Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Co‐Engineering of Blood and Lymphatic Vasculature
Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated c...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 16; pp. e2209476 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative.
A novel collagen biopolymer bearing enzyme‐recognizable crosslinkers is developed to rapidly produce bulk hydrogels exhibiting strong (lymph‐)angiogenic properties. Orthogonal crosslinking enables further modification of the collagen backbone. Using a second enzyme, the tethering of pro‐angiogenic QK‐peptides, the production of multimaterial scaffolds that enable spatially restricted vascularization as well as the biofabrication of annealed µ‐gels is demonstrated. |
---|---|
AbstractList | Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA-mediated crosslinking enables the rapid co-engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro- and anti-angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co-engineering of mature micro- and meso-sized blood and lymphatic capillaries using a highly versatile collagen derivative. Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative. A novel collagen biopolymer bearing enzyme‐recognizable crosslinkers is developed to rapidly produce bulk hydrogels exhibiting strong (lymph‐)angiogenic properties. Orthogonal crosslinking enables further modification of the collagen backbone. Using a second enzyme, the tethering of pro‐angiogenic QK‐peptides, the production of multimaterial scaffolds that enable spatially restricted vascularization as well as the biofabrication of annealed µ‐gels is demonstrated. Abstract Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative. Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative. |
Author | Rüdisser, Simon Zenobi‐Wong, Marcy Biedermann, Thomas Nanni, Monica Rütsche, Dominic |
Author_xml | – sequence: 1 givenname: Dominic orcidid: 0000-0001-6394-201X surname: Rütsche fullname: Rütsche, Dominic organization: University Children's Hospital Zurich – sequence: 2 givenname: Monica orcidid: 0000-0001-5706-0053 surname: Nanni fullname: Nanni, Monica organization: ETH Zurich – sequence: 3 givenname: Simon orcidid: 0000-0002-1107-6196 surname: Rüdisser fullname: Rüdisser, Simon organization: ETH Zurich – sequence: 4 givenname: Thomas orcidid: 0000-0002-6438-8791 surname: Biedermann fullname: Biedermann, Thomas organization: University Children's Hospital Zurich – sequence: 5 givenname: Marcy orcidid: 0000-0002-8522-9909 surname: Zenobi‐Wong fullname: Zenobi‐Wong, Marcy email: marcy.zenobi@hest.ethz.ch organization: ETH Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36724374$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT9vFDEQxS0URC4HLSWyREOzx_jP2rvlcVwg0kU0cK3lrL3HBq992LuBTUVDz2fkk-DjQpBoqDyWfvNm5r0zdOKDtwg9JbAgAPSlNr1eUKAUai7FAzQjJSUFh7o8QTOoWVnUglen6CylawCoBYhH6JQJSTmTfIa-r_3t1Ouha7RzE17FkJLr_Cdr8Co4p3fWY52wxlsbU8acxZd6iN1X3IaILzzedkMMWHtz_NyE3Pfz24-133Xe2tj5HQ4tfuVCML-pzdTvPx7m4a1Ozej0MEb7GD1stUv2yd07Rx_O1-9Xb4vNuzcXq-WmaDhhotASKmsMMCmqSlNuQFeSClELQ0V2o-QtGCDC1o1klRGtkfxKspLRiuVCsjl6cdTdx_B5tGlQfZcam-_0NoxJUSlJzSkjNKPP_0Gvwxh93k7RChglUOad5mhxpJqDcdG2ah-7XsdJEVCHgNQhIHUfUG54dic7XvXW3ON_EslAfQS-ZK-n_8ip5evL5V_xX1IQnjo |
CitedBy_id | crossref_primary_10_1002_adhm_202303997 crossref_primary_10_3390_ijms24043744 crossref_primary_10_1002_mabi_202300213 crossref_primary_10_1089_lrb_2023_29139_fb crossref_primary_10_1002_adma_202300636 crossref_primary_10_1186_s12951_023_02112_w crossref_primary_10_1016_j_tibs_2024_04_003 |
Cites_doi | 10.1016/j.actbio.2010.10.022 10.1016/j.abb.2018.10.010 10.1111/j.1755-148X.2009.00590.x 10.1002/jemt.1163 10.1002/adhm.201800560 10.1111/j.1432-1033.1978.tb12778.x 10.3390/ma3031863 10.1038/nature17040 10.1007/s10337-011-1979-5 10.1016/j.cellsig.2007.05.013 10.1002/adhm.202101989 10.1002/adhm.202000895 10.1002/ijc.2910600511 10.1016/j.biomaterials.2004.02.052 10.1038/s41551-020-0566-1 10.1002/adhm.202001537 10.1146/annurev.bi.59.070190.004201 10.1371/journal.pone.0005798 10.3390/biom11101538 10.1038/nprot.2006.236 10.1063/5.0031475 10.1016/j.biomaterials.2016.04.036 10.1016/j.actbio.2018.07.020 10.1038/s41598-019-41985-6 10.1002/jbm.b.34979 10.18063/ijb.v8i4.606 10.1002/dvdy.10163 10.1016/j.biomaterials.2011.04.066 10.3390/cells11061055 10.1021/acsami.0c16714 10.1242/jcs.163774 10.1038/428138a 10.1007/BF02192855 10.1002/adfm.202109810 10.3389/fcell.2021.675080 10.1002/adma.202204301 10.1101/gad.303776.117 10.1021/acsbiomaterials.2c00370 10.1182/blood-2008-03-145789 10.1038/nprot.2006.202 10.1002/adhm.201700254 10.1016/S0002-9440(10)65285-6 10.1161/ATVBAHA.107.158014 10.1007/s10856-019-6232-z 10.3389/fcell.2021.639299 10.1002/9780470559277.ch110148 10.1089/ten.tea.2008.0550 10.1016/j.cell.2020.06.039 10.4161/org.4.4.6926 10.1039/D0LC00099J 10.1016/j.biomaterials.2009.09.039 10.1038/s41596-019-0144-8 10.1016/j.biomaterials.2015.11.027 10.1093/nar/29.9.e45 10.1242/dmm.004077 10.1016/j.molmed.2021.07.003 10.1038/nrc2544 10.1016/0014-4827(89)90428-X 10.3390/gels7040255 10.1039/C5RA14423J 10.1242/dev.125.9.1591 10.1016/j.biomaterials.2010.10.007 10.3109/02652049509051126 10.1126/scitranslmed.3006894 10.1073/pnas.2101931118 10.1038/nrm2125 10.1089/ten.tea.2009.0491 10.3892/etm.2016.3557 10.4161/cam.4.3.11747 10.1016/0142-9612(92)90153-F 10.1016/j.eng.2020.03.019 10.1016/j.mtbio.2021.100098 10.1093/nar/gkab314 10.1007/BF00316003 10.1016/j.xpro.2022.101172 10.1155/2012/875742 10.1016/j.biomaterials.2021.120779 10.1002/adfm.202206767 10.1016/j.stem.2018.02.009 10.1002/advs.202001419 10.1126/science.276.5317.1423 10.1074/jbc.M011004200 10.1089/ten.tea.2014.0443 10.1126/science.aav9051 10.1006/jmra.1995.1047 10.1016/j.devcel.2015.06.004 10.1002/adfm.202202430 10.1073/pnas.1101046108 10.1016/j.addr.2003.08.004 10.1177/20417314221088513 10.1083/jcb.144.4.789 10.1002/term.292 10.1186/1479-5876-7-41 10.1002/smll.202200180 10.1155/2017/6209849 10.1007/s13758-012-0025-y 10.1152/ajpcell.00156.2019 10.1002/adma.202109194 10.1101/gad.1727208 10.1016/S0142-9612(03)00273-4 10.3390/cells10051008 10.1084/jem.20171868 10.1073/pnas.0505047102 10.1161/01.RES.88.6.623 10.1002/advs.202201483 10.1007/s40883-018-0054-2 10.1074/jbc.M401374200 10.1021/acsbiomaterials.6b00378 10.3389/fcell.2018.00133 10.1080/15476278.2015.1019687 10.1002/bit.21185 10.1016/j.actbio.2019.02.054 10.1016/j.actbio.2010.07.004 10.1093/cvr/cvw175 10.1016/j.devcel.2021.01.018 10.3389/fphys.2022.846936 10.1371/journal.pone.0074686 10.1093/emboj/21.7.1505 10.1088/1758-5090/ac6b58 10.3389/fbioe.2017.00025 10.1182/blood-2011-02-338426 10.1093/emboj/20.17.4762 10.18063/ijb.v6i3.270 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202209476 |
DatabaseName | Wiley Open Access Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202209476 36724374 ADMA202209476 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Gemeinnützige Stiftung Accentus – fundername: Swiss National Science Foundation grantid: 205321_179012 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CGR CUY CVF ECM EIF EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4136-a708edd037688a24d0a8726696d2600254f0d016e9c738d6fd74b73532834b773 |
IEDL.DBID | 24P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 21:01:05 EDT 2024 Thu Oct 10 17:44:38 EDT 2024 Thu Sep 26 16:09:06 EDT 2024 Sat Sep 28 08:18:40 EDT 2024 Sat Aug 24 01:21:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | collagen tissue engineering lymphatic vasculature vascularization blood vasculature |
Language | English |
License | Attribution-NonCommercial 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4136-a708edd037688a24d0a8726696d2600254f0d016e9c738d6fd74b73532834b773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5706-0053 0000-0002-1107-6196 0000-0002-6438-8791 0000-0001-6394-201X 0000-0002-8522-9909 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202209476 |
PMID | 36724374 |
PQID | 2803210541 |
PQPubID | 2045203 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2771942312 proquest_journals_2803210541 crossref_primary_10_1002_adma_202209476 pubmed_primary_36724374 wiley_primary_10_1002_adma_202209476_ADMA202209476 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 16 2013; 3 2011; 118 2019; 94 2020; 20 1990; 59 1991; 96 1997; 276 2009; 113 2009; 119 2013; 8 2003; 55 2018; 7 2018; 6 2018; 4 2018; 215 2005; 102 2011; 73 2008; 28 1987 2007; 8 2022; 34 2019; 317 2008; 22 2021; 273 2022; 32 2022; 2202430 2001; 55 2010; 3 2007; 1 2010; 4 1992; 2 2010; 6 2007; 19 2019; 9 2010; 31 2022; 110 2019; 30 2015; 128 2007; 96 2001; 29 2011; 4 2004; 428 2018; 22 2011; 3 2011; 5 2011; 7 2001; 20 2016; 12 2016; 99 2001; 276 2021; 56 2016; 2 2022; 3 2022; 8 2022; 9 2003; 24 2022; 13 2022; 14 2022; 11 2022; 18 2017; 5 2015; 34 2021; 27 2012; 2012 2004 2021; 279 49 1992; 13 2008; 4 2005; 26 2001; 88 2019; 365 2016; 78 2020; 7 2017; 31 2020; 6 2020; 4 1995; 60 2021; 31 2020; 9 2021; 118 2016; 111 2002; 225 1998; 125 2018; 77 2014; 6 2021; 9 1978; 92 2009; 22 2021; 7 2018; 660 2021; 5 2015; 5 2017; 2017 2010 1995; 12 2020; 182 2015; 11 2016; 529 1989; 183 2011; 32 1999; 144 2006; 1 1995; 112 2021; 13 2021; 10 2011; 108 2021; 11 2002; 21 2015; 21 2019 1999; 154 2009; 9 2009; 7 2009; 4 2012; 7 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 Paquet‐Fifield S. (e_1_2_8_41_1) 2009; 119 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Kühn K. (e_1_2_8_71_1) 1987 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_128_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Guo Y. (e_1_2_8_118_1) 2021; 31 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Osidak E. O. (e_1_2_8_106_1) 2020; 6 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Kaiserling E. (e_1_2_8_69_1) 2010 Murakami M. (e_1_2_8_58_1) 2012; 2012 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 Rao X. (e_1_2_8_122_1) 2013; 3 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 3 start-page: 153 year: 2011 publication-title: Curr. Protoc. Chem. Biol. – volume: 7 start-page: 255 year: 2021 publication-title: Gels – volume: 3 year: 2022 publication-title: STAR Protoc. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 529 start-page: 316 year: 2016 publication-title: Nature – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 10 start-page: 1008 year: 2021 publication-title: Cells – volume: 31 start-page: 226 year: 2010 publication-title: Biomaterials – volume: 10 year: 2021 publication-title: Mater. Today Bio – volume: 4 start-page: 377 year: 2010 publication-title: Cell Adhes. Migr. – volume: 14 year: 2022 publication-title: Biofabrication – volume: 55 start-page: 1631 year: 2003 publication-title: Adv. Drug Delivery Rev. – volume: 5 year: 2021 publication-title: APL Bioeng. – volume: 32 start-page: 6045 year: 2011 publication-title: Biomaterials – volume: 7 start-page: 41 year: 2009 publication-title: J. Transl. Med. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 111 start-page: 310 year: 2016 publication-title: Cardiovasc. Res. – volume: 6 year: 2014 publication-title: Sci. Transl. Med. – volume: 11 start-page: 1538 year: 2021 publication-title: Biomolecules – volume: 1 start-page: 1559 year: 2006 publication-title: Nat. Protoc. – start-page: 1 year: 1987 end-page: 42 – volume: 112 start-page: 275 year: 1995 publication-title: J. Magn. Reson., Ser. A – volume: 9 year: 2021 publication-title: Front. Cell Dev. Biol. – volume: 2 start-page: 2176 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 273 year: 2021 publication-title: Biomaterials – volume: 279 49 year: 2004 2021 publication-title: J. Biol. Chem. Nucleic Acids Res. – year: 2019 – volume: 31 start-page: 1615 year: 2017 publication-title: Genes Dev. – volume: 125 start-page: 1591 year: 1998 publication-title: Development – volume: 4 year: 2009 publication-title: PLoS One – volume: 3 start-page: 71 year: 2013 publication-title: Biostat. Bioinf. Biomath. – volume: 20 start-page: 4762 year: 2001 publication-title: EMBO J. – volume: 11 start-page: 1 year: 2015 publication-title: Organogenesis – volume: 8 start-page: 221 year: 2007 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 99 start-page: 47 year: 2016 publication-title: Biomaterials – volume: 78 start-page: 129 year: 2016 publication-title: Biomaterials – volume: 1 start-page: 2876 year: 2007 publication-title: Nat. Protoc. – volume: 6 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 365 start-page: 482 year: 2019 publication-title: Science – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 21 start-page: 1055 year: 2015 publication-title: Tissue Eng., Part A – volume: 8 start-page: 3871 year: 2022 publication-title: ACS Biomater. Sci. Eng. – volume: 2 start-page: 661 year: 1992 publication-title: J. Biomol. NMR – volume: 16 start-page: 269 year: 2010 publication-title: Tissue Eng., Part A – volume: 88 start-page: 623 year: 2001 publication-title: Circ. Res. – volume: 12 start-page: 1639 year: 2016 publication-title: Exp. Ther. Med. – volume: 34 start-page: 5 year: 2015 publication-title: Dev. Cell – volume: 5 start-page: 69 year: 2011 publication-title: J. Tissue Eng. Regener. Med. – volume: 32 start-page: 1280 year: 2011 publication-title: Biomaterials – volume: 24 start-page: 4001 year: 2003 publication-title: Biomaterials – volume: 6 start-page: 133 year: 2018 publication-title: Front. Cell Dev. Biol. – volume: 128 start-page: 2236 year: 2015 publication-title: J. Cell Sci. – volume: 13 year: 2022 publication-title: J. Tissue Eng. – volume: 660 start-page: 72 year: 2018 publication-title: Arch. Biochem. Biophys. – volume: 2012 year: 2012 publication-title: Biochem. Res. Int. – volume: 6 start-page: 4657 year: 2010 publication-title: Acta Biomater. – volume: 22 start-page: 3282 year: 2008 publication-title: Genes Dev. – volume: 119 start-page: 2795 year: 2009 publication-title: J. Clin. Invest. – volume: 19 start-page: 2003 year: 2007 publication-title: Cell Signal – volume: 3 start-page: 1863 year: 2010 publication-title: Materials – volume: 102 year: 2005 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 96 start-page: 167 year: 2007 publication-title: Biotechnol. Bioeng. – volume: 9 start-page: 5437 year: 2019 publication-title: Sci. Rep. – volume: 110 start-page: 1206 year: 2022 publication-title: J. Biomed. Mater. Res., Part B – volume: 73 start-page: 889 year: 2011 publication-title: Chromatographia – volume: 215 start-page: 35 year: 2018 publication-title: J. Exp. Med. – volume: 4 start-page: 916 year: 2020 publication-title: Nat. Biomed. Eng. – volume: 59 start-page: 837 year: 1990 publication-title: Annu. Rev. Biochem. – volume: 22 start-page: 601 year: 2009 publication-title: Pigm. Cell Melanoma Res. – volume: 317 year: 2019 publication-title: Am. J. Physiol.: Cell Physiol. – volume: 8 year: 2013 publication-title: PLoS One – volume: 56 start-page: 406 year: 2021 publication-title: Dev. Cell – volume: 9 start-page: 108 year: 2009 publication-title: Nat. Rev. Cancer – volume: 7 start-page: 832 year: 2021 publication-title: Engineering – volume: 22 start-page: 340 year: 2018 publication-title: Cell Stem Cell – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 108 year: 2011 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 225 start-page: 351 year: 2002 publication-title: Dev. Dyn. – volume: 11 start-page: 1055 year: 2022 publication-title: Cells – volume: 29 start-page: 45e year: 2001 publication-title: Nucleic Acids Res. – volume: 113 start-page: 1856 year: 2009 publication-title: Blood – volume: 28 start-page: 223 year: 2008 publication-title: Arterioscler., Thromb., Vasc. Biol. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 12 start-page: 49 year: 1995 publication-title: J. Microencapsulation – volume: 4 start-page: 165 year: 2011 publication-title: Dis. Models Mech. – volume: 13 start-page: 1017 year: 1992 publication-title: Biomaterials – volume: 8 start-page: 606 year: 2022 publication-title: Int. J. Bioprint. – volume: 5 start-page: 25 year: 2017 publication-title: Front. Bioeng. Biotechnol. – volume: 20 start-page: 1586 year: 2020 publication-title: Lab Chip – volume: 31 start-page: 1 year: 2021 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 120 year: 2018 publication-title: Regener. Eng. Transl. Med. – volume: 96 start-page: 449 year: 1991 publication-title: Histochemistry – volume: 183 start-page: 179 year: 1989 publication-title: Exp. Cell Res. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2202430 year: 2022 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 433 year: 2005 publication-title: Biomaterials – volume: 13 year: 2022 publication-title: Front. Physiol. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 154 start-page: 385 year: 1999 publication-title: Am. J. Pathol. – volume: 276 start-page: 1423 year: 1997 publication-title: Science – volume: 118 start-page: 4740 year: 2011 publication-title: Blood – volume: 6 start-page: 1 year: 2020 publication-title: Int. J. Bioprinting – start-page: 266 year: 2010 end-page: 320 – volume: 428 start-page: 138 year: 2004 publication-title: Nature – volume: 7 start-page: 25 year: 2012 publication-title: Biointerphases – volume: 77 start-page: 182 year: 2018 publication-title: Acta Biomater. – volume: 2017 year: 2017 publication-title: J. Oncol. – volume: 2012 year: 2012 publication-title: Int. J. Vasc. Med. – volume: 27 start-page: 955 year: 2021 publication-title: Trends Mol. Med. – volume: 144 start-page: 789 year: 1999 publication-title: J. Cell Biol. – volume: 276 year: 2001 publication-title: J. Biol. Chem. – volume: 182 start-page: 270 year: 2020 publication-title: Cell – volume: 16 start-page: 585 year: 2010 publication-title: Tissue Eng., Part A – volume: 94 start-page: 160 year: 2019 publication-title: Acta Biomater. – volume: 13 start-page: 7037 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – volume: 55 start-page: 122 year: 2001 publication-title: Microsc. Res. Tech. – volume: 92 start-page: 563 year: 1978 publication-title: Eur. J. Biochem. – volume: 7 start-page: 1084 year: 2011 publication-title: Acta Biomater. – volume: 30 start-page: 30 year: 2019 publication-title: J. Mater. Sci.: Mater. Med. – volume: 60 start-page: 632 year: 1995 publication-title: Int. J. Cancer – volume: 4 start-page: 203 year: 2008 publication-title: Organogenesis – volume: 21 start-page: 1505 year: 2002 publication-title: EMBO J. – ident: e_1_2_8_77_1 doi: 10.1016/j.actbio.2010.10.022 – ident: e_1_2_8_81_1 doi: 10.1016/j.abb.2018.10.010 – ident: e_1_2_8_68_1 doi: 10.1111/j.1755-148X.2009.00590.x – ident: e_1_2_8_1_1 doi: 10.1002/jemt.1163 – ident: e_1_2_8_22_1 doi: 10.1002/adhm.201800560 – ident: e_1_2_8_27_1 doi: 10.1111/j.1432-1033.1978.tb12778.x – ident: e_1_2_8_18_1 doi: 10.3390/ma3031863 – ident: e_1_2_8_6_1 doi: 10.1038/nature17040 – ident: e_1_2_8_114_1 doi: 10.1007/s10337-011-1979-5 – ident: e_1_2_8_84_1 doi: 10.1016/j.cellsig.2007.05.013 – ident: e_1_2_8_101_1 doi: 10.1002/adhm.202101989 – ident: e_1_2_8_8_1 doi: 10.1002/adhm.202000895 – ident: e_1_2_8_85_1 doi: 10.1002/ijc.2910600511 – ident: e_1_2_8_51_1 doi: 10.1016/j.biomaterials.2004.02.052 – ident: e_1_2_8_15_1 doi: 10.1038/s41551-020-0566-1 – ident: e_1_2_8_4_1 doi: 10.1002/adhm.202001537 – start-page: 266 volume-title: Lehrbuch Lymphologie year: 2010 ident: e_1_2_8_69_1 contributor: fullname: Kaiserling E. – ident: e_1_2_8_70_1 doi: 10.1146/annurev.bi.59.070190.004201 – ident: e_1_2_8_55_1 doi: 10.1371/journal.pone.0005798 – ident: e_1_2_8_78_1 doi: 10.3390/biom11101538 – ident: e_1_2_8_119_1 doi: 10.1038/nprot.2006.236 – ident: e_1_2_8_45_1 doi: 10.1063/5.0031475 – ident: e_1_2_8_108_1 doi: 10.1016/j.biomaterials.2016.04.036 – ident: e_1_2_8_28_1 doi: 10.1016/j.actbio.2018.07.020 – ident: e_1_2_8_54_1 doi: 10.1038/s41598-019-41985-6 – ident: e_1_2_8_103_1 doi: 10.1002/jbm.b.34979 – ident: e_1_2_8_46_1 doi: 10.18063/ijb.v8i4.606 – ident: e_1_2_8_65_1 doi: 10.1002/dvdy.10163 – ident: e_1_2_8_102_1 doi: 10.1016/j.biomaterials.2011.04.066 – ident: e_1_2_8_120_1 doi: 10.3390/cells11061055 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.0c16714 – ident: e_1_2_8_56_1 doi: 10.1242/jcs.163774 – ident: e_1_2_8_90_1 doi: 10.1038/428138a – ident: e_1_2_8_110_1 doi: 10.1007/BF02192855 – ident: e_1_2_8_94_1 doi: 10.1002/adfm.202109810 – ident: e_1_2_8_72_1 doi: 10.3389/fcell.2021.675080 – ident: e_1_2_8_124_1 doi: 10.1002/adma.202204301 – ident: e_1_2_8_49_1 doi: 10.1101/gad.303776.117 – ident: e_1_2_8_95_1 doi: 10.1021/acsbiomaterials.2c00370 – ident: e_1_2_8_43_1 doi: 10.1182/blood-2008-03-145789 – ident: e_1_2_8_26_1 doi: 10.1038/nprot.2006.202 – ident: e_1_2_8_99_1 doi: 10.1002/adhm.201700254 – ident: e_1_2_8_38_1 doi: 10.1016/S0002-9440(10)65285-6 – ident: e_1_2_8_63_1 doi: 10.1161/ATVBAHA.107.158014 – ident: e_1_2_8_82_1 doi: 10.1007/s10856-019-6232-z – ident: e_1_2_8_9_1 doi: 10.3389/fcell.2021.639299 – volume: 2012 year: 2012 ident: e_1_2_8_58_1 publication-title: Int. J. Vasc. Med. contributor: fullname: Murakami M. – ident: e_1_2_8_109_1 doi: 10.1002/9780470559277.ch110148 – ident: e_1_2_8_35_1 doi: 10.1089/ten.tea.2008.0550 – ident: e_1_2_8_2_1 doi: 10.1016/j.cell.2020.06.039 – ident: e_1_2_8_86_1 doi: 10.4161/org.4.4.6926 – ident: e_1_2_8_16_1 doi: 10.1039/D0LC00099J – ident: e_1_2_8_75_1 doi: 10.1016/j.biomaterials.2009.09.039 – ident: e_1_2_8_14_1 doi: 10.1038/s41596-019-0144-8 – ident: e_1_2_8_3_1 doi: 10.1016/j.biomaterials.2015.11.027 – ident: e_1_2_8_121_1 doi: 10.1093/nar/29.9.e45 – ident: e_1_2_8_31_1 doi: 10.1242/dmm.004077 – ident: e_1_2_8_52_1 doi: 10.1016/j.molmed.2021.07.003 – ident: e_1_2_8_30_1 doi: 10.1038/nrc2544 – ident: e_1_2_8_87_1 doi: 10.1016/0014-4827(89)90428-X – ident: e_1_2_8_37_1 doi: 10.3390/gels7040255 – ident: e_1_2_8_112_1 doi: 10.1039/C5RA14423J – ident: e_1_2_8_47_1 doi: 10.1242/dev.125.9.1591 – ident: e_1_2_8_76_1 doi: 10.1016/j.biomaterials.2010.10.007 – ident: e_1_2_8_104_1 doi: 10.3109/02652049509051126 – ident: e_1_2_8_10_1 doi: 10.1126/scitranslmed.3006894 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.2101931118 – ident: e_1_2_8_92_1 doi: 10.1038/nrm2125 – ident: e_1_2_8_34_1 doi: 10.1089/ten.tea.2009.0491 – ident: e_1_2_8_62_1 doi: 10.3892/etm.2016.3557 – ident: e_1_2_8_50_1 doi: 10.4161/cam.4.3.11747 – ident: e_1_2_8_21_1 doi: 10.1016/0142-9612(92)90153-F – ident: e_1_2_8_5_1 doi: 10.1016/j.eng.2020.03.019 – ident: e_1_2_8_19_1 doi: 10.1016/j.mtbio.2021.100098 – volume: 3 start-page: 71 year: 2013 ident: e_1_2_8_122_1 publication-title: Biostat. Bioinf. Biomath. contributor: fullname: Rao X. – ident: e_1_2_8_128_2 doi: 10.1093/nar/gkab314 – ident: e_1_2_8_66_1 doi: 10.1007/BF00316003 – ident: e_1_2_8_117_1 doi: 10.1016/j.xpro.2022.101172 – volume: 119 start-page: 2795 year: 2009 ident: e_1_2_8_41_1 publication-title: J. Clin. Invest. contributor: fullname: Paquet‐Fifield S. – ident: e_1_2_8_91_1 doi: 10.1155/2012/875742 – ident: e_1_2_8_126_1 doi: 10.1016/j.biomaterials.2021.120779 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.202206767 – ident: e_1_2_8_53_1 doi: 10.1016/j.stem.2018.02.009 – ident: e_1_2_8_89_1 doi: 10.1002/advs.202001419 – ident: e_1_2_8_116_1 doi: 10.1126/science.276.5317.1423 – ident: e_1_2_8_60_1 doi: 10.1074/jbc.M011004200 – ident: e_1_2_8_93_1 doi: 10.1089/ten.tea.2014.0443 – ident: e_1_2_8_107_1 doi: 10.1126/science.aav9051 – ident: e_1_2_8_111_1 doi: 10.1006/jmra.1995.1047 – ident: e_1_2_8_57_1 doi: 10.1016/j.devcel.2015.06.004 – ident: e_1_2_8_96_1 doi: 10.1002/adfm.202202430 – ident: e_1_2_8_113_1 doi: 10.1073/pnas.1101046108 – ident: e_1_2_8_36_1 doi: 10.1016/j.addr.2003.08.004 – ident: e_1_2_8_127_1 doi: 10.1177/20417314221088513 – ident: e_1_2_8_59_1 doi: 10.1083/jcb.144.4.789 – ident: e_1_2_8_74_1 doi: 10.1002/term.292 – ident: e_1_2_8_80_1 doi: 10.1186/1479-5876-7-41 – ident: e_1_2_8_97_1 doi: 10.1002/smll.202200180 – ident: e_1_2_8_123_1 doi: 10.1155/2017/6209849 – ident: e_1_2_8_25_1 doi: 10.1007/s13758-012-0025-y – ident: e_1_2_8_73_1 doi: 10.1152/ajpcell.00156.2019 – volume: 31 start-page: 1 year: 2021 ident: e_1_2_8_118_1 publication-title: Adv. Funct. Mater. contributor: fullname: Guo Y. – ident: e_1_2_8_100_1 doi: 10.1002/adma.202109194 – ident: e_1_2_8_64_1 doi: 10.1101/gad.1727208 – ident: e_1_2_8_20_1 doi: 10.1016/S0142-9612(03)00273-4 – ident: e_1_2_8_67_1 doi: 10.3390/cells10051008 – start-page: 1 volume-title: Structure and Function of Collagen Type year: 1987 ident: e_1_2_8_71_1 contributor: fullname: Kühn K. – ident: e_1_2_8_7_1 doi: 10.1084/jem.20171868 – ident: e_1_2_8_79_1 doi: 10.1073/pnas.0505047102 – ident: e_1_2_8_115_1 doi: 10.1161/01.RES.88.6.623 – ident: e_1_2_8_23_1 doi: 10.1002/advs.202201483 – ident: e_1_2_8_13_1 doi: 10.1007/s40883-018-0054-2 – ident: e_1_2_8_128_1 doi: 10.1074/jbc.M401374200 – ident: e_1_2_8_105_1 doi: 10.1021/acsbiomaterials.6b00378 – ident: e_1_2_8_40_1 doi: 10.3389/fcell.2018.00133 – ident: e_1_2_8_32_1 doi: 10.1080/15476278.2015.1019687 – ident: e_1_2_8_11_1 doi: 10.1002/bit.21185 – ident: e_1_2_8_98_1 doi: 10.1016/j.actbio.2019.02.054 – ident: e_1_2_8_29_1 doi: 10.1016/j.actbio.2010.07.004 – ident: e_1_2_8_61_1 doi: 10.1093/cvr/cvw175 – ident: e_1_2_8_44_1 doi: 10.1016/j.devcel.2021.01.018 – ident: e_1_2_8_48_1 doi: 10.3389/fphys.2022.846936 – ident: e_1_2_8_83_1 doi: 10.1371/journal.pone.0074686 – ident: e_1_2_8_42_1 doi: 10.1093/emboj/21.7.1505 – ident: e_1_2_8_125_1 doi: 10.1088/1758-5090/ac6b58 – ident: e_1_2_8_88_1 doi: 10.3389/fbioe.2017.00025 – ident: e_1_2_8_33_1 doi: 10.1182/blood-2011-02-338426 – ident: e_1_2_8_39_1 doi: 10.1093/emboj/20.17.4762 – volume: 6 start-page: 1 year: 2020 ident: e_1_2_8_106_1 publication-title: Int. J. Bioprinting doi: 10.18063/ijb.v6i3.270 contributor: fullname: Osidak E. O. |
SSID | ssj0009606 |
Score | 2.5042872 |
Snippet | Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that... Abstract Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2209476 |
SubjectTerms | Bioengineering Blood blood vasculature Blood vessels Capillaries Collagen Collagen - chemistry Crosslinking Endothelial Cells Factor XIII Fibroblasts Humans Hydrogels Hydrogels - chemistry lymphatic vasculature Materials science Microgels Neovascularization, Physiologic Peptides Peptides - chemistry Stiffness Tethering Tissue Engineering Tissue Scaffolds - chemistry Vascular Endothelial Growth Factor A vascularization |
Title | Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Co‐Engineering of Blood and Lymphatic Vasculature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202209476 https://www.ncbi.nlm.nih.gov/pubmed/36724374 https://www.proquest.com/docview/2803210541 https://search.proquest.com/docview/2771942312 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LnoQ364vIgieim2SJu1xdVdUXBFxxVtJTQrC0sruKq4nL979jf4SZ9Ld7i4eBC-loUmndDKZb_L4hpBDyyXA0JB7QhnjCS6tl6aaeyHqHyxMB-4Uf-tanrfF5UP4MHGKv-SHqCbc0DLceI0GrtPe8Zg0VBvHG8QYBChKzpJ5pI1B9nwmbsa0u9Jl18TVPi-WIhrRNvrseLr9tFv6hTWnoavzPWfLZGkIGmm91PIKmbH5KlmcoBJcI5_N_H3g6Fd1pzOgpygFF2etoTg3AKNGTnWPaooTZFCtY2kL2fnfKKBWepHT-6d-t6A6N2XhtYB23x9fE0JokdET3Ofual0NoB-gPHpfbmbFpYh10j5r3p2ee8MUC94jeC_paeVH1hgfhpko0kwYX0cKfHYsDTLXQ_SY-QZQoY0fFY-MzIwSqeIhB1QCN4pvkLm8yO0WoaHPTAbxZKzTQFjLIhOFKoCXZynLBGc1cjT6w8lzyaSRlJzJLEFdJJUuamR3pIBkaFG9BLNoQXgaiqBGDqrHYAu4wKFzW7xAHaWCGPBhAMI2S8VVorhUyL0oaoQ5Tf7xDUm90apXpe3_NNohC5ibvtzms0vm-t0XuwcIpp_uu04K18Yt-wGtqOdm |
link.rule.ids | 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHoDzKlkKNhMQpbWI7dnJc-tAWdntAbcUtctaOhLpKULuL2J566b2_kV_CjL1Ju3BAgluc2PFjPPZne_wNwDsnFMLQVERSWxtJoVxUlkZEKckfNcwk_hb_6FANjuXHL2lrTUh3YQI_RLfhRprhx2tScNqQ3r5hDTXWEwdxjisUre7CPdR5Qd4bdj_fMEgRQPd0eyKNciWzlrcx5tvL6ZfnpT_A5jJ29ZPP_mMo22IHm5PTrdm03Bpf_Mbo-F_1egKPFtCU9UNfWoU7rn4KD28RFj6Dq736Yu5JXs1kMmc7VBU6AnaW0Q4Ejk01M-fMMNqGw2gTx0bkA-AHQ2zMDmp28nV61jBT2xD43mC6n5fXtzJhTcU-kDW9jzWcY2-j_NhJMJmlA4_ncLy_d7QziBaOHKIxzpEqMjrOnLUxDmZZZri0sck0IoNcWeLHxzVqFVvEni4fa5FZVVktSy1SgdgHH7R4ASt1U7uXwNKY2wpXrbkpE-kcz2yW6gR_XpW8koL34H0rxuJb4OsoAjMzL6hhi65he7DRSrlY6O15Qb66cBGcyqQHb7vPqHF0jGJq18wwjtZJjig0wczWQu_oshJKE8Oj7AH3Mv5LGYr-7qjfhdb_JdEm3B8cjYbF8ODw0yt4gO9FMCzagJXp2cy9Rsw0Ld94rfgFJZQL0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkKpyoPTJttC6UqWeAont2MlxC6ygZVFVFcQtctaOVHWVINhFLCcuvfc39pd0xt4Nu-2hUnuLEzvj19jf2OPPAG-dUAhDUxFJbW0khXJRWRoRpdT-qGEm8af4-8fq4ER-OEvP5k7xB36IdsGNNMOP16Tg57bauSMNNdbzBnGOBopW92BFKoS_BIs-3xFIET73bHsijXIlsxltY8x3FtMvTkt_YM1F6Ornnt5DMLNcB5eTb9vjUbk9uPmN0PF_irUOa1NgyrqhJz2CJVc_htU5usIn8H2_vpl4ilczHE7YLpWENoCdZbT-gCNTzcwlM4wW4TDa0LE-3QBwzRAZs8OanX4dXTTM1DYErhpM9_P2x5wQ1lTsPfnS-1hHE-xrJI-dBodZ2u54Cie9_S-7B9H0GodogDOkioyOM2dtjENZlhkubWwyjbggV5bY8dFCrWKLyNPlAy0yqyqrZalFKhD54IMWz2C5bmq3ASyNua3QZs1NmUjneGazVCf486rklRS8A-9mrVicB7aOIvAy84IqtmgrtgObs0Yuplp7WdBNXWgCpzLpwJv2M-obbaKY2jVjjKN1kiMGTVDY89A5WlFCaeJ3lB3gvon_koeiu9fvtqEX_5LoNdz_tNcrjg6PP76EB_haBK-iTVgeXYzdFgKmUfnK68Qv8doKgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatically+Crosslinked+Collagen+as+a+Versatile+Matrix+for+In+Vitro+and+In+Vivo+Co%E2%80%90Engineering+of+Blood+and+Lymphatic+Vasculature&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=R%C3%BCtsche%2C+Dominic&rft.au=Nanni%2C+Monica&rft.au=R%C3%BCdisser%2C+Simon&rft.au=Biedermann%2C+Thomas&rft.date=2023-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202209476&rft.externalDBID=10.1002%252Fadma.202209476&rft.externalDocID=ADMA202209476 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |