Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis

Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 2; pp. e2104667 - n/a
Main Authors Dou, Yuhai, Yuan, Ding, Yu, Linping, Zhang, Weiping, Zhang, Lei, Fan, Kaicai, Al‐Mamun, Mohammad, Liu, Porun, He, Chun‐Ting, Zhao, Huijun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm−2. The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. An interpolation principle between W dopant and Co vacancy with opposite modulation effect is proposed to tune the electronic structure of CoOOH for enhanced oxygen evolution reaction. As a result, near‐optimal electronic states and near‐ideal intermediate energetics are achieved, leading to high catalytic activity. Such an interpolation principle can open up a new methodology for efficient catalyst design.
AbstractList Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm−2. The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm−2. The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions. An interpolation principle between W dopant and Co vacancy with opposite modulation effect is proposed to tune the electronic structure of CoOOH for enhanced oxygen evolution reaction. As a result, near‐optimal electronic states and near‐ideal intermediate energetics are achieved, leading to high catalytic activity. Such an interpolation principle can open up a new methodology for efficient catalyst design.
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near‐ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm −2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
Author Liu, Porun
Zhao, Huijun
Dou, Yuhai
Yu, Linping
He, Chun‐Ting
Yuan, Ding
Fan, Kaicai
Zhang, Weiping
Zhang, Lei
Al‐Mamun, Mohammad
Author_xml – sequence: 1
  givenname: Yuhai
  surname: Dou
  fullname: Dou, Yuhai
  organization: Shandong Institute of Advanced Technology
– sequence: 2
  givenname: Ding
  surname: Yuan
  fullname: Yuan, Ding
  email: d.yuan@griffith.edu.au
  organization: Griffith University
– sequence: 3
  givenname: Linping
  surname: Yu
  fullname: Yu, Linping
  organization: Changsha University of Science and Technology
– sequence: 4
  givenname: Weiping
  surname: Zhang
  fullname: Zhang, Weiping
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Griffith University
– sequence: 6
  givenname: Kaicai
  surname: Fan
  fullname: Fan, Kaicai
  organization: Griffith University
– sequence: 7
  givenname: Mohammad
  surname: Al‐Mamun
  fullname: Al‐Mamun, Mohammad
  organization: Griffith University
– sequence: 8
  givenname: Porun
  surname: Liu
  fullname: Liu, Porun
  organization: Griffith University
– sequence: 9
  givenname: Chun‐Ting
  surname: He
  fullname: He, Chun‐Ting
  email: hct@jxnu.edu.cn
  organization: Jiangxi Normal University
– sequence: 10
  givenname: Huijun
  orcidid: 0000-0002-3028-0459
  surname: Zhao
  fullname: Zhao, Huijun
  email: h.zhao@griffith.edu.au
  organization: Griffith University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34693576$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URKeFLUtkiQ2bDH527MTL0XRoKxXNho8d1ovjQKqMPdgJJf--bqcFqRJiZdk-5-rp3RNy5IN3hLwGtgTG-Htsd7jkjAMrlaqekQVIDkXJtDwiC6aFLLQq62NyktI1Y0wrpl6QY1Gq_FWpBfl26UcX92HAsQ-eNm68cc7Tr_Qs7NGPFH1L14F-QYvezrT3-bbdXtAuRLrxP_Kja-n29_w9S5tfYZjuY9Y44jCnPr0kzzscknv1cJ6Szx82n9YXxdX2_HK9uipsCaIqpHWM80a2kjdW8rayinfSAtPQqbpxyCWDrmJtwxsBVpSgBYLDulLaIgdxSt4dcvcx_JxcGs2uT9YNA3oXpmS4rKXmtYYyo2-foNdhij5PZ7gCDUIKKTP15oGamp1rzT72O4yzedxcBsoDYGNIKbrO2H68X-IYsR8MMHNXkLkryPwpKGvLJ9pj8j8FfRBu-sHN_6HN6uzj6q97C-T7oRw
CitedBy_id crossref_primary_10_1002_advs_202401455
crossref_primary_10_1039_D2CC03630D
crossref_primary_10_1016_j_fuel_2024_132652
crossref_primary_10_1016_j_apsusc_2022_153041
crossref_primary_10_1007_s12598_024_02662_4
crossref_primary_10_1007_s13738_023_02866_y
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1039_D3TA07007G
crossref_primary_10_1002_smll_202107249
crossref_primary_10_1021_jacs_3c13367
crossref_primary_10_1021_jacs_4c12240
crossref_primary_10_1016_j_cej_2024_155834
crossref_primary_10_1002_aenm_202203595
crossref_primary_10_1093_nsr_nwae362
crossref_primary_10_1007_s10800_023_01972_2
crossref_primary_10_1016_j_xcrp_2023_101471
crossref_primary_10_1002_adfm_202405262
crossref_primary_10_1002_ange_202405839
crossref_primary_10_3390_catal13040712
crossref_primary_10_3390_ma16113980
crossref_primary_10_1016_j_electacta_2024_144924
crossref_primary_10_1039_D3CC01593A
crossref_primary_10_1016_j_electacta_2022_141133
crossref_primary_10_1016_j_cej_2023_143715
crossref_primary_10_1038_s41467_024_45702_4
crossref_primary_10_1016_j_jssc_2024_124553
crossref_primary_10_1039_D4NR00587B
crossref_primary_10_1002_smll_202310611
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1002_adma_202416483
crossref_primary_10_1002_adfm_202308902
crossref_primary_10_1016_j_apsusc_2024_161088
crossref_primary_10_1002_anie_202309341
crossref_primary_10_1002_smll_202405080
crossref_primary_10_1007_s12274_023_5453_0
crossref_primary_10_1021_acs_energyfuels_4c02080
crossref_primary_10_1002_cey2_329
crossref_primary_10_1002_anie_202405839
crossref_primary_10_1016_j_jpowsour_2022_232309
crossref_primary_10_1016_j_jcis_2023_02_130
crossref_primary_10_1016_j_jhazmat_2024_135692
crossref_primary_10_1002_aenm_202201466
crossref_primary_10_1002_crat_202400189
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_1039_D4TA01848F
crossref_primary_10_1002_smll_202409703
crossref_primary_10_1016_j_ijhydene_2024_04_016
crossref_primary_10_1016_j_cej_2024_152223
crossref_primary_10_1021_acs_energyfuels_4c05203
crossref_primary_10_1002_adma_202310954
crossref_primary_10_1007_s40843_022_2274_7
crossref_primary_10_1002_adfm_202410825
crossref_primary_10_1021_jacs_2c00533
crossref_primary_10_1002_cey2_418
crossref_primary_10_1016_j_ijhydene_2023_03_337
crossref_primary_10_1002_smll_202311884
crossref_primary_10_1016_j_jcis_2024_07_160
crossref_primary_10_1021_acscatal_2c03476
crossref_primary_10_1021_jacs_2c10823
crossref_primary_10_1039_D2CY00384H
crossref_primary_10_1016_j_electacta_2024_144263
crossref_primary_10_1002_ange_202309341
crossref_primary_10_1002_adfm_202417211
crossref_primary_10_1039_D4TA08773A
crossref_primary_10_1002_adfm_202417098
crossref_primary_10_1016_j_ijhydene_2022_12_241
crossref_primary_10_1002_adma_202419058
crossref_primary_10_1016_j_apcatb_2023_123227
crossref_primary_10_1007_s12274_023_5878_5
crossref_primary_10_1021_acsami_3c11038
crossref_primary_10_1016_j_jelechem_2024_118612
crossref_primary_10_1021_jacs_3c03481
crossref_primary_10_1002_adfm_202308809
crossref_primary_10_1002_cctc_202301305
crossref_primary_10_1016_j_cej_2023_141591
Cites_doi 10.1021/ja511559d
10.1002/anie.201801834
10.1103/PhysRevLett.111.056404
10.1002/slct.201802923
10.1039/D0QI01060J
10.1524/zkri.220.5.567.65075
10.1038/s41560-019-0355-9
10.1039/C7EE03457A
10.1039/C9TA13775K
10.1002/adma.201803144
10.1002/aenm.201802481
10.1039/C9EE01202H
10.1016/j.nanoen.2020.104761
10.1126/sciadv.1602215
10.1021/acs.nanolett.9b03523
10.1021/acs.inorgchem.0c03514
10.1039/D0TA04088F
10.1016/S0022-0728(72)80122-0
10.1080/13642819808206382
10.1126/sciadv.aaw9867
10.1039/D1TA02165F
10.1039/D0TA09788H
10.1038/s41467-020-15498-0
10.1039/D0QI00148A
10.1002/cctc.201000397
10.1073/pnas.1006652108
10.1103/PhysRevLett.77.3865
10.1039/C8EE03208D
10.1038/s41929-018-0063-z
10.1126/sciadv.aap9360
10.1126/sciadv.aar5418
10.1021/cm702546s
10.1016/j.matt.2020.09.016
10.1021/jacs.0c05050
10.1038/s41467-017-01872-y
10.1021/acsami.9b02077
10.1038/s41929-019-0246-2
10.1021/jp908548f
10.1016/j.xcrp.2020.100077
10.1126/science.aaf1525
10.1021/jp711929d
10.1021/acscatal.6b02479
10.1038/s41467-020-15925-2
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104667
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34693576
10_1002_adma_202104667
ADMA202104667
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DE210101102
– fundername: Australian Research Council Discovery Project
  funderid: DP200100965
– fundername: Start Fund from Shandong Institute of Advanced Technology
– fundername: Jiangxi Provincial Department Of Science And Technology
  funderid: 20202ZDB01004
– fundername: National Natural Science Foundation Of China
  funderid: 21901089
– fundername: Australian Research Council Discovery Project
  grantid: DP200100965
– fundername: Jiangxi Provincial Department Of Science And Technology
  grantid: 20202ZDB01004
– fundername: Australian Research Council
  grantid: DE210101102
– fundername: National Natural Science Foundation Of China
  grantid: 21901089
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4137-5ce022b5d52bc52d7c62f5c1091f68bea2501f70db2b31c34193a1ea8769ca213
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:14:39 EDT 2025
Mon Jul 14 08:35:12 EDT 2025
Wed Feb 19 02:26:32 EST 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Jul 01 02:33:09 EDT 2025
Wed Jan 22 16:26:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords dopants
oxygen evolution reaction
vacancies
interpolation principle
atomically thin materials
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4137-5ce022b5d52bc52d7c62f5c1091f68bea2501f70db2b31c34193a1ea8769ca213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3028-0459
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202104667
PMID 34693576
PQID 2619135355
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2585928914
proquest_journals_2619135355
pubmed_primary_34693576
crossref_citationtrail_10_1002_adma_202104667
crossref_primary_10_1002_adma_202104667
wiley_primary_10_1002_adma_202104667_ADMA202104667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 8
2017; 8
2019; 4
2017; 3
2019; 5
2019; 11
2019; 2
2020; 142
2019; 12
2019; 19
2020; 11
1972; 40
2011; 3
1996; 77
2020; 8
2020; 7
2016; 6
2018; 8
2018; 3
2011; 108
2020; 3
2018; 4
2020; 1
2015; 137
2005; 220
2020; 73
2018; 1
2010; 114
2013; 111
2016; 352
2018; 30
2008; 20
2008; 112
2021; 60
2018; 11
1998; 77
2018; 57
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 12
  start-page: 739
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2018
  publication-title: ChemistrySelect
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 2
  start-page: 304
  year: 2019
  publication-title: Nat. Catal.
– volume: 11
  start-page: 1984
  year: 2020
  publication-title: Nat. Commun.
– volume: 77
  start-page: 49
  year: 1998
  publication-title: Philos. Mag. B
– volume: 112
  start-page: 9872
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 234
  year: 2021
  publication-title: Inorg. Chem. Front.
– volume: 60
  start-page: 2023
  year: 2021
  publication-title: Inorg. Chem.
– volume: 220
  start-page: 567
  year: 2005
  publication-title: Z. Kristallogr.
– volume: 137
  start-page: 1305
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9867
  year: 2019
  publication-title: Sci. Adv.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 20
  start-page: 583
  year: 2008
  publication-title: Chem. Mater.
– volume: 57
  start-page: 5076
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 9360
  year: 2018
  publication-title: Sci. Adv.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 8
  start-page: 1509
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 12
  start-page: 2620
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1664
  year: 2020
  publication-title: Nat. Commun.
– volume: 19
  start-page: 8774
  year: 2019
  publication-title: Nano Lett.
– volume: 1
  start-page: 339
  year: 2018
  publication-title: Nat. Catal.
– volume: 40
  start-page: 19
  year: 1972
  publication-title: J. Electroanal. Chem.
– volume: 114
  start-page: 111
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 1314
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 108
  start-page: 937
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 1927
  year: 2020
  publication-title: Inorg. Chem. Front.
– volume: 3
  start-page: 2124
  year: 2020
  publication-title: Matter
– volume: 4
  start-page: 5418
  year: 2018
  publication-title: Sci. Adv.
– volume: 6
  start-page: 8069
  year: 2016
  publication-title: ACS Catal.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 744
  year: 2018
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_22_1
  doi: 10.1021/ja511559d
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.201801834
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevLett.111.056404
– ident: e_1_2_8_39_1
  doi: 10.1002/slct.201802923
– ident: e_1_2_8_14_1
  doi: 10.1039/D0QI01060J
– ident: e_1_2_8_40_1
  doi: 10.1524/zkri.220.5.567.65075
– ident: e_1_2_8_4_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_8_15_1
  doi: 10.1039/C7EE03457A
– ident: e_1_2_8_12_1
  doi: 10.1039/C9TA13775K
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201803144
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201802481
– ident: e_1_2_8_2_1
  doi: 10.1039/C9EE01202H
– ident: e_1_2_8_6_1
  doi: 10.1016/j.nanoen.2020.104761
– ident: e_1_2_8_1_1
  doi: 10.1126/sciadv.1602215
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.nanolett.9b03523
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.inorgchem.0c03514
– ident: e_1_2_8_17_1
  doi: 10.1039/D0TA04088F
– ident: e_1_2_8_29_1
  doi: 10.1016/S0022-0728(72)80122-0
– ident: e_1_2_8_36_1
  doi: 10.1080/13642819808206382
– ident: e_1_2_8_37_1
  doi: 10.1126/sciadv.aaw9867
– ident: e_1_2_8_7_1
  doi: 10.1039/D1TA02165F
– ident: e_1_2_8_13_1
  doi: 10.1039/D0TA09788H
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-020-15498-0
– ident: e_1_2_8_34_1
  doi: 10.1039/D0QI00148A
– ident: e_1_2_8_24_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.1006652108
– ident: e_1_2_8_41_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_33_1
  doi: 10.1039/C8EE03208D
– ident: e_1_2_8_42_1
  doi: 10.1038/s41929-018-0063-z
– ident: e_1_2_8_3_1
  doi: 10.1126/sciadv.aap9360
– ident: e_1_2_8_27_1
  doi: 10.1126/sciadv.aar5418
– ident: e_1_2_8_31_1
  doi: 10.1021/cm702546s
– ident: e_1_2_8_38_1
  doi: 10.1016/j.matt.2020.09.016
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.0c05050
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-017-01872-y
– ident: e_1_2_8_18_1
  doi: 10.1021/acsami.9b02077
– ident: e_1_2_8_19_1
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_8_30_1
  doi: 10.1021/jp908548f
– ident: e_1_2_8_28_1
  doi: 10.1016/j.xcrp.2020.100077
– ident: e_1_2_8_21_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_8_43_1
  doi: 10.1021/jp711929d
– ident: e_1_2_8_16_1
  doi: 10.1021/acscatal.6b02479
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-020-15925-2
SSID ssj0009606
Score 2.6022546
Snippet Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104667
SubjectTerms atomically thin materials
Catalysis
Catalysts
Catalytic activity
Chemical reactions
Density functional theory
Dopants
Electron states
Electronic structure
Interpolation
interpolation principle
Materials science
Modulation
oxygen evolution reaction
Oxygen evolution reactions
Vacancies
Title Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104667
https://www.ncbi.nlm.nih.gov/pubmed/34693576
https://www.proquest.com/docview/2619135355
https://www.proquest.com/docview/2585928914
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnaps0zfa47INF0AXxdbIkaYuidEV3Rf31zrTd6ioi6DE0adNkJvNNMvMFYE8Q7ZXnZy5ia3RQMilcnTU8lyuVWiMSKzNKTj4-CXvnwdGVvPqUxV_yQ9QbbqQZxXpNCq7N0-EHaahOCt4gToeUIaWTU8AWoaLTD_4ogucF2Z6QbhQGjTFro8cPJ5tPWqVvUHMSuRampzsPetzpMuLk7mA0NAf27Quf43_-agHmKlzKmqUgLcJUmi_B7Ce2wmW4LgMUB2X0HKsivNgla6PjnQ-ZzhPWGrALbWnFZrc5lvr9HkNYzDr5TRFqwPovryiyrPNciTxr0f4R0aKswHm3c9bqudX1DK5Fy6dcaVMEAEYmkhsreaJsyDNpiWk0Cxsm1Yiu_Ex5ieFG-JaI44T2U43rb2Q198UqTOeDPF0HppQkYx362uggStCJwldGnkwitKXCKAfc8fTEtuIupys07uOSdZnHNG5xPW4O7Nf1H0rWjh9rbo1nO6609ykmr5LuA5HSgd36MeodHaboPB2MsA76WRF6q37gwFopJfWnRBCixKnQAV7M9S99iJvt42Zd2vhLo02Y4ZSXUewNbcH08HGUbiNaGpqdQiPeAR3oCTU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5R8CBYwE4pQ2seN4c-Cw2t1qS7tdCbXQU4PtOGpFlVTtLlDeilfhiZjJX1kQQkLqgaMVx3HsmfE34_FngBeCaK-CMPcRW6ODkkvh67wX-FwpZ43IrMzpcPJkJx7vRW_25f4SfGvPwtT8EF3AjTSjstek4BSQXr9gDdVZRRzEaZcyVk1e5ZY7_4xe29nrzSFO8UvON0a7g7HfXCzgW7TZypfW4dJlZCa5sZJnysY8l5Y4MvO4Z5xGXBDmKsgMNyK0RHkmdOg0Wo7Eah4KbPcKXKVrxImuf_j2grGKHIKK3k9IP4mjXssTGfD1xf4uroO_gdtFrFwtdhs34Xs7THWOy8e1-cys2a-_MEj-V-N4C1Ya6M36ta7chiVX3IEbPxEy3oWDOgezrBMEWZPExt6zYYlWc8Z0kbFByd5pS4sSOyqwNJ2OGSJ_NioOq2wKNv1yjlrJRp8arWYDCpER88s92LuUH7wPy0VZuIfAlJKER-JQGx0lGfqJ2GQSyCxBuCCM8sBv5SG1DT073RJynNbE0jyleUq7efLgVVf_pCYm-WPN1Va80sZAnaXkONOVJ1J68Lx7jKaF9ot04co51kFXMkGHPIw8eFCLZfcpEcUo4ir2gFfC9Zc-pP3hpN-VHv3LS8_g2nh3sp1ub-5sPYbrnI6hVKGwVVienc7dEwSHM_O0UkcGHy5bbn8AWUtmAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64J8SKGAkEKe0iRPbmwOH1WZXW0q7CFHoqcF2HIFASUV3gfJUvApvxEz-yoIQElIPHK04jmPPjL-xx98APIyI9ioICx-xNToohYh8XQwCnyvlrIlyKwq6nLy7J6f78dMDcbAC37q7MA0_RL_hRppR22tS8KO82DolDdV5zRvE6ZBSqjascsedfEan7fjJdooz_IjzyfjlaOq3eQV8iyZb-cI6XLmMyAU3VvBcWckLYYkis5AD4zTCgrBQQW64iUJLjGeRDp1Gw5FYzcMI2z0H52MZJJQsIn1xSlhF_kDN7hcJP5HxoKOJDPjWcn-Xl8HfsO0yVK7Xusll-N6NUhPi8n5zMTeb9usvBJL_0zBegUst8GbDRlOuwoorr8HaT3SM1-GwicCsmvBA1oawsdcsrdBmzpkuczaq2CttaUli70oszWZThrifjcu3dSwFm305QZ1k40-tTrMRbZAR78sN2D-TH7wJq2VVulvAlBKERmSojY6THL1EbDIJRJ4gWIiM8sDvxCGzLTk75Qj5kDW00jyjecr6efLgcV__qKEl-WPNjU66stY8HWfkNlPCEyE8eNA_RsNCp0W6dNUC66AjmaA7HsYerDdS2X8qiiVKuJIe8Fq2_tKHbJjuDvvS7X956T5ceJ5Osmfbezt34CKnOyj1PtgGrM4_LtxdRIZzc69WRgZvzlpsfwCXn2Sy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+between+W+Dopant+and+Co+Vacancy+in+CoOOH+for+Enhanced+Oxygen+Evolution+Catalysis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dou%2C+Yuhai&rft.au=Yuan%2C+Ding&rft.au=Yu%2C+Linping&rft.au=Zhang%2C+Weiping&rft.date=2022-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fadma.202104667&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202104667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon