Thermodynamically Stable Synthesis of Large‐Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This r...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 33 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW−1) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices.
Large‐scale and highly crystalline transition metal dichalcogenide monolayers are synthesized by a solution‐processed precursor deposition technique. The low supersaturation level under a thermodynamically stable condition reduces the nucleation density dramatically and thus produces clean monolayer films with a large grain size. The MoS2/WS2 heterojunction device based on this synthesis procedure shows a fast response time with a significantly high photoresponsivity. |
---|---|
AbstractList | Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS
2
/WS
2
heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW
−1
) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices. Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS /WS heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices. Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time ([asymp]45 ms) and a significantly high photoresponsivity ([asymp]40 AW-1) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices. Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2 /WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1 ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2 /WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1 ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices. Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW−1) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices. Large‐scale and highly crystalline transition metal dichalcogenide monolayers are synthesized by a solution‐processed precursor deposition technique. The low supersaturation level under a thermodynamically stable condition reduces the nucleation density dramatically and thus produces clean monolayer films with a large grain size. The MoS2/WS2 heterojunction device based on this synthesis procedure shows a fast response time with a significantly high photoresponsivity. |
Author | Jeong, Hu Young Hong, Woong‐Ki Cho, Yuljae Lee, Young‐Woo Cha, SeungNam Chung, Hee‐Suk Jang, A‐Rang Hong, John Lee, Juwon Sohn, Jung Inn Giraud, Paul Shin, Hyeon Suk Kim, Jong Min Pak, Sangyeon Morris, Stephen M. Occhipinti, Luigi G. |
Author_xml | – sequence: 1 givenname: Juwon surname: Lee fullname: Lee, Juwon organization: University of Oxford – sequence: 2 givenname: Sangyeon surname: Pak fullname: Pak, Sangyeon organization: University of Oxford – sequence: 3 givenname: Paul surname: Giraud fullname: Giraud, Paul organization: University of Oxford – sequence: 4 givenname: Young‐Woo surname: Lee fullname: Lee, Young‐Woo organization: University of Oxford – sequence: 5 givenname: Yuljae surname: Cho fullname: Cho, Yuljae organization: University of Oxford – sequence: 6 givenname: John surname: Hong fullname: Hong, John organization: University of Oxford – sequence: 7 givenname: A‐Rang surname: Jang fullname: Jang, A‐Rang organization: University of Oxford – sequence: 8 givenname: Hee‐Suk surname: Chung fullname: Chung, Hee‐Suk organization: Korea Basic Science Institute – sequence: 9 givenname: Woong‐Ki surname: Hong fullname: Hong, Woong‐Ki organization: Korea Basic Science Institute – sequence: 10 givenname: Hu Young surname: Jeong fullname: Jeong, Hu Young organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 11 givenname: Hyeon Suk surname: Shin fullname: Shin, Hyeon Suk organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 12 givenname: Luigi G. surname: Occhipinti fullname: Occhipinti, Luigi G. organization: University of Cambridge – sequence: 13 givenname: Stephen M. surname: Morris fullname: Morris, Stephen M. organization: University of Oxford – sequence: 14 givenname: SeungNam surname: Cha fullname: Cha, SeungNam email: seungnam.cha@eng.ox.ac.uk organization: University of Oxford – sequence: 15 givenname: Jung Inn surname: Sohn fullname: Sohn, Jung Inn email: junginn.sohn@eng.ox.ac.uk organization: University of Oxford – sequence: 16 givenname: Jong Min surname: Kim fullname: Kim, Jong Min organization: University of Cambridge |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28692787$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNPCliWyxIbNBNvj-fEySoAgJWKRsB557DuJoxk72DNFs-sjIPEMvFifBKdpQaqEWFm6OufT9f2u0IV1FhB6TcmUEsLeS93JKSO0IIyR_Bma0IzRhBORXaAJEWmWiJyXl-gqhAMhROQkf4EuWZkLVpTFBP3a7sF3To9WdkbJth3xppd1C3gz2n4PwQTsGrySfgd3tz82EQEsrcZLs9tHeO7H0EfNWMBbL20wvXEWryEO8cKovWyV24E1GvDaWdfKEXy4T4jpxuOv1hzj1GN7d_vT4iX04N1hsOo-ZwE3RkF4iZ43sg3w6uG9RpuPH7bzZbL68unzfLZKFKdpnihBtKBpQ0rGtdaKg5R1kaYFrYFAU-hMCZXqpslIzRmkiosyawhXtC4bkV6jd-fUo3ffBgh91ZmgoG2lBTeEigpaxGsykUX07RP04AZv426RSnnKipzySL15oIa6A10dvemkH6vH80eAnwHlXQgemkqZXp5-3ntp2oqS6tRydWq5-tNy1KZPtMfkfwriLHw3LYz_oavZYj376_4GSzW_gA |
CitedBy_id | crossref_primary_10_1002_adma_202102091 crossref_primary_10_1039_D2TA06105H crossref_primary_10_1007_s10311_021_01268_x crossref_primary_10_3390_ma14205979 crossref_primary_10_1016_j_jcis_2023_03_034 crossref_primary_10_1016_j_susmat_2020_e00161 crossref_primary_10_1021_acsanm_4c00271 crossref_primary_10_1007_s12274_019_2294_y crossref_primary_10_1021_prechem_3c00115 crossref_primary_10_1063_5_0094982 crossref_primary_10_1021_acsanm_8b01955 crossref_primary_10_1002_advs_202307196 crossref_primary_10_12677_CMP_2021_102008 crossref_primary_10_1002_adma_201804939 crossref_primary_10_1016_j_isci_2023_106567 crossref_primary_10_1016_j_vacuum_2024_113032 crossref_primary_10_1007_s40843_023_2615_1 crossref_primary_10_1021_acsnano_0c03469 crossref_primary_10_1002_smll_202202229 crossref_primary_10_1021_acs_nanolett_7b02513 crossref_primary_10_1007_s40820_020_0402_x crossref_primary_10_1021_accountsmr_1c00209 crossref_primary_10_1021_acsami_9b06662 crossref_primary_10_4028_p_c76gg6 crossref_primary_10_1021_acs_jpcc_8b01473 crossref_primary_10_1016_j_apsusc_2021_149074 crossref_primary_10_1016_j_apsusc_2022_156019 crossref_primary_10_1021_acs_jpcc_2c07542 crossref_primary_10_1002_smll_202301027 crossref_primary_10_1016_j_apsusc_2020_147390 crossref_primary_10_1039_D0NR08071C crossref_primary_10_1002_adma_202005732 crossref_primary_10_3390_nano14242021 crossref_primary_10_1016_j_mtphys_2020_100262 crossref_primary_10_1021_acs_nanolett_7b05473 crossref_primary_10_1088_1361_6463_ac928d crossref_primary_10_1016_j_surfrep_2022_100567 crossref_primary_10_1039_C8NR07655C crossref_primary_10_1021_acsomega_8b02978 crossref_primary_10_1039_D0RA09350E crossref_primary_10_1088_1361_6528_accbc6 crossref_primary_10_1002_adfm_202303520 crossref_primary_10_1016_j_cplett_2022_140292 crossref_primary_10_1021_acsanm_3c00358 crossref_primary_10_1063_1_5051781 crossref_primary_10_1039_D0MH01472A crossref_primary_10_1016_j_carbon_2019_01_008 crossref_primary_10_1088_1361_6528_aaea3f crossref_primary_10_1016_j_jechem_2023_05_032 crossref_primary_10_1021_acs_jpcc_2c00049 crossref_primary_10_1115_1_4046416 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1021_acsami_4c19428 crossref_primary_10_1039_D4NR04644G crossref_primary_10_1002_smll_202402272 crossref_primary_10_1002_adfm_202002023 crossref_primary_10_1002_smll_202306819 crossref_primary_10_1002_adfm_201900541 crossref_primary_10_1021_acssuschemeng_1c05130 crossref_primary_10_1021_acs_chemmater_1c00174 crossref_primary_10_1002_adma_202104960 crossref_primary_10_1021_acsanm_4c03188 crossref_primary_10_1007_s12274_021_3569_7 crossref_primary_10_1002_adma_201707577 crossref_primary_10_1038_s41699_020_0149_8 crossref_primary_10_3390_catal11010070 crossref_primary_10_1039_D2NR02093A crossref_primary_10_1002_advs_202205638 crossref_primary_10_1002_adma_202211855 crossref_primary_10_1002_adfm_201800339 crossref_primary_10_1039_D1NA00171J crossref_primary_10_1063_5_0076711 crossref_primary_10_1016_j_tsf_2018_09_021 crossref_primary_10_1007_s11431_020_1593_4 crossref_primary_10_1021_acsanm_0c01408 crossref_primary_10_3390_nano12172893 crossref_primary_10_1039_C8TA04618B crossref_primary_10_1016_j_mtadv_2020_100098 crossref_primary_10_1021_acsnano_1c00544 crossref_primary_10_1039_D3CP00421J crossref_primary_10_1126_sciadv_abj3274 crossref_primary_10_1002_advs_202002768 crossref_primary_10_1021_acsami_8b12596 crossref_primary_10_1002_admi_202100328 crossref_primary_10_1021_acsanm_2c01701 crossref_primary_10_1021_acs_cgd_0c00105 crossref_primary_10_1002_smsc_202300249 crossref_primary_10_1002_admt_201800072 crossref_primary_10_1021_acsami_8b14408 crossref_primary_10_1021_acsnano_7b07682 crossref_primary_10_1039_D0CE01354D crossref_primary_10_1080_01614940_2021_1899605 crossref_primary_10_1088_2053_1583_ab0337 crossref_primary_10_1021_acsaelm_3c01665 crossref_primary_10_1002_admi_202100415 crossref_primary_10_1002_adfm_202105259 crossref_primary_10_1002_inf2_12038 crossref_primary_10_1002_smll_202300766 crossref_primary_10_1039_C8TC00620B crossref_primary_10_1002_adom_202001319 crossref_primary_10_1021_acsnano_2c00096 crossref_primary_10_1039_D3CC04610A crossref_primary_10_1021_acsnano_9b00277 crossref_primary_10_1021_acsnano_9b05722 crossref_primary_10_3390_nano12091393 crossref_primary_10_1088_1361_6528_ac952f crossref_primary_10_3390_nano8070463 crossref_primary_10_1021_acsaem_4c00189 crossref_primary_10_1002_adom_201800441 crossref_primary_10_1016_j_matlet_2018_11_112 crossref_primary_10_1039_D4TA03197K crossref_primary_10_1002_adma_202201630 crossref_primary_10_1016_j_infrared_2022_104474 crossref_primary_10_1021_acsnano_0c00296 crossref_primary_10_1002_aenm_201901236 crossref_primary_10_1007_s11433_021_1745_6 crossref_primary_10_1039_D2SC04124C crossref_primary_10_1002_adma_202203373 crossref_primary_10_1016_j_apsusc_2019_07_036 crossref_primary_10_1016_j_mtcomm_2023_106247 crossref_primary_10_1016_j_jallcom_2021_162705 crossref_primary_10_1038_s41598_019_40893_z |
Cites_doi | 10.1021/nn2024557 10.1021/acsnano.5b02019 10.1039/c2nr31833d 10.1021/nl2043612 10.1002/adfm.201504633 10.1002/adma.201603571 10.1088/0957-4484/27/8/085604 10.1039/C5NR03361F 10.1103/PhysRevB.87.075451 10.1063/1.4968582 10.1039/C5NR05701A 10.1021/nl4033704 10.1038/nmat3673 10.1021/nl401938t 10.1021/jacs.5b06643 10.1021/nl400687n 10.1039/C2NR33443G 10.1021/jacs.5b10519 10.1021/acsami.6b04540 10.1021/nl501962c 10.1002/adfm.201401389 10.1021/nl500666m 10.1002/adma.201405068 10.1038/ncomms14734 10.1002/adma.201603928 10.1038/nmat3687 10.1039/C4NR04532G 10.1038/srep18116 10.1002/adma.201504631 10.1039/C5NR07226C 10.1021/cm5025662 10.1021/nn303352k 10.1038/ncomms7160 10.1038/srep03489 10.1021/nl301485q 10.1021/nn5027388 10.1103/PhysRevLett.105.136805 10.1021/nn301572c 10.1021/nn501019g 10.1002/adma.201602757 10.1002/adma.201504090 10.1021/nl4046922 10.1021/nl5038177 10.1021/nn5020819 10.1039/C4TC02961E 10.1021/acsnano.6b01636 10.1002/adma.201301244 10.1002/advs.201600033 10.1002/adma.201503340 10.1021/nl502339q 10.1021/nl504256y 10.1038/nnano.2010.279 10.1021/nn501181t 10.1038/ncomms2652 10.1021/acsnano.5b01281 10.1038/nnano.2014.150 10.1038/nnano.2013.100 10.1002/adfm.201402519 10.1039/C5NR01486G 10.1038/nnano.2014.167 10.1038/nmat3633 10.1002/adma.201104798 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201702206 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 28692787 10_1002_adma_201702206 ADMA201702206 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: European Research Council funderid: 340538; 685758 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4136-c90d913f0824dddc4eaab73371be0ef7d5c9c3dff50b42e3c4985f04c1b8f93 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 12:16:07 EDT 2025 Fri Jul 25 04:42:57 EDT 2025 Mon Jul 21 05:42:02 EDT 2025 Tue Jul 01 00:44:34 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Wed Jan 22 17:04:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | photodetectors transition metal dichalcogenides heterojunctions chemical vapor deposition 2D materials |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4136-c90d913f0824dddc4eaab73371be0ef7d5c9c3dff50b42e3c4985f04c1b8f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702206 |
PMID | 28692787 |
PQID | 1934327614 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1917964295 proquest_journals_1934327614 pubmed_primary_28692787 crossref_citationtrail_10_1002_adma_201702206 crossref_primary_10_1002_adma_201702206 wiley_primary_10_1002_adma_201702206_ADMA201702206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Sep |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sep |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2017; 8 2015; 6 2013; 3 2013; 25 2013; 4 2015; 5 2015; 3 2016; 109 2013; 87 2010; 105 2016; 10 2014; 26 2014; 24 2017; 29 2013; 8 2015; 9 2011; 6 2012; 12 2015; 8 2015; 7 2015; 27 2016; 3 2015; 137 2013; 13 2013; 12 2014; 14 2012; 6 2014; 9 2016; 28 2014; 8 2012; 24 2012; 4 2014; 7 2016; 27 2012; 5 2016; 26 2016; 8 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 8 start-page: 8292 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 18116 year: 2015 publication-title: Sci. Rep. – volume: 10 start-page: 6054 year: 2016 publication-title: ACS Nano – volume: 12 start-page: 1538 year: 2012 publication-title: Nano Lett. – volume: 27 start-page: 085604 year: 2016 publication-title: Nanotechnology – volume: 137 start-page: 14281 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3489 year: 2013 publication-title: Sci. Rep. – volume: 26 start-page: 6371 year: 2014 publication-title: Chem. Mater. – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 6024 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 1500033 year: 2016 publication-title: Adv. Sci. – volume: 29 start-page: 1603928 year: 2017 publication-title: Adv. Mater. – volume: 24 start-page: 6389 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 6575 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 9110 year: 2012 publication-title: ACS Nano – volume: 15 start-page: 486 year: 2015 publication-title: Nano Lett. – volume: 12 start-page: 754 year: 2013 publication-title: Nat. Mater. – volume: 28 start-page: 8302 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 815 year: 2013 publication-title: Nat. Mater. – volume: 6 start-page: 6160 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 9196 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 3695 year: 2012 publication-title: Nano Lett. – volume: 9 start-page: 8822 year: 2015 publication-title: ACS Nano – volume: 14 start-page: 464 year: 2014 publication-title: Nano Lett. – volume: 14 start-page: 4785 year: 2014 publication-title: Nano Lett. – volume: 13 start-page: 1852 year: 2013 publication-title: Nano Lett. – volume: 8 start-page: 2234 year: 2015 publication-title: Nanoscale – volume: 12 start-page: 554 year: 2013 publication-title: Nat. Mater. – volume: 9 start-page: 676 year: 2014 publication-title: Nat. Nanotechnol. – volume: 105 start-page: 136805 year: 2010 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 548 year: 2012 publication-title: Nanoscale – volume: 15 start-page: 709 year: 2015 publication-title: Nano Lett. – volume: 28 start-page: 3216 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 4023 year: 2014 publication-title: ACS Nano – volume: 28 start-page: 1950 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 1688 year: 2014 publication-title: Nanoscale – volume: 14 start-page: 2730 year: 2014 publication-title: Nano Lett. – volume: 87 start-page: 75451 year: 2013 publication-title: Phys. Rev. B – volume: 14 start-page: 1909 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 4961 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 219 year: 2015 publication-title: Nanoscale – volume: 109 start-page: 223101 year: 2016 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 682 year: 2014 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 9311 year: 2015 publication-title: Nanoscale – volume: 7 start-page: 14974 year: 2015 publication-title: Nanoscale – volume: 6 start-page: 5635 year: 2012 publication-title: ACS Nano – volume: 137 start-page: 15632 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 2009 year: 2016 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2320 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 4611 year: 2015 publication-title: ACS Nano – volume: 14 start-page: 6165 year: 2014 publication-title: Nano Lett. – volume: 25 start-page: 3456 year: 2013 publication-title: Adv. Mater. – volume: 24 start-page: 7461 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1547 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 1624 year: 2013 publication-title: Nat. Commun. – volume: 8 start-page: 18570 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 14734 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 6637 year: 2012 publication-title: Nanoscale – volume: 3 start-page: 2751 year: 2015 publication-title: J. Mater. Chem. C – volume: 13 start-page: 3870 year: 2013 publication-title: Nano Lett. – volume: 6 start-page: 74 year: 2012 publication-title: ACS Nano – ident: e_1_2_5_8_1 doi: 10.1021/nn2024557 – ident: e_1_2_5_29_1 doi: 10.1021/acsnano.5b02019 – ident: e_1_2_5_25_1 doi: 10.1039/c2nr31833d – ident: e_1_2_5_17_1 doi: 10.1021/nl2043612 – ident: e_1_2_5_42_1 doi: 10.1002/adfm.201504633 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201603571 – ident: e_1_2_5_43_1 doi: 10.1088/0957-4484/27/8/085604 – ident: e_1_2_5_21_1 doi: 10.1039/C5NR03361F – ident: e_1_2_5_58_1 doi: 10.1103/PhysRevB.87.075451 – ident: e_1_2_5_40_1 doi: 10.1063/1.4968582 – ident: e_1_2_5_51_1 doi: 10.1039/C5NR05701A – ident: e_1_2_5_30_1 doi: 10.1021/nl4033704 – ident: e_1_2_5_27_1 doi: 10.1038/nmat3673 – ident: e_1_2_5_48_1 doi: 10.1021/nl401938t – ident: e_1_2_5_50_1 doi: 10.1021/jacs.5b06643 – ident: e_1_2_5_32_1 doi: 10.1021/nl400687n – ident: e_1_2_5_15_1 doi: 10.1039/C2NR33443G – ident: e_1_2_5_41_1 doi: 10.1021/jacs.5b10519 – ident: e_1_2_5_37_1 doi: 10.1021/acsami.6b04540 – ident: e_1_2_5_52_1 doi: 10.1021/nl501962c – ident: e_1_2_5_24_1 doi: 10.1002/adfm.201401389 – ident: e_1_2_5_34_1 doi: 10.1021/nl500666m – ident: e_1_2_5_4_1 doi: 10.1002/adma.201405068 – ident: e_1_2_5_12_1 doi: 10.1038/ncomms14734 – ident: e_1_2_5_38_1 doi: 10.1002/adma.201603928 – ident: e_1_2_5_2_1 doi: 10.1038/nmat3687 – ident: e_1_2_5_39_1 doi: 10.1039/C4NR04532G – ident: e_1_2_5_22_1 doi: 10.1038/srep18116 – ident: e_1_2_5_57_1 doi: 10.1002/adma.201504631 – ident: e_1_2_5_23_1 doi: 10.1039/C5NR07226C – ident: e_1_2_5_33_1 doi: 10.1021/cm5025662 – ident: e_1_2_5_45_1 doi: 10.1021/nn303352k – ident: e_1_2_5_46_1 doi: 10.1038/ncomms7160 – ident: e_1_2_5_49_1 doi: 10.1038/srep03489 – ident: e_1_2_5_14_1 doi: 10.1021/nl301485q – ident: e_1_2_5_55_1 doi: 10.1021/nn5027388 – ident: e_1_2_5_13_1 doi: 10.1103/PhysRevLett.105.136805 – ident: e_1_2_5_62_1 doi: 10.1021/nn301572c – ident: e_1_2_5_47_1 doi: 10.1021/nn501019g – ident: e_1_2_5_3_1 doi: 10.1002/adma.201602757 – ident: e_1_2_5_53_1 doi: 10.1002/adma.201504090 – ident: e_1_2_5_35_1 doi: 10.1021/nl4046922 – ident: e_1_2_5_60_1 doi: 10.1021/nl5038177 – ident: e_1_2_5_36_1 doi: 10.1021/nn5020819 – ident: e_1_2_5_54_1 doi: 10.1039/C4TC02961E – ident: e_1_2_5_20_1 doi: 10.1021/acsnano.6b01636 – ident: e_1_2_5_6_1 doi: 10.1002/adma.201301244 – ident: e_1_2_5_31_1 doi: 10.1002/advs.201600033 – ident: e_1_2_5_7_1 doi: 10.1002/adma.201503340 – ident: e_1_2_5_61_1 doi: 10.1021/nl502339q – ident: e_1_2_5_44_1 doi: 10.1021/nl504256y – ident: e_1_2_5_1_1 doi: 10.1038/nnano.2010.279 – ident: e_1_2_5_10_1 doi: 10.1021/nn501181t – ident: e_1_2_5_11_1 doi: 10.1038/ncomms2652 – ident: e_1_2_5_28_1 doi: 10.1021/acsnano.5b01281 – ident: e_1_2_5_56_1 doi: 10.1038/nnano.2014.150 – ident: e_1_2_5_5_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_5_19_1 doi: 10.1002/adfm.201402519 – ident: e_1_2_5_18_1 doi: 10.1039/C5NR01486G – ident: e_1_2_5_59_1 doi: 10.1038/nnano.2014.167 – ident: e_1_2_5_16_1 doi: 10.1038/nmat3633 – ident: e_1_2_5_26_1 doi: 10.1002/adma.201104798 |
SSID | ssj0009606 |
Score | 2.5671935 |
Snippet | Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | 2D materials Carrier transport Chalcogenides chemical vapor deposition Crystal structure Evaporation Heterojunction devices heterojunctions Materials science Molybdenum disulfide Monolayers Optical properties Optoelectronic devices photodetectors Photoluminescence Response time Supersaturation Synthesis transition metal dichalcogenides |
Title | Thermodynamically Stable Synthesis of Large‐Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702206 https://www.ncbi.nlm.nih.gov/pubmed/28692787 https://www.proquest.com/docview/1934327614 https://www.proquest.com/docview/1917964295 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJzgA5dVAWxkJiVPaxLGT-LjqUq0QixALUm-Rn1IhTap9HLan_oRK_Ab-WH8JM85u2gUhJLjlMU4cZzzzjT3-TMjrzHopmOOxSQwEKFK5WKVSx6lLhNAGHITBoYHxh3z0hb87ESe3VvF3_BD9gBv2jGCvsYMrPTu8IQ1VNvAGpQWuFUXObUzYQlT06YY_CuF5INvLRCxzXq5ZGxN2uFl80yv9BjU3kWtwPccPiVpXuss4-XawmOsDc_ELn-P_fNUj8mCFS-mgU6Rtcsc1j8n9W2yFT8gPUKnpWWu7PexVXS8pQFVdOzpZNoAjZ6cz2nr6HnPLry-vJiDiqGosxVwSED6aLgGKIge4o8FFhmwxOnZwkQ4xfb82LejzqXUUTA3E3BgOhCeE6QwK-PgcI3HaXF9-b-gIM3nar-CYw3OGLhi9p2Ry_Pbz0She7fIQG3CgeWxkYmWaecAi3FpruFNKF1lWpNolzhdWGGlApbxINGcuM1yWwifcpLr0MntGtpq2cTuEcstyJZFCzHoOKEsnzJRpXkDQZk3hy4jE639cmRUBOu7DUVcddTOrsPGrvvEj8qaXP--oP_4oubtWmWplAmYVIGOesQLgT0Re9beh8-KMjGpcu0CZFJcCMyki8rxTtf5VrMwlA3MaERYU5i91qAbD8aA_e_EvhV6Se3jcZdDtkq35dOH2AHLN9T65y_jH_dC5fgJltCgc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqsgAWvCmBAkYCsUqbOM7DCxajhmpKZ7pgitQVUfyIVAhJNQ-hsOonIPENrPkVvqFfwr1OJmVACAmpC5ZJbhLHvo9znetjQp4GuhAhM9xVnoIEReTGzX0hXd94YSgVBAiFUwPjg2j4hr86Co_WyLflWpiWH6KfcEPLsP4aDRwnpLfPWUNzbYmD_BgXi0ZdXeW-aT5C1jZ7sZfCED9jbPfl4c7Q7TYWcBX47MhVwtPCDwoIf1xrrbjJcxkHQexL45ki1qESCr6iCD3JmQkUF0lYeFz5MimQfQl8_iXcRBzJ-tPX53xVmA5Ycr8gdEXEkyVLpMe2V1u7GgV_g7arSNmGut3r5Puyk9oKl_dbi7ncUp9-4Y_8j3rxBrnWwW46aO3kJlkz1S1y9ScyxtvkK1jM9EOtmyq3FAplQwGJy9LQSVMBTJ4dz2hd0BGWzp-dfp6AiKF5pSmWyoDwzrQBpI0U54ZaBGCL4ejYwEma4uqEUtVgrsfaUPCkdZljtmOfYP_WUID_JzjRQKuz0y8VHWKhUv0OcId9TmqsT79DJhfQS3fJelVX5h6hXLMoF8iQpgsOIFJ6TCV-FENOqlVcJA5xlyqVqY7fHbcZKbOWmZplONRZP9QOed7Ln7TMJn-U3FxqaNZ5uFkGwJ8HLAZ055An_WXwTfjDKa9MvUAZH1c6MxE6ZKPV7P5VLIkEg2jhEGb18y9tyAbpeNAf3f-Xmx6Ty8PD8Sgb7R3sPyBX8DwW_rBwk6zPpwvzENDlXD6yFk3J24tV_R99xYWK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCqIPYr012uoIik-hyWRymQcflsZla7ulsAp9MiRzgUpMlt0W2bf-BMHf4Ks_qr_Ecya7qYuIIPQxk5PJ5Zw55zuZM98AvIq0lTE3wleBwgRFlsYvQ1n5oQniuFIYIBT9GhgfJ6OP4v1pfLoBP1drYTp-iP6HG40M569pgE-13bsmDS214w0KU1ormizLKg_N4ismbfO3Bzlq-DXnw3cf9kf-cl8BX6HLTnwlAy3DyGL0E1prJUxZVmkUpWFlAmNTHSup8CVsHFSCm0gJmcU2ECqsMkvkS-jyb9H8IpWQcXFyTfKbuL08aW7Rl4nIViSRAd9bf9r1IPgHsl0Hyi7SDe_DvSVEZYPOprZgwzQP4O5vxIUP4Qda1-xLq7vt7Mu6XjBErVVt2GTRIKScn81Za9kRlZlfXX6boIhhZaMZlZWg8P5sgaiU6MANc9HSFY6xscFGllMlf61aNO0zbRh6HUy_KTNwPbiZDYZQeUpJOWuuLr83bERFPe1njNGun9w4__cIJjegmMew2bSN2QYmNE9KSWxi2goEXFXAVRYmKeZvWqU288Bfff9CLbnQaUuOuuhYnHlB-ip6fXnwppefdiwgf5XcWamzWHqDeYEgWUQ8RSTkwcv-NI5jmpwpG9NekExIq4K5jD140plBfyueJZKjZ_WAO7v4xzMUg3w86I-e_s9FL-D2ST4sjg6OD5_BHWru6up2YPN8dmF2EYidV8-d9TP4dLOD7RdTVkLH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamically+Stable+Synthesis+of+Large-Scale+and+Highly+Crystalline+Transition+Metal+Dichalcogenide+Monolayers+and+their+Unipolar+n-n+Heterojunction+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lee%2C+Juwon&rft.au=Pak%2C+Sangyeon&rft.au=Giraud%2C+Paul&rft.au=Lee%2C+Young-Woo&rft.date=2017-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fadma.201702206&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |