017_bib10) 2006; 52
Shields (10.1016/j.isci.2019.08.017_bib31) 2012; 32
Zang (10.1016/j.isci.2019.08.017_bib39) 2010; 1363
Dib-Hajj (10.1016/j.isci.2019.08.017_bib8) 2010; 33
Aldrich (10.1016/j.isci.2019.08.017_bib1) 1983; 306
Campbell (10.1016/j.isci.2019.08.017_bib2) 2013; 126
McDermott (10.1016/j.isci.2019.08.017_bib22) 2019; 101
Jarvis (10.1016/j.isci.2019.08.017_bib42) 2007; 104
Dresselhaus (10.1016/j.isci.2019.08.017_bib9) 2018; 38
Hayakawa (10.1016/j.isci.2019.08.017_bib12) 2003; 22
Huang (10.1016/j.isci.2019.08.017_bib15) 2014; 75
Minett (10.1016/j.isci.2019.08.017_bib24) 2014; 6
Jin (10.1016/j.isci.2019.08.017_bib16) 2006; 26
Tamura (10.1016/j.isci.2019.08.017_bib34) 2014; 118
Morinville (10.1016/j.isci.2019.08.017_bib26) 2007; 504
Zsiros (10.1016/j.isci.2019.08.017_bib41) 2009; 183
References_xml – volume: 361
  start-page: 172
  year: 2017
  end-page: 180
  ident: bib17
  article-title: Control of neurotransmission by NaV1.7 in human, Guinea pig, and mouse airway parasympathetic nerves
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 75
  start-page: 112
  year: 2014
  end-page: 119
  ident: bib15
  article-title: The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy
  publication-title: Neurochem. Int.
– volume: 28
  start-page: 37
  year: 2005
  end-page: 43
  ident: bib23
  article-title: Physiological functions for brain NF-kappaB
  publication-title: Trends Neurosci.
– volume: 30
  start-page: 555
  year: 2007
  end-page: 563
  ident: bib7
  article-title: From genes to pain: Nav1.7 and human pain disorders
  publication-title: Trends Neurosci.
– volume: 118
  start-page: 318
  year: 2014
  end-page: 324
  ident: bib34
  article-title: Up-regulation of NaV1.7 sodium channels expression by tumor necrosis factor-alpha in cultured bovine adrenal chromaffin cells and rat dorsal root ganglion neurons
  publication-title: Anesth. Analg.
– volume: 108
  start-page: 256
  year: 2014
  end-page: 262
  ident: bib29
  article-title: Synaptic NF-kappa B pathway in neuronal plasticity and memory
  publication-title: J. Physiol.
– volume: 33
  start-page: 325
  year: 2010
  end-page: 347
  ident: bib8
  article-title: Sodium channels in normal and pathological pain
  publication-title: Annu. Rev. Neurosci.
– volume: 472
  start-page: 186
  year: 2011
  end-page: 190
  ident: bib37
  article-title: Loss-of-function mutations in sodium channel Nav1.7 cause anosmia
  publication-title: Nature
– volume: 126
  start-page: 4939
  year: 2013
  end-page: 4949
  ident: bib2
  article-title: Functional expression of the voltage-gated Na(+)-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells
  publication-title: J. Cell Sci.
– volume: 55
  start-page: 859
  year: 2007
  end-page: 873
  ident: bib14
  article-title: NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ
  publication-title: Neuron
– volume: 26
  start-page: 246
  year: 2006
  end-page: 255
  ident: bib16
  article-title: Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha
  publication-title: J. Neurosci.
– volume: 1363
  start-page: 151
  year: 2010
  end-page: 158
  ident: bib39
  article-title: Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro
  publication-title: Brain Res.
– volume: 183
  start-page: 4483
  year: 2009
  end-page: 4492
  ident: bib41
  article-title: Developmental switch of the expression of ion channels in human dendritic cells
  publication-title: J. Immunol.
– volume: 22
  start-page: 3432
  year: 2008
  end-page: 3442
  ident: bib28
  article-title: The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy?
  publication-title: FASEB J.
– volume: 101
  start-page: 12706
  year: 2004
  end-page: 12711
  ident: bib27
  article-title: Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 88
  start-page: 1393
  year: 2002
  end-page: 1399
  ident: bib20
  article-title: Increased sensitivity of sensory neurons to tumor necrosis factor alpha in rats with chronic compression of the lumbar ganglia
  publication-title: J. Neurophysiol.
– volume: 139
  start-page: 2553
  year: 2016
  end-page: 2569
  ident: bib38
  article-title: Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1
  publication-title: Int. J. Cancer
– volume: 52
  start-page: 767
  year: 2006
  end-page: 774
  ident: bib10
  article-title: SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes
  publication-title: Neuron
– volume: 3
  start-page: 791
  year: 2012
  ident: bib25
  article-title: Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons
  publication-title: Nat. Commun.
– volume: 118
  start-page: 1532
  year: 2017
  end-page: 1541
  ident: bib32
  article-title: The proinflammatory cytokine tumor necrosis factor-alpha excites subfornical organ neurons
  publication-title: J. Neurophysiol.
– volume: 88
  start-page: 1387
  year: 2002
  end-page: 1392
  ident: bib40
  article-title: Acute topical application of tumor necrosis factor alpha evokes protein kinase A-dependent responses in rat sensory neurons
  publication-title: J. Neurophysiol.
– volume: 38
  start-page: 1124
  year: 2018
  end-page: 1136
  ident: bib18
  article-title: DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain
  publication-title: J. Neurosci.
– volume: 278
  start-page: 862
  year: 2011
  end-page: 876
  ident: bib36
  article-title: TNFR1-induced activation of the classical NF-kappaB pathway
  publication-title: FEBS J.
– volume: 444
  start-page: 894
  year: 2006
  end-page: 898
  ident: bib6
  article-title: An SCN9A channelopathy causes congenital inability to experience pain
  publication-title: Nature
– volume: 57
  start-page: 397
  year: 2005
  end-page: 409
  ident: bib3
  article-title: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels
  publication-title: Pharmacol. Rev.
– volume: 38
  start-page: 4093
  year: 2018
  end-page: 4103
  ident: bib9
  article-title: Targeting of NF-kappaB to dendritic spines is required for synaptic signaling and spine development
  publication-title: J. Neurosci.
– volume: 504
  start-page: 680
  year: 2007
  end-page: 689
  ident: bib26
  article-title: Distribution of the voltage-gated sodium channel Na(v)1.7 in the rat: expression in the autonomic and endocrine systems
  publication-title: J. Comp. Neurol.
– volume: 71
  start-page: 178
  year: 2011
  end-page: 182
  ident: bib11
  article-title: Sensory stimuli induce nuclear translocation and phosphorylation of nuclear factor kappa B in primary sensory neurons of mice
  publication-title: Neurosci. Res.
– volume: 19
  start-page: 471
  year: 2015
  end-page: 487
  ident: bib33
  article-title: Significance of NF-kappaB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis
  publication-title: Expert Opin. Ther. Targets
– volume: 151
  start-page: 266
  year: 2010
  end-page: 279
  ident: bib13
  article-title: TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury
  publication-title: Pain
– volume: 104
  start-page: 8520
  year: 2007
  end-page: 8525
  ident: bib42
  article-title: A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat
  publication-title: Proc. Natl. Acad. Sci. U S A.
– volume: 306
  start-page: 436
  year: 1983
  end-page: 441
  ident: bib1
  article-title: A reinterpretation of mammalian sodium channel gating based on single channel recording
  publication-title: Nature
– volume: 221
  start-page: 111
  year: 2014
  end-page: 135
  ident: bib4
  article-title: Regulation/modulation of sensory neuron sodium channels
  publication-title: Handb. Exp. Pharmacol.
– volume: 110
  start-page: E2724
  year: 2013
  end-page: E2732
  ident: bib21
  article-title: Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 6
  start-page: 301
  year: 2014
  end-page: 312
  ident: bib24
  article-title: Pain without nociceptors? Nav1.7-independent pain mechanisms
  publication-title: Cell Rep.
– volume: 12
  start-page: 126
  year: 2015
  ident: bib5
  article-title: Tumor necrosis factor-alpha enhances voltage-gated Na(+) currents in primary culture of mouse cortical neurons
  publication-title: J. Neuroinflammation
– volume: 101
  start-page: 905
  year: 2019
  end-page: 919.e8
  ident: bib22
  article-title: Defining the functional role of NaV1.7 in human nociception
  publication-title: Neuron
– volume: 74
  start-page: 1476
  year: 2008
  end-page: 1484
  ident: bib30
  article-title: ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors
  publication-title: Mol. Pharmacol.
– volume: 22
  start-page: 3356
  year: 2003
  end-page: 3366
  ident: bib12
  article-title: Evidence that reactive oxygen species do not mediate NF-kappaB activation
  publication-title: EMBO J.
– volume: 23
  start-page: 2680
  year: 2003
  end-page: 2698
  ident: bib19
  article-title: From calcium to NF-kappa B signaling pathways in neurons
  publication-title: Mol. Cell. Biol.
– volume: 32
  start-page: 10819
  year: 2012
  end-page: 10832
  ident: bib31
  article-title: Sodium channel Na(v)1.7 is essential for lowering heat pain threshold after burn injury
  publication-title: J. Neurosci.
– volume: 18
  start-page: 309
  year: 2018
  end-page: 324
  ident: bib35
  article-title: NF-kappaB, inflammation, immunity and cancer: coming of age
  publication-title: Nat. Rev. Immunol.
– volume: 30
  start-page: 555
  year: 2007
  ident: 10.1016/j.isci.2019.08.017_bib7
  article-title: From genes to pain: Nav1.7 and human pain disorders
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.08.004
– volume: 108
  start-page: 256
  year: 2014
  ident: 10.1016/j.isci.2019.08.017_bib29
  article-title: Synaptic NF-kappa B pathway in neuronal plasticity and memory
  publication-title: J. Physiol.
  doi: 10.1016/j.jphysparis.2014.05.002
– volume: 12
  start-page: 126
  year: 2015
  ident: 10.1016/j.isci.2019.08.017_bib5
  article-title: Tumor necrosis factor-alpha enhances voltage-gated Na(+) currents in primary culture of mouse cortical neurons
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-015-0349-x
– volume: 118
  start-page: 318
  year: 2014
  ident: 10.1016/j.isci.2019.08.017_bib34
  article-title: Up-regulation of NaV1.7 sodium channels expression by tumor necrosis factor-alpha in cultured bovine adrenal chromaffin cells and rat dorsal root ganglion neurons
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000000085
– volume: 306
  start-page: 436
  year: 1983
  ident: 10.1016/j.isci.2019.08.017_bib1
  article-title: A reinterpretation of mammalian sodium channel gating based on single channel recording
  publication-title: Nature
  doi: 10.1038/306436a0
– volume: 221
  start-page: 111
  year: 2014
  ident: 10.1016/j.isci.2019.08.017_bib4
  article-title: Regulation/modulation of sensory neuron sodium channels
  publication-title: Handb. Exp. Pharmacol.
  doi: 10.1007/978-3-642-41588-3_6
– volume: 18
  start-page: 309
  year: 2018
  ident: 10.1016/j.isci.2019.08.017_bib35
  article-title: NF-kappaB, inflammation, immunity and cancer: coming of age
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.142
– volume: 23
  start-page: 2680
  year: 2003
  ident: 10.1016/j.isci.2019.08.017_bib19
  article-title: From calcium to NF-kappa B signaling pathways in neurons
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.8.2680-2698.2003
– volume: 101
  start-page: 905
  year: 2019
  ident: 10.1016/j.isci.2019.08.017_bib22
  article-title: Defining the functional role of NaV1.7 in human nociception
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.047
– volume: 361
  start-page: 172
  year: 2017
  ident: 10.1016/j.isci.2019.08.017_bib17
  article-title: Control of neurotransmission by NaV1.7 in human, Guinea pig, and mouse airway parasympathetic nerves
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.116.238469
– volume: 52
  start-page: 767
  year: 2006
  ident: 10.1016/j.isci.2019.08.017_bib10
  article-title: SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.10.006
– volume: 22
  start-page: 3432
  year: 2008
  ident: 10.1016/j.isci.2019.08.017_bib28
  article-title: The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy?
  publication-title: FASEB J.
  doi: 10.1096/fj.08-109355
– volume: 444
  start-page: 894
  year: 2006
  ident: 10.1016/j.isci.2019.08.017_bib6
  article-title: An SCN9A channelopathy causes congenital inability to experience pain
  publication-title: Nature
  doi: 10.1038/nature05413
– volume: 126
  start-page: 4939
  year: 2013
  ident: 10.1016/j.isci.2019.08.017_bib2
  article-title: Functional expression of the voltage-gated Na(+)-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.130013
– volume: 32
  start-page: 10819
  year: 2012
  ident: 10.1016/j.isci.2019.08.017_bib31
  article-title: Sodium channel Na(v)1.7 is essential for lowering heat pain threshold after burn injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0304-12.2012
– volume: 278
  start-page: 862
  year: 2011
  ident: 10.1016/j.isci.2019.08.017_bib36
  article-title: TNFR1-induced activation of the classical NF-kappaB pathway
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08015.x
– volume: 88
  start-page: 1387
  year: 2002
  ident: 10.1016/j.isci.2019.08.017_bib40
  article-title: Acute topical application of tumor necrosis factor alpha evokes protein kinase A-dependent responses in rat sensory neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2002.88.3.1387
– volume: 504
  start-page: 680
  year: 2007
  ident: 10.1016/j.isci.2019.08.017_bib26
  article-title: Distribution of the voltage-gated sodium channel Na(v)1.7 in the rat: expression in the autonomic and endocrine systems
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21484
– volume: 74
  start-page: 1476
  year: 2008
  ident: 10.1016/j.isci.2019.08.017_bib30
  article-title: ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.108.047670
– volume: 33
  start-page: 325
  year: 2010
  ident: 10.1016/j.isci.2019.08.017_bib8
  article-title: Sodium channels in normal and pathological pain
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-060909-153234
– volume: 104
  start-page: 8520
  year: 2007
  ident: 10.1016/j.isci.2019.08.017_bib42
  article-title: A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.0611364104
– volume: 26
  start-page: 246
  year: 2006
  ident: 10.1016/j.isci.2019.08.017_bib16
  article-title: Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3858-05.2006
– volume: 151
  start-page: 266
  year: 2010
  ident: 10.1016/j.isci.2019.08.017_bib13
  article-title: TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury
  publication-title: Pain
  doi: 10.1016/j.pain.2010.06.005
– volume: 118
  start-page: 1532
  year: 2017
  ident: 10.1016/j.isci.2019.08.017_bib32
  article-title: The proinflammatory cytokine tumor necrosis factor-alpha excites subfornical organ neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00238.2017
– volume: 19
  start-page: 471
  year: 2015
  ident: 10.1016/j.isci.2019.08.017_bib33
  article-title: Significance of NF-kappaB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.2014.989834
– volume: 57
  start-page: 397
  year: 2005
  ident: 10.1016/j.isci.2019.08.017_bib3
  article-title: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.57.4.4
– volume: 3
  start-page: 791
  year: 2012
  ident: 10.1016/j.isci.2019.08.017_bib25
  article-title: Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1795
– volume: 28
  start-page: 37
  year: 2005
  ident: 10.1016/j.isci.2019.08.017_bib23
  article-title: Physiological functions for brain NF-kappaB
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.11.002
– volume: 22
  start-page: 3356
  year: 2003
  ident: 10.1016/j.isci.2019.08.017_bib12
  article-title: Evidence that reactive oxygen species do not mediate NF-kappaB activation
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg332
– volume: 38
  start-page: 1124
  year: 2018
  ident: 10.1016/j.isci.2019.08.017_bib18
  article-title: DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0899-17.2017
– volume: 101
  start-page: 12706
  year: 2004
  ident: 10.1016/j.isci.2019.08.017_bib27
  article-title: Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0404915101
– volume: 110
  start-page: E2724
  year: 2013
  ident: 10.1016/j.isci.2019.08.017_bib21
  article-title: Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1220844110
– volume: 1363
  start-page: 151
  year: 2010
  ident: 10.1016/j.isci.2019.08.017_bib39
  article-title: Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.09.048
– volume: 88
  start-page: 1393
  year: 2002
  ident: 10.1016/j.isci.2019.08.017_bib20
  article-title: Increased sensitivity of sensory neurons to tumor necrosis factor alpha in rats with chronic compression of the lumbar ganglia
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2002.88.3.1393
– volume: 6
  start-page: 301
  year: 2014
  ident: 10.1016/j.isci.2019.08.017_bib24
  article-title: Pain without nociceptors? Nav1.7-independent pain mechanisms
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.12.033
– volume: 38
  start-page: 4093
  year: 2018
  ident: 10.1016/j.isci.2019.08.017_bib9
  article-title: Targeting of NF-kappaB to dendritic spines is required for synaptic signaling and spine development
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2663-16.2018
– volume: 75
  start-page: 112
  year: 2014
  ident: 10.1016/j.isci.2019.08.017_bib15
  article-title: The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2014.05.012
– volume: 55
  start-page: 859
  year: 2007
  ident: 10.1016/j.isci.2019.08.017_bib14
  article-title: NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.08.005
– volume: 183
  start-page: 4483
  year: 2009
  ident: 10.1016/j.isci.2019.08.017_bib41
  article-title: Developmental switch of the expression of ion channels in human dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803003
– volume: 71
  start-page: 178
  year: 2011
  ident: 10.1016/j.isci.2019.08.017_bib11
  article-title: Sensory stimuli induce nuclear translocation and phosphorylation of nuclear factor kappa B in primary sensory neurons of mice
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2011.06.009
– volume: 472
  start-page: 186
  year: 2011
  ident: 10.1016/j.isci.2019.08.017_bib37
  article-title: Loss-of-function mutations in sodium channel Nav1.7 cause anosmia
  publication-title: Nature
  doi: 10.1038/nature09975
– volume: 139
  start-page: 2553
  year: 2016
  ident: 10.1016/j.isci.2019.08.017_bib38
  article-title: Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.30381
SSID ssj0002002496
Score 2.255675
Snippet It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65...
It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 ( p...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 623
SubjectTerms Biological Sciences
Cellular Neuroscience
Molecular Neuroscience
Neuroscience
Title Nuclear Factor-kappaB Gates Nav1.7 Channels in DRG Neurons via Protein-Protein Interaction
URI https://dx.doi.org/10.1016/j.isci.2019.08.017
https://www.proquest.com/docview/2280557068
https://pubmed.ncbi.nlm.nih.gov/PMC6715905
https://doaj.org/article/ebc2436898ea448d89a715dade9524cd
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwqKkDdtiAj9YasJruOHR95LagSK4RAQr1YEz9EaGVWLPD7mXGysLnApadIiZM4M-PMjD3-PsZ-OmJdxFEmgoRaENW9qIPXwmEwYUDhgMrFmOczdXYtf99UNytUX1QT1sEDd4L7FRo3JpR0UwfAVMLXBnRZefDBVGPpPP190eetJFN3eXmNoPAys1xFNUFomv2Oma64i3a8Ul2Xyfidma3szStl8P6Bc1oJPoelkyu-aLrBPvdBJD_oOv-FfQppk_2ZETQxPPBpptARf2E-h0NO02MLPgNMUzWnvQQJX8jbxI8vT3mG5kgL_twCvyDEhjaJ_sjzXGG37WGLXU9Pro7ORM-cIBw6JS0wCSi8kVEVMmK8UoDTUUmvGnCunkxcCbJxriyjbgpXFOBNwDxLeg0maBX1ZJutpfsUvjIeygYwpytRZ1EGFU1hYqz9BDAwQEXHESuXkrOuhxUndot_dlk_dmdJ2pakbYnystQjtv96z7wD1Xi39SEp5LUlAWLnE2gmtjcT-5GZjFi1VKftY4suZsBHte--fG-pe4sDj1ZTIIX7p4UlHCHCL1P1iOmBUQx6OryS2tsM4a00qaX69j8-7Ttbpw5TEctY_2Brjw9PYQcjpcdmNw-KF_e5EMc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+Factor-kappaB+Gates+Nav1.7+Channels+in+DRG+Neurons+via+Protein-Protein+Interaction&rft.jtitle=iScience&rft.au=Xie%2C+Man-Xiu&rft.au=Zhang%2C+Xiao-Long&rft.au=Xu%2C+Jing&rft.au=Zeng%2C+Wei-An&rft.date=2019-09-27&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=19&rft.spage=623&rft.epage=633&rft_id=info:doi/10.1016%2Fj.isci.2019.08.017&rft_id=info%3Apmid%2F31446225&rft.externalDocID=PMC6715905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon