Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 2; pp. e2104667 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm−2. The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
An interpolation principle between W dopant and Co vacancy with opposite modulation effect is proposed to tune the electronic structure of CoOOH for enhanced oxygen evolution reaction. As a result, near‐optimal electronic states and near‐ideal intermediate energetics are achieved, leading to high catalytic activity. Such an interpolation principle can open up a new methodology for efficient catalyst design. |
---|---|
AbstractList | Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm−2. The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm−2. The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. An interpolation principle between W dopant and Co vacancy with opposite modulation effect is proposed to tune the electronic structure of CoOOH for enhanced oxygen evolution reaction. As a result, near‐optimal electronic states and near‐ideal intermediate energetics are achieved, leading to high catalytic activity. Such an interpolation principle can open up a new methodology for efficient catalyst design. Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm −2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. |
Author | Liu, Porun Zhao, Huijun Dou, Yuhai Yu, Linping He, Chun‐Ting Yuan, Ding Fan, Kaicai Zhang, Weiping Zhang, Lei Al‐Mamun, Mohammad |
Author_xml | – sequence: 1 givenname: Yuhai surname: Dou fullname: Dou, Yuhai organization: Shandong Institute of Advanced Technology – sequence: 2 givenname: Ding surname: Yuan fullname: Yuan, Ding email: d.yuan@griffith.edu.au organization: Griffith University – sequence: 3 givenname: Linping surname: Yu fullname: Yu, Linping organization: Changsha University of Science and Technology – sequence: 4 givenname: Weiping surname: Zhang fullname: Zhang, Weiping organization: Guangdong University of Technology – sequence: 5 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Griffith University – sequence: 6 givenname: Kaicai surname: Fan fullname: Fan, Kaicai organization: Griffith University – sequence: 7 givenname: Mohammad surname: Al‐Mamun fullname: Al‐Mamun, Mohammad organization: Griffith University – sequence: 8 givenname: Porun surname: Liu fullname: Liu, Porun organization: Griffith University – sequence: 9 givenname: Chun‐Ting surname: He fullname: He, Chun‐Ting email: hct@jxnu.edu.cn organization: Jiangxi Normal University – sequence: 10 givenname: Huijun orcidid: 0000-0002-3028-0459 surname: Zhao fullname: Zhao, Huijun email: h.zhao@griffith.edu.au organization: Griffith University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34693576$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAURS1URKeFLUtkiQ2bDH527MTL0XRoKxXNho8d1ovjQKqMPdgJJf--bqcFqRJiZdk-5-rp3RNy5IN3hLwGtgTG-Htsd7jkjAMrlaqekQVIDkXJtDwiC6aFLLQq62NyktI1Y0wrpl6QY1Gq_FWpBfl26UcX92HAsQ-eNm68cc7Tr_Qs7NGPFH1L14F-QYvezrT3-bbdXtAuRLrxP_Kja-n29_w9S5tfYZjuY9Y44jCnPr0kzzscknv1cJ6Szx82n9YXxdX2_HK9uipsCaIqpHWM80a2kjdW8rayinfSAtPQqbpxyCWDrmJtwxsBVpSgBYLDulLaIgdxSt4dcvcx_JxcGs2uT9YNA3oXpmS4rKXmtYYyo2-foNdhij5PZ7gCDUIKKTP15oGamp1rzT72O4yzedxcBsoDYGNIKbrO2H68X-IYsR8MMHNXkLkryPwpKGvLJ9pj8j8FfRBu-sHN_6HN6uzj6q97C-T7oRw |
CitedBy_id | crossref_primary_10_1002_advs_202401455 crossref_primary_10_1039_D2CC03630D crossref_primary_10_1016_j_fuel_2024_132652 crossref_primary_10_1016_j_apsusc_2022_153041 crossref_primary_10_1007_s12598_024_02662_4 crossref_primary_10_1007_s13738_023_02866_y crossref_primary_10_1039_D3TA04947G crossref_primary_10_1039_D3TA07007G crossref_primary_10_1002_smll_202107249 crossref_primary_10_1021_jacs_3c13367 crossref_primary_10_1021_jacs_4c12240 crossref_primary_10_1016_j_cej_2024_155834 crossref_primary_10_1002_aenm_202203595 crossref_primary_10_1093_nsr_nwae362 crossref_primary_10_1007_s10800_023_01972_2 crossref_primary_10_1016_j_xcrp_2023_101471 crossref_primary_10_1002_adfm_202405262 crossref_primary_10_1002_ange_202405839 crossref_primary_10_3390_catal13040712 crossref_primary_10_3390_ma16113980 crossref_primary_10_1016_j_electacta_2024_144924 crossref_primary_10_1039_D3CC01593A crossref_primary_10_1016_j_electacta_2022_141133 crossref_primary_10_1016_j_cej_2023_143715 crossref_primary_10_1038_s41467_024_45702_4 crossref_primary_10_1016_j_jssc_2024_124553 crossref_primary_10_1039_D4NR00587B crossref_primary_10_1002_smll_202310611 crossref_primary_10_1002_adma_202206576 crossref_primary_10_1002_adma_202416483 crossref_primary_10_1002_adfm_202308902 crossref_primary_10_1016_j_apsusc_2024_161088 crossref_primary_10_1002_anie_202309341 crossref_primary_10_1002_smll_202405080 crossref_primary_10_1007_s12274_023_5453_0 crossref_primary_10_1021_acs_energyfuels_4c02080 crossref_primary_10_1002_cey2_329 crossref_primary_10_1002_anie_202405839 crossref_primary_10_1016_j_jpowsour_2022_232309 crossref_primary_10_1016_j_jcis_2023_02_130 crossref_primary_10_1016_j_jhazmat_2024_135692 crossref_primary_10_1002_aenm_202201466 crossref_primary_10_1002_crat_202400189 crossref_primary_10_1002_aenm_202202317 crossref_primary_10_1039_D4TA01848F crossref_primary_10_1002_smll_202409703 crossref_primary_10_1016_j_ijhydene_2024_04_016 crossref_primary_10_1016_j_cej_2024_152223 crossref_primary_10_1021_acs_energyfuels_4c05203 crossref_primary_10_1002_adma_202310954 crossref_primary_10_1007_s40843_022_2274_7 crossref_primary_10_1002_adfm_202410825 crossref_primary_10_1021_jacs_2c00533 crossref_primary_10_1002_cey2_418 crossref_primary_10_1016_j_ijhydene_2023_03_337 crossref_primary_10_1002_smll_202311884 crossref_primary_10_1016_j_jcis_2024_07_160 crossref_primary_10_1021_acscatal_2c03476 crossref_primary_10_1021_jacs_2c10823 crossref_primary_10_1039_D2CY00384H crossref_primary_10_1016_j_electacta_2024_144263 crossref_primary_10_1002_ange_202309341 crossref_primary_10_1002_adfm_202417211 crossref_primary_10_1039_D4TA08773A crossref_primary_10_1002_adfm_202417098 crossref_primary_10_1016_j_ijhydene_2022_12_241 crossref_primary_10_1002_adma_202419058 crossref_primary_10_1016_j_apcatb_2023_123227 crossref_primary_10_1007_s12274_023_5878_5 crossref_primary_10_1021_acsami_3c11038 crossref_primary_10_1016_j_jelechem_2024_118612 crossref_primary_10_1021_jacs_3c03481 crossref_primary_10_1002_adfm_202308809 crossref_primary_10_1002_cctc_202301305 crossref_primary_10_1016_j_cej_2023_141591 |
Cites_doi | 10.1021/ja511559d 10.1002/anie.201801834 10.1103/PhysRevLett.111.056404 10.1002/slct.201802923 10.1039/D0QI01060J 10.1524/zkri.220.5.567.65075 10.1038/s41560-019-0355-9 10.1039/C7EE03457A 10.1039/C9TA13775K 10.1002/adma.201803144 10.1002/aenm.201802481 10.1039/C9EE01202H 10.1016/j.nanoen.2020.104761 10.1126/sciadv.1602215 10.1021/acs.nanolett.9b03523 10.1021/acs.inorgchem.0c03514 10.1039/D0TA04088F 10.1016/S0022-0728(72)80122-0 10.1080/13642819808206382 10.1126/sciadv.aaw9867 10.1039/D1TA02165F 10.1039/D0TA09788H 10.1038/s41467-020-15498-0 10.1039/D0QI00148A 10.1002/cctc.201000397 10.1073/pnas.1006652108 10.1103/PhysRevLett.77.3865 10.1039/C8EE03208D 10.1038/s41929-018-0063-z 10.1126/sciadv.aap9360 10.1126/sciadv.aar5418 10.1021/cm702546s 10.1016/j.matt.2020.09.016 10.1021/jacs.0c05050 10.1038/s41467-017-01872-y 10.1021/acsami.9b02077 10.1038/s41929-019-0246-2 10.1021/jp908548f 10.1016/j.xcrp.2020.100077 10.1126/science.aaf1525 10.1021/jp711929d 10.1021/acscatal.6b02479 10.1038/s41467-020-15925-2 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202104667 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34693576 10_1002_adma_202104667 ADMA202104667 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DE210101102 – fundername: Australian Research Council Discovery Project funderid: DP200100965 – fundername: Start Fund from Shandong Institute of Advanced Technology – fundername: Jiangxi Provincial Department Of Science And Technology funderid: 20202ZDB01004 – fundername: National Natural Science Foundation Of China funderid: 21901089 – fundername: Australian Research Council Discovery Project grantid: DP200100965 – fundername: Jiangxi Provincial Department Of Science And Technology grantid: 20202ZDB01004 – fundername: Australian Research Council grantid: DE210101102 – fundername: National Natural Science Foundation Of China grantid: 21901089 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4137-5ce022b5d52bc52d7c62f5c1091f68bea2501f70db2b31c34193a1ea8769ca213 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:14:39 EDT 2025 Mon Jul 14 08:35:12 EDT 2025 Wed Feb 19 02:26:32 EST 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Jul 01 02:33:09 EDT 2025 Wed Jan 22 16:26:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | dopants oxygen evolution reaction vacancies interpolation principle atomically thin materials |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4137-5ce022b5d52bc52d7c62f5c1091f68bea2501f70db2b31c34193a1ea8769ca213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3028-0459 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202104667 |
PMID | 34693576 |
PQID | 2619135355 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2585928914 proquest_journals_2619135355 pubmed_primary_34693576 crossref_citationtrail_10_1002_adma_202104667 crossref_primary_10_1002_adma_202104667 wiley_primary_10_1002_adma_202104667_ADMA202104667 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 8 2017; 8 2019; 4 2017; 3 2019; 5 2019; 11 2019; 2 2020; 142 2019; 12 2019; 19 2020; 11 1972; 40 2011; 3 1996; 77 2020; 8 2020; 7 2016; 6 2018; 8 2018; 3 2011; 108 2020; 3 2018; 4 2020; 1 2015; 137 2005; 220 2020; 73 2018; 1 2010; 114 2013; 111 2016; 352 2018; 30 2008; 20 2008; 112 2021; 60 2018; 11 1998; 77 2018; 57 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 12 start-page: 739 year: 2019 publication-title: Energy Environ. Sci. – volume: 3 year: 2018 publication-title: ChemistrySelect – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 2 start-page: 304 year: 2019 publication-title: Nat. Catal. – volume: 11 start-page: 1984 year: 2020 publication-title: Nat. Commun. – volume: 77 start-page: 49 year: 1998 publication-title: Philos. Mag. B – volume: 112 start-page: 9872 year: 2008 publication-title: J. Phys. Chem. C – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 234 year: 2021 publication-title: Inorg. Chem. Front. – volume: 60 start-page: 2023 year: 2021 publication-title: Inorg. Chem. – volume: 220 start-page: 567 year: 2005 publication-title: Z. Kristallogr. – volume: 137 start-page: 1305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9867 year: 2019 publication-title: Sci. Adv. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 20 start-page: 583 year: 2008 publication-title: Chem. Mater. – volume: 57 start-page: 5076 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 9360 year: 2018 publication-title: Sci. Adv. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 8 start-page: 1509 year: 2017 publication-title: Nat. Commun. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 12 start-page: 2620 year: 2019 publication-title: Energy Environ. Sci. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 1664 year: 2020 publication-title: Nat. Commun. – volume: 19 start-page: 8774 year: 2019 publication-title: Nano Lett. – volume: 1 start-page: 339 year: 2018 publication-title: Nat. Catal. – volume: 40 start-page: 19 year: 1972 publication-title: J. Electroanal. Chem. – volume: 114 start-page: 111 year: 2010 publication-title: J. Phys. Chem. C – volume: 9 start-page: 1314 year: 2021 publication-title: J. Mater. Chem. A – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 108 start-page: 937 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 1927 year: 2020 publication-title: Inorg. Chem. Front. – volume: 3 start-page: 2124 year: 2020 publication-title: Matter – volume: 4 start-page: 5418 year: 2018 publication-title: Sci. Adv. – volume: 6 start-page: 8069 year: 2016 publication-title: ACS Catal. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 11 start-page: 744 year: 2018 publication-title: Energy Environ. Sci. – ident: e_1_2_8_22_1 doi: 10.1021/ja511559d – ident: e_1_2_8_26_1 doi: 10.1002/anie.201801834 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevLett.111.056404 – ident: e_1_2_8_39_1 doi: 10.1002/slct.201802923 – ident: e_1_2_8_14_1 doi: 10.1039/D0QI01060J – ident: e_1_2_8_40_1 doi: 10.1524/zkri.220.5.567.65075 – ident: e_1_2_8_4_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_8_15_1 doi: 10.1039/C7EE03457A – ident: e_1_2_8_12_1 doi: 10.1039/C9TA13775K – ident: e_1_2_8_5_1 doi: 10.1002/adma.201803144 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201802481 – ident: e_1_2_8_2_1 doi: 10.1039/C9EE01202H – ident: e_1_2_8_6_1 doi: 10.1016/j.nanoen.2020.104761 – ident: e_1_2_8_1_1 doi: 10.1126/sciadv.1602215 – ident: e_1_2_8_8_1 doi: 10.1021/acs.nanolett.9b03523 – ident: e_1_2_8_9_1 doi: 10.1021/acs.inorgchem.0c03514 – ident: e_1_2_8_17_1 doi: 10.1039/D0TA04088F – ident: e_1_2_8_29_1 doi: 10.1016/S0022-0728(72)80122-0 – ident: e_1_2_8_36_1 doi: 10.1080/13642819808206382 – ident: e_1_2_8_37_1 doi: 10.1126/sciadv.aaw9867 – ident: e_1_2_8_7_1 doi: 10.1039/D1TA02165F – ident: e_1_2_8_13_1 doi: 10.1039/D0TA09788H – ident: e_1_2_8_23_1 doi: 10.1038/s41467-020-15498-0 – ident: e_1_2_8_34_1 doi: 10.1039/D0QI00148A – ident: e_1_2_8_24_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.1006652108 – ident: e_1_2_8_41_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_33_1 doi: 10.1039/C8EE03208D – ident: e_1_2_8_42_1 doi: 10.1038/s41929-018-0063-z – ident: e_1_2_8_3_1 doi: 10.1126/sciadv.aap9360 – ident: e_1_2_8_27_1 doi: 10.1126/sciadv.aar5418 – ident: e_1_2_8_31_1 doi: 10.1021/cm702546s – ident: e_1_2_8_38_1 doi: 10.1016/j.matt.2020.09.016 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.0c05050 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-017-01872-y – ident: e_1_2_8_18_1 doi: 10.1021/acsami.9b02077 – ident: e_1_2_8_19_1 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_8_30_1 doi: 10.1021/jp908548f – ident: e_1_2_8_28_1 doi: 10.1016/j.xcrp.2020.100077 – ident: e_1_2_8_21_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_8_43_1 doi: 10.1021/jp711929d – ident: e_1_2_8_16_1 doi: 10.1021/acscatal.6b02479 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-020-15925-2 |
SSID | ssj0009606 |
Score | 2.6022546 |
Snippet | Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2104667 |
SubjectTerms | atomically thin materials Catalysis Catalysts Catalytic activity Chemical reactions Density functional theory Dopants Electron states Electronic structure Interpolation interpolation principle Materials science Modulation oxygen evolution reaction Oxygen evolution reactions Vacancies |
Title | Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104667 https://www.ncbi.nlm.nih.gov/pubmed/34693576 https://www.proquest.com/docview/2619135355 https://www.proquest.com/docview/2585928914 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnaps0zfa47INF0AXxdbIkaYuidEV3Rf31zrTd6ioi6DE0adNkJvNNMvMFYE8Q7ZXnZy5ia3RQMilcnTU8lyuVWiMSKzNKTj4-CXvnwdGVvPqUxV_yQ9QbbqQZxXpNCq7N0-EHaahOCt4gToeUIaWTU8AWoaLTD_4ogucF2Z6QbhQGjTFro8cPJ5tPWqVvUHMSuRampzsPetzpMuLk7mA0NAf27Quf43_-agHmKlzKmqUgLcJUmi_B7Ce2wmW4LgMUB2X0HKsivNgla6PjnQ-ZzhPWGrALbWnFZrc5lvr9HkNYzDr5TRFqwPovryiyrPNciTxr0f4R0aKswHm3c9bqudX1DK5Fy6dcaVMEAEYmkhsreaJsyDNpiWk0Cxsm1Yiu_Ex5ieFG-JaI44T2U43rb2Q198UqTOeDPF0HppQkYx362uggStCJwldGnkwitKXCKAfc8fTEtuIupys07uOSdZnHNG5xPW4O7Nf1H0rWjh9rbo1nO6609ykmr5LuA5HSgd36MeodHaboPB2MsA76WRF6q37gwFopJfWnRBCixKnQAV7M9S99iJvt42Zd2vhLo02Y4ZSXUewNbcH08HGUbiNaGpqdQiPeAR3oCTU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5R8CBYwE4pQ2seN4c-Cw2t1qS7tdCbXQU4PtOGpFlVTtLlDeilfhiZjJX1kQQkLqgaMVx3HsmfE34_FngBeCaK-CMPcRW6ODkkvh67wX-FwpZ43IrMzpcPJkJx7vRW_25f4SfGvPwtT8EF3AjTSjstek4BSQXr9gDdVZRRzEaZcyVk1e5ZY7_4xe29nrzSFO8UvON0a7g7HfXCzgW7TZypfW4dJlZCa5sZJnysY8l5Y4MvO4Z5xGXBDmKsgMNyK0RHkmdOg0Wo7Eah4KbPcKXKVrxImuf_j2grGKHIKK3k9IP4mjXssTGfD1xf4uroO_gdtFrFwtdhs34Xs7THWOy8e1-cys2a-_MEj-V-N4C1Ya6M36ta7chiVX3IEbPxEy3oWDOgezrBMEWZPExt6zYYlWc8Z0kbFByd5pS4sSOyqwNJ2OGSJ_NioOq2wKNv1yjlrJRp8arWYDCpER88s92LuUH7wPy0VZuIfAlJKER-JQGx0lGfqJ2GQSyCxBuCCM8sBv5SG1DT073RJynNbE0jyleUq7efLgVVf_pCYm-WPN1Va80sZAnaXkONOVJ1J68Lx7jKaF9ot04co51kFXMkGHPIw8eFCLZfcpEcUo4ir2gFfC9Zc-pP3hpN-VHv3LS8_g2nh3sp1ub-5sPYbrnI6hVKGwVVienc7dEwSHM_O0UkcGHy5bbn8AWUtmAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64J8SKGAkEKe0iRPbmwOH1WZXW0q7CFHoqcF2HIFASUV3gfJUvApvxEz-yoIQElIPHK04jmPPjL-xx98APIyI9ioICx-xNToohYh8XQwCnyvlrIlyKwq6nLy7J6f78dMDcbAC37q7MA0_RL_hRppR22tS8KO82DolDdV5zRvE6ZBSqjascsedfEan7fjJdooz_IjzyfjlaOq3eQV8iyZb-cI6XLmMyAU3VvBcWckLYYkis5AD4zTCgrBQQW64iUJLjGeRDp1Gw5FYzcMI2z0H52MZJJQsIn1xSlhF_kDN7hcJP5HxoKOJDPjWcn-Xl8HfsO0yVK7Xusll-N6NUhPi8n5zMTeb9usvBJL_0zBegUst8GbDRlOuwoorr8HaT3SM1-GwicCsmvBA1oawsdcsrdBmzpkuczaq2CttaUli70oszWZThrifjcu3dSwFm305QZ1k40-tTrMRbZAR78sN2D-TH7wJq2VVulvAlBKERmSojY6THL1EbDIJRJ4gWIiM8sDvxCGzLTk75Qj5kDW00jyjecr6efLgcV__qKEl-WPNjU66stY8HWfkNlPCEyE8eNA_RsNCp0W6dNUC66AjmaA7HsYerDdS2X8qiiVKuJIe8Fq2_tKHbJjuDvvS7X956T5ceJ5Osmfbezt34CKnOyj1PtgGrM4_LtxdRIZzc69WRgZvzlpsfwCXn2Sy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+between+W+Dopant+and+Co+Vacancy+in+CoOOH+for+Enhanced+Oxygen+Evolution+Catalysis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dou%2C+Yuhai&rft.au=Yuan%2C+Ding&rft.au=Yu%2C+Linping&rft.au=Zhang%2C+Weiping&rft.date=2022-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fadma.202104667&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202104667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |