Thermodynamically Stable Synthesis of Large‐Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices

Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This r...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 33
Main Authors Lee, Juwon, Pak, Sangyeon, Giraud, Paul, Lee, Young‐Woo, Cho, Yuljae, Hong, John, Jang, A‐Rang, Chung, Hee‐Suk, Hong, Woong‐Ki, Jeong, Hu Young, Shin, Hyeon Suk, Occhipinti, Luigi G., Morris, Stephen M., Cha, SeungNam, Sohn, Jung Inn, Kim, Jong Min
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW−1) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices. Large‐scale and highly crystalline transition metal dichalcogenide monolayers are synthesized by a solution‐processed precursor deposition technique. The low supersaturation level under a thermodynamically stable condition reduces the nucleation density dramatically and thus produces clean monolayer films with a large grain size. The MoS2/WS2 heterojunction device based on this synthesis procedure shows a fast response time with a significantly high photoresponsivity.
AbstractList Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS 2 /WS 2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW −1 ) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices.
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS /WS heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time ([asymp]45 ms) and a significantly high photoresponsivity ([asymp]40 AW-1) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2 /WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1 ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2 /WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1 ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW−1) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices. Large‐scale and highly crystalline transition metal dichalcogenide monolayers are synthesized by a solution‐processed precursor deposition technique. The low supersaturation level under a thermodynamically stable condition reduces the nucleation density dramatically and thus produces clean monolayer films with a large grain size. The MoS2/WS2 heterojunction device based on this synthesis procedure shows a fast response time with a significantly high photoresponsivity.
Author Jeong, Hu Young
Hong, Woong‐Ki
Cho, Yuljae
Lee, Young‐Woo
Cha, SeungNam
Chung, Hee‐Suk
Jang, A‐Rang
Hong, John
Lee, Juwon
Sohn, Jung Inn
Giraud, Paul
Shin, Hyeon Suk
Kim, Jong Min
Pak, Sangyeon
Morris, Stephen M.
Occhipinti, Luigi G.
Author_xml – sequence: 1
  givenname: Juwon
  surname: Lee
  fullname: Lee, Juwon
  organization: University of Oxford
– sequence: 2
  givenname: Sangyeon
  surname: Pak
  fullname: Pak, Sangyeon
  organization: University of Oxford
– sequence: 3
  givenname: Paul
  surname: Giraud
  fullname: Giraud, Paul
  organization: University of Oxford
– sequence: 4
  givenname: Young‐Woo
  surname: Lee
  fullname: Lee, Young‐Woo
  organization: University of Oxford
– sequence: 5
  givenname: Yuljae
  surname: Cho
  fullname: Cho, Yuljae
  organization: University of Oxford
– sequence: 6
  givenname: John
  surname: Hong
  fullname: Hong, John
  organization: University of Oxford
– sequence: 7
  givenname: A‐Rang
  surname: Jang
  fullname: Jang, A‐Rang
  organization: University of Oxford
– sequence: 8
  givenname: Hee‐Suk
  surname: Chung
  fullname: Chung, Hee‐Suk
  organization: Korea Basic Science Institute
– sequence: 9
  givenname: Woong‐Ki
  surname: Hong
  fullname: Hong, Woong‐Ki
  organization: Korea Basic Science Institute
– sequence: 10
  givenname: Hu Young
  surname: Jeong
  fullname: Jeong, Hu Young
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 11
  givenname: Hyeon Suk
  surname: Shin
  fullname: Shin, Hyeon Suk
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 12
  givenname: Luigi G.
  surname: Occhipinti
  fullname: Occhipinti, Luigi G.
  organization: University of Cambridge
– sequence: 13
  givenname: Stephen M.
  surname: Morris
  fullname: Morris, Stephen M.
  organization: University of Oxford
– sequence: 14
  givenname: SeungNam
  surname: Cha
  fullname: Cha, SeungNam
  email: seungnam.cha@eng.ox.ac.uk
  organization: University of Oxford
– sequence: 15
  givenname: Jung Inn
  surname: Sohn
  fullname: Sohn, Jung Inn
  email: junginn.sohn@eng.ox.ac.uk
  organization: University of Oxford
– sequence: 16
  givenname: Jong Min
  surname: Kim
  fullname: Kim, Jong Min
  organization: University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28692787$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCliWyxIbNBNvj-fEySoAgJWKRsB557DuJoxk72DNFs-sjIPEMvFifBKdpQaqEWFm6OufT9f2u0IV1FhB6TcmUEsLeS93JKSO0IIyR_Bma0IzRhBORXaAJEWmWiJyXl-gqhAMhROQkf4EuWZkLVpTFBP3a7sF3To9WdkbJth3xppd1C3gz2n4PwQTsGrySfgd3tz82EQEsrcZLs9tHeO7H0EfNWMBbL20wvXEWryEO8cKovWyV24E1GvDaWdfKEXy4T4jpxuOv1hzj1GN7d_vT4iX04N1hsOo-ZwE3RkF4iZ43sg3w6uG9RpuPH7bzZbL68unzfLZKFKdpnihBtKBpQ0rGtdaKg5R1kaYFrYFAU-hMCZXqpslIzRmkiosyawhXtC4bkV6jd-fUo3ffBgh91ZmgoG2lBTeEigpaxGsykUX07RP04AZv426RSnnKipzySL15oIa6A10dvemkH6vH80eAnwHlXQgemkqZXp5-3ntp2oqS6tRydWq5-tNy1KZPtMfkfwriLHw3LYz_oavZYj376_4GSzW_gA
CitedBy_id crossref_primary_10_1002_adma_202102091
crossref_primary_10_1039_D2TA06105H
crossref_primary_10_1007_s10311_021_01268_x
crossref_primary_10_3390_ma14205979
crossref_primary_10_1016_j_jcis_2023_03_034
crossref_primary_10_1016_j_susmat_2020_e00161
crossref_primary_10_1021_acsanm_4c00271
crossref_primary_10_1007_s12274_019_2294_y
crossref_primary_10_1021_prechem_3c00115
crossref_primary_10_1063_5_0094982
crossref_primary_10_1021_acsanm_8b01955
crossref_primary_10_1002_advs_202307196
crossref_primary_10_12677_CMP_2021_102008
crossref_primary_10_1002_adma_201804939
crossref_primary_10_1016_j_isci_2023_106567
crossref_primary_10_1016_j_vacuum_2024_113032
crossref_primary_10_1007_s40843_023_2615_1
crossref_primary_10_1021_acsnano_0c03469
crossref_primary_10_1002_smll_202202229
crossref_primary_10_1021_acs_nanolett_7b02513
crossref_primary_10_1007_s40820_020_0402_x
crossref_primary_10_1021_accountsmr_1c00209
crossref_primary_10_1021_acsami_9b06662
crossref_primary_10_4028_p_c76gg6
crossref_primary_10_1021_acs_jpcc_8b01473
crossref_primary_10_1016_j_apsusc_2021_149074
crossref_primary_10_1016_j_apsusc_2022_156019
crossref_primary_10_1021_acs_jpcc_2c07542
crossref_primary_10_1002_smll_202301027
crossref_primary_10_1016_j_apsusc_2020_147390
crossref_primary_10_1039_D0NR08071C
crossref_primary_10_1002_adma_202005732
crossref_primary_10_3390_nano14242021
crossref_primary_10_1016_j_mtphys_2020_100262
crossref_primary_10_1021_acs_nanolett_7b05473
crossref_primary_10_1088_1361_6463_ac928d
crossref_primary_10_1016_j_surfrep_2022_100567
crossref_primary_10_1039_C8NR07655C
crossref_primary_10_1021_acsomega_8b02978
crossref_primary_10_1039_D0RA09350E
crossref_primary_10_1088_1361_6528_accbc6
crossref_primary_10_1002_adfm_202303520
crossref_primary_10_1016_j_cplett_2022_140292
crossref_primary_10_1021_acsanm_3c00358
crossref_primary_10_1063_1_5051781
crossref_primary_10_1039_D0MH01472A
crossref_primary_10_1016_j_carbon_2019_01_008
crossref_primary_10_1088_1361_6528_aaea3f
crossref_primary_10_1016_j_jechem_2023_05_032
crossref_primary_10_1021_acs_jpcc_2c00049
crossref_primary_10_1115_1_4046416
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1021_acsami_4c19428
crossref_primary_10_1039_D4NR04644G
crossref_primary_10_1002_smll_202402272
crossref_primary_10_1002_adfm_202002023
crossref_primary_10_1002_smll_202306819
crossref_primary_10_1002_adfm_201900541
crossref_primary_10_1021_acssuschemeng_1c05130
crossref_primary_10_1021_acs_chemmater_1c00174
crossref_primary_10_1002_adma_202104960
crossref_primary_10_1021_acsanm_4c03188
crossref_primary_10_1007_s12274_021_3569_7
crossref_primary_10_1002_adma_201707577
crossref_primary_10_1038_s41699_020_0149_8
crossref_primary_10_3390_catal11010070
crossref_primary_10_1039_D2NR02093A
crossref_primary_10_1002_advs_202205638
crossref_primary_10_1002_adma_202211855
crossref_primary_10_1002_adfm_201800339
crossref_primary_10_1039_D1NA00171J
crossref_primary_10_1063_5_0076711
crossref_primary_10_1016_j_tsf_2018_09_021
crossref_primary_10_1007_s11431_020_1593_4
crossref_primary_10_1021_acsanm_0c01408
crossref_primary_10_3390_nano12172893
crossref_primary_10_1039_C8TA04618B
crossref_primary_10_1016_j_mtadv_2020_100098
crossref_primary_10_1021_acsnano_1c00544
crossref_primary_10_1039_D3CP00421J
crossref_primary_10_1126_sciadv_abj3274
crossref_primary_10_1002_advs_202002768
crossref_primary_10_1021_acsami_8b12596
crossref_primary_10_1002_admi_202100328
crossref_primary_10_1021_acsanm_2c01701
crossref_primary_10_1021_acs_cgd_0c00105
crossref_primary_10_1002_smsc_202300249
crossref_primary_10_1002_admt_201800072
crossref_primary_10_1021_acsami_8b14408
crossref_primary_10_1021_acsnano_7b07682
crossref_primary_10_1039_D0CE01354D
crossref_primary_10_1080_01614940_2021_1899605
crossref_primary_10_1088_2053_1583_ab0337
crossref_primary_10_1021_acsaelm_3c01665
crossref_primary_10_1002_admi_202100415
crossref_primary_10_1002_adfm_202105259
crossref_primary_10_1002_inf2_12038
crossref_primary_10_1002_smll_202300766
crossref_primary_10_1039_C8TC00620B
crossref_primary_10_1002_adom_202001319
crossref_primary_10_1021_acsnano_2c00096
crossref_primary_10_1039_D3CC04610A
crossref_primary_10_1021_acsnano_9b00277
crossref_primary_10_1021_acsnano_9b05722
crossref_primary_10_3390_nano12091393
crossref_primary_10_1088_1361_6528_ac952f
crossref_primary_10_3390_nano8070463
crossref_primary_10_1021_acsaem_4c00189
crossref_primary_10_1002_adom_201800441
crossref_primary_10_1016_j_matlet_2018_11_112
crossref_primary_10_1039_D4TA03197K
crossref_primary_10_1002_adma_202201630
crossref_primary_10_1016_j_infrared_2022_104474
crossref_primary_10_1021_acsnano_0c00296
crossref_primary_10_1002_aenm_201901236
crossref_primary_10_1007_s11433_021_1745_6
crossref_primary_10_1039_D2SC04124C
crossref_primary_10_1002_adma_202203373
crossref_primary_10_1016_j_apsusc_2019_07_036
crossref_primary_10_1016_j_mtcomm_2023_106247
crossref_primary_10_1016_j_jallcom_2021_162705
crossref_primary_10_1038_s41598_019_40893_z
Cites_doi 10.1021/nn2024557
10.1021/acsnano.5b02019
10.1039/c2nr31833d
10.1021/nl2043612
10.1002/adfm.201504633
10.1002/adma.201603571
10.1088/0957-4484/27/8/085604
10.1039/C5NR03361F
10.1103/PhysRevB.87.075451
10.1063/1.4968582
10.1039/C5NR05701A
10.1021/nl4033704
10.1038/nmat3673
10.1021/nl401938t
10.1021/jacs.5b06643
10.1021/nl400687n
10.1039/C2NR33443G
10.1021/jacs.5b10519
10.1021/acsami.6b04540
10.1021/nl501962c
10.1002/adfm.201401389
10.1021/nl500666m
10.1002/adma.201405068
10.1038/ncomms14734
10.1002/adma.201603928
10.1038/nmat3687
10.1039/C4NR04532G
10.1038/srep18116
10.1002/adma.201504631
10.1039/C5NR07226C
10.1021/cm5025662
10.1021/nn303352k
10.1038/ncomms7160
10.1038/srep03489
10.1021/nl301485q
10.1021/nn5027388
10.1103/PhysRevLett.105.136805
10.1021/nn301572c
10.1021/nn501019g
10.1002/adma.201602757
10.1002/adma.201504090
10.1021/nl4046922
10.1021/nl5038177
10.1021/nn5020819
10.1039/C4TC02961E
10.1021/acsnano.6b01636
10.1002/adma.201301244
10.1002/advs.201600033
10.1002/adma.201503340
10.1021/nl502339q
10.1021/nl504256y
10.1038/nnano.2010.279
10.1021/nn501181t
10.1038/ncomms2652
10.1021/acsnano.5b01281
10.1038/nnano.2014.150
10.1038/nnano.2013.100
10.1002/adfm.201402519
10.1039/C5NR01486G
10.1038/nnano.2014.167
10.1038/nmat3633
10.1002/adma.201104798
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201702206
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28692787
10_1002_adma_201702206
ADMA201702206
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 340538; 685758
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4136-c90d913f0824dddc4eaab73371be0ef7d5c9c3dff50b42e3c4985f04c1b8f93
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 12:16:07 EDT 2025
Fri Jul 25 04:42:57 EDT 2025
Mon Jul 21 05:42:02 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 17:04:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords photodetectors
transition metal dichalcogenides
heterojunctions
chemical vapor deposition
2D materials
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4136-c90d913f0824dddc4eaab73371be0ef7d5c9c3dff50b42e3c4985f04c1b8f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702206
PMID 28692787
PQID 1934327614
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_1917964295
proquest_journals_1934327614
pubmed_primary_28692787
crossref_citationtrail_10_1002_adma_201702206
crossref_primary_10_1002_adma_201702206
wiley_primary_10_1002_adma_201702206_ADMA201702206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Sep
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sep
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2017; 8
2015; 6
2013; 3
2013; 25
2013; 4
2015; 5
2015; 3
2016; 109
2013; 87
2010; 105
2016; 10
2014; 26
2014; 24
2017; 29
2013; 8
2015; 9
2011; 6
2012; 12
2015; 8
2015; 7
2015; 27
2016; 3
2015; 137
2013; 13
2013; 12
2014; 14
2012; 6
2014; 9
2016; 28
2014; 8
2012; 24
2012; 4
2014; 7
2016; 27
2012; 5
2016; 26
2016; 8
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 8
  start-page: 8292
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 18116
  year: 2015
  publication-title: Sci. Rep.
– volume: 10
  start-page: 6054
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 1538
  year: 2012
  publication-title: Nano Lett.
– volume: 27
  start-page: 085604
  year: 2016
  publication-title: Nanotechnology
– volume: 137
  start-page: 14281
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3489
  year: 2013
  publication-title: Sci. Rep.
– volume: 26
  start-page: 6371
  year: 2014
  publication-title: Chem. Mater.
– volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 6024
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 1500033
  year: 2016
  publication-title: Adv. Sci.
– volume: 29
  start-page: 1603928
  year: 2017
  publication-title: Adv. Mater.
– volume: 24
  start-page: 6389
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 6575
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9110
  year: 2012
  publication-title: ACS Nano
– volume: 15
  start-page: 486
  year: 2015
  publication-title: Nano Lett.
– volume: 12
  start-page: 754
  year: 2013
  publication-title: Nat. Mater.
– volume: 28
  start-page: 8302
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 815
  year: 2013
  publication-title: Nat. Mater.
– volume: 6
  start-page: 6160
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9196
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 3695
  year: 2012
  publication-title: Nano Lett.
– volume: 9
  start-page: 8822
  year: 2015
  publication-title: ACS Nano
– volume: 14
  start-page: 464
  year: 2014
  publication-title: Nano Lett.
– volume: 14
  start-page: 4785
  year: 2014
  publication-title: Nano Lett.
– volume: 13
  start-page: 1852
  year: 2013
  publication-title: Nano Lett.
– volume: 8
  start-page: 2234
  year: 2015
  publication-title: Nanoscale
– volume: 12
  start-page: 554
  year: 2013
  publication-title: Nat. Mater.
– volume: 9
  start-page: 676
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 105
  start-page: 136805
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 548
  year: 2012
  publication-title: Nanoscale
– volume: 15
  start-page: 709
  year: 2015
  publication-title: Nano Lett.
– volume: 28
  start-page: 3216
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 4023
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 1950
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1688
  year: 2014
  publication-title: Nanoscale
– volume: 14
  start-page: 2730
  year: 2014
  publication-title: Nano Lett.
– volume: 87
  start-page: 75451
  year: 2013
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 1909
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 4961
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 219
  year: 2015
  publication-title: Nanoscale
– volume: 109
  start-page: 223101
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 682
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 9311
  year: 2015
  publication-title: Nanoscale
– volume: 7
  start-page: 14974
  year: 2015
  publication-title: Nanoscale
– volume: 6
  start-page: 5635
  year: 2012
  publication-title: ACS Nano
– volume: 137
  start-page: 15632
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 2009
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 2320
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 147
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 4611
  year: 2015
  publication-title: ACS Nano
– volume: 14
  start-page: 6165
  year: 2014
  publication-title: Nano Lett.
– volume: 25
  start-page: 3456
  year: 2013
  publication-title: Adv. Mater.
– volume: 24
  start-page: 7461
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1547
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1624
  year: 2013
  publication-title: Nat. Commun.
– volume: 8
  start-page: 18570
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 14734
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 6637
  year: 2012
  publication-title: Nanoscale
– volume: 3
  start-page: 2751
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 13
  start-page: 3870
  year: 2013
  publication-title: Nano Lett.
– volume: 6
  start-page: 74
  year: 2012
  publication-title: ACS Nano
– ident: e_1_2_5_8_1
  doi: 10.1021/nn2024557
– ident: e_1_2_5_29_1
  doi: 10.1021/acsnano.5b02019
– ident: e_1_2_5_25_1
  doi: 10.1039/c2nr31833d
– ident: e_1_2_5_17_1
  doi: 10.1021/nl2043612
– ident: e_1_2_5_42_1
  doi: 10.1002/adfm.201504633
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201603571
– ident: e_1_2_5_43_1
  doi: 10.1088/0957-4484/27/8/085604
– ident: e_1_2_5_21_1
  doi: 10.1039/C5NR03361F
– ident: e_1_2_5_58_1
  doi: 10.1103/PhysRevB.87.075451
– ident: e_1_2_5_40_1
  doi: 10.1063/1.4968582
– ident: e_1_2_5_51_1
  doi: 10.1039/C5NR05701A
– ident: e_1_2_5_30_1
  doi: 10.1021/nl4033704
– ident: e_1_2_5_27_1
  doi: 10.1038/nmat3673
– ident: e_1_2_5_48_1
  doi: 10.1021/nl401938t
– ident: e_1_2_5_50_1
  doi: 10.1021/jacs.5b06643
– ident: e_1_2_5_32_1
  doi: 10.1021/nl400687n
– ident: e_1_2_5_15_1
  doi: 10.1039/C2NR33443G
– ident: e_1_2_5_41_1
  doi: 10.1021/jacs.5b10519
– ident: e_1_2_5_37_1
  doi: 10.1021/acsami.6b04540
– ident: e_1_2_5_52_1
  doi: 10.1021/nl501962c
– ident: e_1_2_5_24_1
  doi: 10.1002/adfm.201401389
– ident: e_1_2_5_34_1
  doi: 10.1021/nl500666m
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201405068
– ident: e_1_2_5_12_1
  doi: 10.1038/ncomms14734
– ident: e_1_2_5_38_1
  doi: 10.1002/adma.201603928
– ident: e_1_2_5_2_1
  doi: 10.1038/nmat3687
– ident: e_1_2_5_39_1
  doi: 10.1039/C4NR04532G
– ident: e_1_2_5_22_1
  doi: 10.1038/srep18116
– ident: e_1_2_5_57_1
  doi: 10.1002/adma.201504631
– ident: e_1_2_5_23_1
  doi: 10.1039/C5NR07226C
– ident: e_1_2_5_33_1
  doi: 10.1021/cm5025662
– ident: e_1_2_5_45_1
  doi: 10.1021/nn303352k
– ident: e_1_2_5_46_1
  doi: 10.1038/ncomms7160
– ident: e_1_2_5_49_1
  doi: 10.1038/srep03489
– ident: e_1_2_5_14_1
  doi: 10.1021/nl301485q
– ident: e_1_2_5_55_1
  doi: 10.1021/nn5027388
– ident: e_1_2_5_13_1
  doi: 10.1103/PhysRevLett.105.136805
– ident: e_1_2_5_62_1
  doi: 10.1021/nn301572c
– ident: e_1_2_5_47_1
  doi: 10.1021/nn501019g
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.201602757
– ident: e_1_2_5_53_1
  doi: 10.1002/adma.201504090
– ident: e_1_2_5_35_1
  doi: 10.1021/nl4046922
– ident: e_1_2_5_60_1
  doi: 10.1021/nl5038177
– ident: e_1_2_5_36_1
  doi: 10.1021/nn5020819
– ident: e_1_2_5_54_1
  doi: 10.1039/C4TC02961E
– ident: e_1_2_5_20_1
  doi: 10.1021/acsnano.6b01636
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201301244
– ident: e_1_2_5_31_1
  doi: 10.1002/advs.201600033
– ident: e_1_2_5_7_1
  doi: 10.1002/adma.201503340
– ident: e_1_2_5_61_1
  doi: 10.1021/nl502339q
– ident: e_1_2_5_44_1
  doi: 10.1021/nl504256y
– ident: e_1_2_5_1_1
  doi: 10.1038/nnano.2010.279
– ident: e_1_2_5_10_1
  doi: 10.1021/nn501181t
– ident: e_1_2_5_11_1
  doi: 10.1038/ncomms2652
– ident: e_1_2_5_28_1
  doi: 10.1021/acsnano.5b01281
– ident: e_1_2_5_56_1
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_5_5_1
  doi: 10.1038/nnano.2013.100
– ident: e_1_2_5_19_1
  doi: 10.1002/adfm.201402519
– ident: e_1_2_5_18_1
  doi: 10.1039/C5NR01486G
– ident: e_1_2_5_59_1
  doi: 10.1038/nnano.2014.167
– ident: e_1_2_5_16_1
  doi: 10.1038/nmat3633
– ident: e_1_2_5_26_1
  doi: 10.1002/adma.201104798
SSID ssj0009606
Score 2.5671935
Snippet Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms 2D materials
Carrier transport
Chalcogenides
chemical vapor deposition
Crystal structure
Evaporation
Heterojunction devices
heterojunctions
Materials science
Molybdenum disulfide
Monolayers
Optical properties
Optoelectronic devices
photodetectors
Photoluminescence
Response time
Supersaturation
Synthesis
transition metal dichalcogenides
Title Thermodynamically Stable Synthesis of Large‐Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702206
https://www.ncbi.nlm.nih.gov/pubmed/28692787
https://www.proquest.com/docview/1934327614
https://www.proquest.com/docview/1917964295
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJzgA5dVAWxkJiVPaxLGT-LjqUq0QixALUm-Rn1IhTap9HLan_oRK_Ab-WH8JM85u2gUhJLjlMU4cZzzzjT3-TMjrzHopmOOxSQwEKFK5WKVSx6lLhNAGHITBoYHxh3z0hb87ESe3VvF3_BD9gBv2jGCvsYMrPTu8IQ1VNvAGpQWuFUXObUzYQlT06YY_CuF5INvLRCxzXq5ZGxN2uFl80yv9BjU3kWtwPccPiVpXuss4-XawmOsDc_ELn-P_fNUj8mCFS-mgU6Rtcsc1j8n9W2yFT8gPUKnpWWu7PexVXS8pQFVdOzpZNoAjZ6cz2nr6HnPLry-vJiDiqGosxVwSED6aLgGKIge4o8FFhmwxOnZwkQ4xfb82LejzqXUUTA3E3BgOhCeE6QwK-PgcI3HaXF9-b-gIM3nar-CYw3OGLhi9p2Ry_Pbz0She7fIQG3CgeWxkYmWaecAi3FpruFNKF1lWpNolzhdWGGlApbxINGcuM1yWwifcpLr0MntGtpq2cTuEcstyJZFCzHoOKEsnzJRpXkDQZk3hy4jE639cmRUBOu7DUVcddTOrsPGrvvEj8qaXP--oP_4oubtWmWplAmYVIGOesQLgT0Re9beh8-KMjGpcu0CZFJcCMyki8rxTtf5VrMwlA3MaERYU5i91qAbD8aA_e_EvhV6Se3jcZdDtkq35dOH2AHLN9T65y_jH_dC5fgJltCgc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqsgAWvCmBAkYCsUqbOM7DCxajhmpKZ7pgitQVUfyIVAhJNQ-hsOonIPENrPkVvqFfwr1OJmVACAmpC5ZJbhLHvo9znetjQp4GuhAhM9xVnoIEReTGzX0hXd94YSgVBAiFUwPjg2j4hr86Co_WyLflWpiWH6KfcEPLsP4aDRwnpLfPWUNzbYmD_BgXi0ZdXeW-aT5C1jZ7sZfCED9jbPfl4c7Q7TYWcBX47MhVwtPCDwoIf1xrrbjJcxkHQexL45ki1qESCr6iCD3JmQkUF0lYeFz5MimQfQl8_iXcRBzJ-tPX53xVmA5Ycr8gdEXEkyVLpMe2V1u7GgV_g7arSNmGut3r5Puyk9oKl_dbi7ncUp9-4Y_8j3rxBrnWwW46aO3kJlkz1S1y9ScyxtvkK1jM9EOtmyq3FAplQwGJy9LQSVMBTJ4dz2hd0BGWzp-dfp6AiKF5pSmWyoDwzrQBpI0U54ZaBGCL4ejYwEma4uqEUtVgrsfaUPCkdZljtmOfYP_WUID_JzjRQKuz0y8VHWKhUv0OcId9TmqsT79DJhfQS3fJelVX5h6hXLMoF8iQpgsOIFJ6TCV-FENOqlVcJA5xlyqVqY7fHbcZKbOWmZplONRZP9QOed7Ln7TMJn-U3FxqaNZ5uFkGwJ8HLAZ055An_WXwTfjDKa9MvUAZH1c6MxE6ZKPV7P5VLIkEg2jhEGb18y9tyAbpeNAf3f-Xmx6Ty8PD8Sgb7R3sPyBX8DwW_rBwk6zPpwvzENDlXD6yFk3J24tV_R99xYWK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCqIPYr012uoIik-hyWRymQcflsZla7ulsAp9MiRzgUpMlt0W2bf-BMHf4Ks_qr_Ecya7qYuIIPQxk5PJ5Zw55zuZM98AvIq0lTE3wleBwgRFlsYvQ1n5oQniuFIYIBT9GhgfJ6OP4v1pfLoBP1drYTp-iP6HG40M569pgE-13bsmDS214w0KU1ormizLKg_N4ismbfO3Bzlq-DXnw3cf9kf-cl8BX6HLTnwlAy3DyGL0E1prJUxZVmkUpWFlAmNTHSup8CVsHFSCm0gJmcU2ECqsMkvkS-jyb9H8IpWQcXFyTfKbuL08aW7Rl4nIViSRAd9bf9r1IPgHsl0Hyi7SDe_DvSVEZYPOprZgwzQP4O5vxIUP4Qda1-xLq7vt7Mu6XjBErVVt2GTRIKScn81Za9kRlZlfXX6boIhhZaMZlZWg8P5sgaiU6MANc9HSFY6xscFGllMlf61aNO0zbRh6HUy_KTNwPbiZDYZQeUpJOWuuLr83bERFPe1njNGun9w4__cIJjegmMew2bSN2QYmNE9KSWxi2goEXFXAVRYmKeZvWqU288Bfff9CLbnQaUuOuuhYnHlB-ip6fXnwppefdiwgf5XcWamzWHqDeYEgWUQ8RSTkwcv-NI5jmpwpG9NekExIq4K5jD140plBfyueJZKjZ_WAO7v4xzMUg3w86I-e_s9FL-D2ST4sjg6OD5_BHWru6up2YPN8dmF2EYidV8-d9TP4dLOD7RdTVkLH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamically+Stable+Synthesis+of+Large-Scale+and+Highly+Crystalline+Transition+Metal+Dichalcogenide+Monolayers+and+their+Unipolar+n-n+Heterojunction+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lee%2C+Juwon&rft.au=Pak%2C+Sangyeon&rft.au=Giraud%2C+Paul&rft.au=Lee%2C+Young-Woo&rft.date=2017-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fadma.201702206&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon