Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Co‐Engineering of Blood and Lymphatic Vasculature

Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 16; pp. e2209476 - n/a
Main Authors Rütsche, Dominic, Nanni, Monica, Rüdisser, Simon, Biedermann, Thomas, Zenobi‐Wong, Marcy
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative. A novel collagen biopolymer bearing enzyme‐recognizable crosslinkers is developed to rapidly produce bulk hydrogels exhibiting strong (lymph‐)angiogenic properties. Orthogonal crosslinking enables further modification of the collagen backbone. Using a second enzyme, the tethering of pro‐angiogenic QK‐peptides, the production of multimaterial scaffolds that enable spatially restricted vascularization as well as the biofabrication of annealed µ‐gels is demonstrated.
AbstractList Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA-mediated crosslinking enables the rapid co-engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro- and anti-angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co-engineering of mature micro- and meso-sized blood and lymphatic capillaries using a highly versatile collagen derivative.
Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative. A novel collagen biopolymer bearing enzyme‐recognizable crosslinkers is developed to rapidly produce bulk hydrogels exhibiting strong (lymph‐)angiogenic properties. Orthogonal crosslinking enables further modification of the collagen backbone. Using a second enzyme, the tethering of pro‐angiogenic QK‐peptides, the production of multimaterial scaffolds that enable spatially restricted vascularization as well as the biofabrication of annealed µ‐gels is demonstrated.
Abstract Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative.
Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA‐mediated crosslinking enables the rapid co‐engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro‐ and anti‐angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co‐engineering of mature micro‐ and meso‐sized blood and lymphatic capillaries using a highly versatile collagen derivative.
Author Rüdisser, Simon
Zenobi‐Wong, Marcy
Biedermann, Thomas
Nanni, Monica
Rütsche, Dominic
Author_xml – sequence: 1
  givenname: Dominic
  orcidid: 0000-0001-6394-201X
  surname: Rütsche
  fullname: Rütsche, Dominic
  organization: University Children's Hospital Zurich
– sequence: 2
  givenname: Monica
  orcidid: 0000-0001-5706-0053
  surname: Nanni
  fullname: Nanni, Monica
  organization: ETH Zurich
– sequence: 3
  givenname: Simon
  orcidid: 0000-0002-1107-6196
  surname: Rüdisser
  fullname: Rüdisser, Simon
  organization: ETH Zurich
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0002-6438-8791
  surname: Biedermann
  fullname: Biedermann, Thomas
  organization: University Children's Hospital Zurich
– sequence: 5
  givenname: Marcy
  orcidid: 0000-0002-8522-9909
  surname: Zenobi‐Wong
  fullname: Zenobi‐Wong, Marcy
  email: marcy.zenobi@hest.ethz.ch
  organization: ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36724374$$D View this record in MEDLINE/PubMed
BookMark eNqFkT9vFDEQxS0URC4HLSWyREOzx_jP2rvlcVwg0kU0cK3lrL3HBq992LuBTUVDz2fkk-DjQpBoqDyWfvNm5r0zdOKDtwg9JbAgAPSlNr1eUKAUai7FAzQjJSUFh7o8QTOoWVnUglen6CylawCoBYhH6JQJSTmTfIa-r_3t1Ouha7RzE17FkJLr_Cdr8Co4p3fWY52wxlsbU8acxZd6iN1X3IaILzzedkMMWHtz_NyE3Pfz24-133Xe2tj5HQ4tfuVCML-pzdTvPx7m4a1Ozej0MEb7GD1stUv2yd07Rx_O1-9Xb4vNuzcXq-WmaDhhotASKmsMMCmqSlNuQFeSClELQ0V2o-QtGCDC1o1klRGtkfxKspLRiuVCsjl6cdTdx_B5tGlQfZcam-_0NoxJUSlJzSkjNKPP_0Gvwxh93k7RChglUOad5mhxpJqDcdG2ah-7XsdJEVCHgNQhIHUfUG54dic7XvXW3ON_EslAfQS-ZK-n_8ip5evL5V_xX1IQnjo
CitedBy_id crossref_primary_10_1002_adhm_202303997
crossref_primary_10_3390_ijms24043744
crossref_primary_10_1002_mabi_202300213
crossref_primary_10_1089_lrb_2023_29139_fb
crossref_primary_10_1002_adma_202300636
crossref_primary_10_1186_s12951_023_02112_w
crossref_primary_10_1016_j_tibs_2024_04_003
Cites_doi 10.1016/j.actbio.2010.10.022
10.1016/j.abb.2018.10.010
10.1111/j.1755-148X.2009.00590.x
10.1002/jemt.1163
10.1002/adhm.201800560
10.1111/j.1432-1033.1978.tb12778.x
10.3390/ma3031863
10.1038/nature17040
10.1007/s10337-011-1979-5
10.1016/j.cellsig.2007.05.013
10.1002/adhm.202101989
10.1002/adhm.202000895
10.1002/ijc.2910600511
10.1016/j.biomaterials.2004.02.052
10.1038/s41551-020-0566-1
10.1002/adhm.202001537
10.1146/annurev.bi.59.070190.004201
10.1371/journal.pone.0005798
10.3390/biom11101538
10.1038/nprot.2006.236
10.1063/5.0031475
10.1016/j.biomaterials.2016.04.036
10.1016/j.actbio.2018.07.020
10.1038/s41598-019-41985-6
10.1002/jbm.b.34979
10.18063/ijb.v8i4.606
10.1002/dvdy.10163
10.1016/j.biomaterials.2011.04.066
10.3390/cells11061055
10.1021/acsami.0c16714
10.1242/jcs.163774
10.1038/428138a
10.1007/BF02192855
10.1002/adfm.202109810
10.3389/fcell.2021.675080
10.1002/adma.202204301
10.1101/gad.303776.117
10.1021/acsbiomaterials.2c00370
10.1182/blood-2008-03-145789
10.1038/nprot.2006.202
10.1002/adhm.201700254
10.1016/S0002-9440(10)65285-6
10.1161/ATVBAHA.107.158014
10.1007/s10856-019-6232-z
10.3389/fcell.2021.639299
10.1002/9780470559277.ch110148
10.1089/ten.tea.2008.0550
10.1016/j.cell.2020.06.039
10.4161/org.4.4.6926
10.1039/D0LC00099J
10.1016/j.biomaterials.2009.09.039
10.1038/s41596-019-0144-8
10.1016/j.biomaterials.2015.11.027
10.1093/nar/29.9.e45
10.1242/dmm.004077
10.1016/j.molmed.2021.07.003
10.1038/nrc2544
10.1016/0014-4827(89)90428-X
10.3390/gels7040255
10.1039/C5RA14423J
10.1242/dev.125.9.1591
10.1016/j.biomaterials.2010.10.007
10.3109/02652049509051126
10.1126/scitranslmed.3006894
10.1073/pnas.2101931118
10.1038/nrm2125
10.1089/ten.tea.2009.0491
10.3892/etm.2016.3557
10.4161/cam.4.3.11747
10.1016/0142-9612(92)90153-F
10.1016/j.eng.2020.03.019
10.1016/j.mtbio.2021.100098
10.1093/nar/gkab314
10.1007/BF00316003
10.1016/j.xpro.2022.101172
10.1155/2012/875742
10.1016/j.biomaterials.2021.120779
10.1002/adfm.202206767
10.1016/j.stem.2018.02.009
10.1002/advs.202001419
10.1126/science.276.5317.1423
10.1074/jbc.M011004200
10.1089/ten.tea.2014.0443
10.1126/science.aav9051
10.1006/jmra.1995.1047
10.1016/j.devcel.2015.06.004
10.1002/adfm.202202430
10.1073/pnas.1101046108
10.1016/j.addr.2003.08.004
10.1177/20417314221088513
10.1083/jcb.144.4.789
10.1002/term.292
10.1186/1479-5876-7-41
10.1002/smll.202200180
10.1155/2017/6209849
10.1007/s13758-012-0025-y
10.1152/ajpcell.00156.2019
10.1002/adma.202109194
10.1101/gad.1727208
10.1016/S0142-9612(03)00273-4
10.3390/cells10051008
10.1084/jem.20171868
10.1073/pnas.0505047102
10.1161/01.RES.88.6.623
10.1002/advs.202201483
10.1007/s40883-018-0054-2
10.1074/jbc.M401374200
10.1021/acsbiomaterials.6b00378
10.3389/fcell.2018.00133
10.1080/15476278.2015.1019687
10.1002/bit.21185
10.1016/j.actbio.2019.02.054
10.1016/j.actbio.2010.07.004
10.1093/cvr/cvw175
10.1016/j.devcel.2021.01.018
10.3389/fphys.2022.846936
10.1371/journal.pone.0074686
10.1093/emboj/21.7.1505
10.1088/1758-5090/ac6b58
10.3389/fbioe.2017.00025
10.1182/blood-2011-02-338426
10.1093/emboj/20.17.4762
10.18063/ijb.v6i3.270
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202209476
DatabaseName Wiley Open Access
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202209476
36724374
ADMA202209476
Genre article
Journal Article
GrantInformation_xml – fundername: Gemeinnützige Stiftung Accentus
– fundername: Swiss National Science Foundation
  grantid: 205321_179012
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4136-a708edd037688a24d0a8726696d2600254f0d016e9c738d6fd74b73532834b773
IEDL.DBID 24P
ISSN 0935-9648
IngestDate Fri Aug 16 21:01:05 EDT 2024
Thu Oct 10 17:44:38 EDT 2024
Thu Sep 26 16:09:06 EDT 2024
Sat Sep 28 08:18:40 EDT 2024
Sat Aug 24 01:21:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords collagen
tissue engineering
lymphatic vasculature
vascularization
blood vasculature
Language English
License Attribution-NonCommercial
2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4136-a708edd037688a24d0a8726696d2600254f0d016e9c738d6fd74b73532834b773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5706-0053
0000-0002-1107-6196
0000-0002-6438-8791
0000-0001-6394-201X
0000-0002-8522-9909
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202209476
PMID 36724374
PQID 2803210541
PQPubID 2045203
PageCount 22
ParticipantIDs proquest_miscellaneous_2771942312
proquest_journals_2803210541
crossref_primary_10_1002_adma_202209476
pubmed_primary_36724374
wiley_primary_10_1002_adma_202209476_ADMA202209476
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 16
2013; 3
2011; 118
2019; 94
2020; 20
1990; 59
1991; 96
1997; 276
2009; 113
2009; 119
2013; 8
2003; 55
2018; 7
2018; 6
2018; 4
2018; 215
2005; 102
2011; 73
2008; 28
1987
2007; 8
2022; 34
2019; 317
2008; 22
2021; 273
2022; 32
2022; 2202430
2001; 55
2010; 3
2007; 1
2010; 4
1992; 2
2010; 6
2007; 19
2019; 9
2010; 31
2022; 110
2019; 30
2015; 128
2007; 96
2001; 29
2011; 4
2004; 428
2018; 22
2011; 3
2011; 5
2011; 7
2001; 20
2016; 12
2016; 99
2001; 276
2021; 56
2016; 2
2022; 3
2022; 8
2022; 9
2003; 24
2022; 13
2022; 14
2022; 11
2022; 18
2017; 5
2015; 34
2021; 27
2012; 2012
2004 2021; 279 49
1992; 13
2008; 4
2005; 26
2001; 88
2019; 365
2016; 78
2020; 7
2017; 31
2020; 6
2020; 4
1995; 60
2021; 31
2020; 9
2021; 118
2016; 111
2002; 225
1998; 125
2018; 77
2014; 6
2021; 9
1978; 92
2009; 22
2021; 7
2018; 660
2021; 5
2015; 5
2017; 2017
2010
1995; 12
2020; 182
2015; 11
2016; 529
1989; 183
2011; 32
1999; 144
2006; 1
1995; 112
2021; 13
2021; 10
2011; 108
2021; 11
2002; 21
2015; 21
2019
1999; 154
2009; 9
2009; 7
2009; 4
2012; 7
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
Paquet‐Fifield S. (e_1_2_8_41_1) 2009; 119
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Kühn K. (e_1_2_8_71_1) 1987
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_128_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Guo Y. (e_1_2_8_118_1) 2021; 31
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Osidak E. O. (e_1_2_8_106_1) 2020; 6
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Kaiserling E. (e_1_2_8_69_1) 2010
Murakami M. (e_1_2_8_58_1) 2012; 2012
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
Rao X. (e_1_2_8_122_1) 2013; 3
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 3
  start-page: 153
  year: 2011
  publication-title: Curr. Protoc. Chem. Biol.
– volume: 7
  start-page: 255
  year: 2021
  publication-title: Gels
– volume: 3
  year: 2022
  publication-title: STAR Protoc.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 529
  start-page: 316
  year: 2016
  publication-title: Nature
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 10
  start-page: 1008
  year: 2021
  publication-title: Cells
– volume: 31
  start-page: 226
  year: 2010
  publication-title: Biomaterials
– volume: 10
  year: 2021
  publication-title: Mater. Today Bio
– volume: 4
  start-page: 377
  year: 2010
  publication-title: Cell Adhes. Migr.
– volume: 14
  year: 2022
  publication-title: Biofabrication
– volume: 55
  start-page: 1631
  year: 2003
  publication-title: Adv. Drug Delivery Rev.
– volume: 5
  year: 2021
  publication-title: APL Bioeng.
– volume: 32
  start-page: 6045
  year: 2011
  publication-title: Biomaterials
– volume: 7
  start-page: 41
  year: 2009
  publication-title: J. Transl. Med.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 111
  start-page: 310
  year: 2016
  publication-title: Cardiovasc. Res.
– volume: 6
  year: 2014
  publication-title: Sci. Transl. Med.
– volume: 11
  start-page: 1538
  year: 2021
  publication-title: Biomolecules
– volume: 1
  start-page: 1559
  year: 2006
  publication-title: Nat. Protoc.
– start-page: 1
  year: 1987
  end-page: 42
– volume: 112
  start-page: 275
  year: 1995
  publication-title: J. Magn. Reson., Ser. A
– volume: 9
  year: 2021
  publication-title: Front. Cell Dev. Biol.
– volume: 2
  start-page: 2176
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 273
  year: 2021
  publication-title: Biomaterials
– volume: 279 49
  year: 2004 2021
  publication-title: J. Biol. Chem. Nucleic Acids Res.
– year: 2019
– volume: 31
  start-page: 1615
  year: 2017
  publication-title: Genes Dev.
– volume: 125
  start-page: 1591
  year: 1998
  publication-title: Development
– volume: 4
  year: 2009
  publication-title: PLoS One
– volume: 3
  start-page: 71
  year: 2013
  publication-title: Biostat. Bioinf. Biomath.
– volume: 20
  start-page: 4762
  year: 2001
  publication-title: EMBO J.
– volume: 11
  start-page: 1
  year: 2015
  publication-title: Organogenesis
– volume: 8
  start-page: 221
  year: 2007
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 99
  start-page: 47
  year: 2016
  publication-title: Biomaterials
– volume: 78
  start-page: 129
  year: 2016
  publication-title: Biomaterials
– volume: 1
  start-page: 2876
  year: 2007
  publication-title: Nat. Protoc.
– volume: 6
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 365
  start-page: 482
  year: 2019
  publication-title: Science
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 21
  start-page: 1055
  year: 2015
  publication-title: Tissue Eng., Part A
– volume: 8
  start-page: 3871
  year: 2022
  publication-title: ACS Biomater. Sci. Eng.
– volume: 2
  start-page: 661
  year: 1992
  publication-title: J. Biomol. NMR
– volume: 16
  start-page: 269
  year: 2010
  publication-title: Tissue Eng., Part A
– volume: 88
  start-page: 623
  year: 2001
  publication-title: Circ. Res.
– volume: 12
  start-page: 1639
  year: 2016
  publication-title: Exp. Ther. Med.
– volume: 34
  start-page: 5
  year: 2015
  publication-title: Dev. Cell
– volume: 5
  start-page: 69
  year: 2011
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 32
  start-page: 1280
  year: 2011
  publication-title: Biomaterials
– volume: 24
  start-page: 4001
  year: 2003
  publication-title: Biomaterials
– volume: 6
  start-page: 133
  year: 2018
  publication-title: Front. Cell Dev. Biol.
– volume: 128
  start-page: 2236
  year: 2015
  publication-title: J. Cell Sci.
– volume: 13
  year: 2022
  publication-title: J. Tissue Eng.
– volume: 660
  start-page: 72
  year: 2018
  publication-title: Arch. Biochem. Biophys.
– volume: 2012
  year: 2012
  publication-title: Biochem. Res. Int.
– volume: 6
  start-page: 4657
  year: 2010
  publication-title: Acta Biomater.
– volume: 22
  start-page: 3282
  year: 2008
  publication-title: Genes Dev.
– volume: 119
  start-page: 2795
  year: 2009
  publication-title: J. Clin. Invest.
– volume: 19
  start-page: 2003
  year: 2007
  publication-title: Cell Signal
– volume: 3
  start-page: 1863
  year: 2010
  publication-title: Materials
– volume: 102
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 96
  start-page: 167
  year: 2007
  publication-title: Biotechnol. Bioeng.
– volume: 9
  start-page: 5437
  year: 2019
  publication-title: Sci. Rep.
– volume: 110
  start-page: 1206
  year: 2022
  publication-title: J. Biomed. Mater. Res., Part B
– volume: 73
  start-page: 889
  year: 2011
  publication-title: Chromatographia
– volume: 215
  start-page: 35
  year: 2018
  publication-title: J. Exp. Med.
– volume: 4
  start-page: 916
  year: 2020
  publication-title: Nat. Biomed. Eng.
– volume: 59
  start-page: 837
  year: 1990
  publication-title: Annu. Rev. Biochem.
– volume: 22
  start-page: 601
  year: 2009
  publication-title: Pigm. Cell Melanoma Res.
– volume: 317
  year: 2019
  publication-title: Am. J. Physiol.: Cell Physiol.
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 56
  start-page: 406
  year: 2021
  publication-title: Dev. Cell
– volume: 9
  start-page: 108
  year: 2009
  publication-title: Nat. Rev. Cancer
– volume: 7
  start-page: 832
  year: 2021
  publication-title: Engineering
– volume: 22
  start-page: 340
  year: 2018
  publication-title: Cell Stem Cell
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 108
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 225
  start-page: 351
  year: 2002
  publication-title: Dev. Dyn.
– volume: 11
  start-page: 1055
  year: 2022
  publication-title: Cells
– volume: 29
  start-page: 45e
  year: 2001
  publication-title: Nucleic Acids Res.
– volume: 113
  start-page: 1856
  year: 2009
  publication-title: Blood
– volume: 28
  start-page: 223
  year: 2008
  publication-title: Arterioscler., Thromb., Vasc. Biol.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 12
  start-page: 49
  year: 1995
  publication-title: J. Microencapsulation
– volume: 4
  start-page: 165
  year: 2011
  publication-title: Dis. Models Mech.
– volume: 13
  start-page: 1017
  year: 1992
  publication-title: Biomaterials
– volume: 8
  start-page: 606
  year: 2022
  publication-title: Int. J. Bioprint.
– volume: 5
  start-page: 25
  year: 2017
  publication-title: Front. Bioeng. Biotechnol.
– volume: 20
  start-page: 1586
  year: 2020
  publication-title: Lab Chip
– volume: 31
  start-page: 1
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 120
  year: 2018
  publication-title: Regener. Eng. Transl. Med.
– volume: 96
  start-page: 449
  year: 1991
  publication-title: Histochemistry
– volume: 183
  start-page: 179
  year: 1989
  publication-title: Exp. Cell Res.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2202430
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 433
  year: 2005
  publication-title: Biomaterials
– volume: 13
  year: 2022
  publication-title: Front. Physiol.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 154
  start-page: 385
  year: 1999
  publication-title: Am. J. Pathol.
– volume: 276
  start-page: 1423
  year: 1997
  publication-title: Science
– volume: 118
  start-page: 4740
  year: 2011
  publication-title: Blood
– volume: 6
  start-page: 1
  year: 2020
  publication-title: Int. J. Bioprinting
– start-page: 266
  year: 2010
  end-page: 320
– volume: 428
  start-page: 138
  year: 2004
  publication-title: Nature
– volume: 7
  start-page: 25
  year: 2012
  publication-title: Biointerphases
– volume: 77
  start-page: 182
  year: 2018
  publication-title: Acta Biomater.
– volume: 2017
  year: 2017
  publication-title: J. Oncol.
– volume: 2012
  year: 2012
  publication-title: Int. J. Vasc. Med.
– volume: 27
  start-page: 955
  year: 2021
  publication-title: Trends Mol. Med.
– volume: 144
  start-page: 789
  year: 1999
  publication-title: J. Cell Biol.
– volume: 276
  year: 2001
  publication-title: J. Biol. Chem.
– volume: 182
  start-page: 270
  year: 2020
  publication-title: Cell
– volume: 16
  start-page: 585
  year: 2010
  publication-title: Tissue Eng., Part A
– volume: 94
  start-page: 160
  year: 2019
  publication-title: Acta Biomater.
– volume: 13
  start-page: 7037
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 55
  start-page: 122
  year: 2001
  publication-title: Microsc. Res. Tech.
– volume: 92
  start-page: 563
  year: 1978
  publication-title: Eur. J. Biochem.
– volume: 7
  start-page: 1084
  year: 2011
  publication-title: Acta Biomater.
– volume: 30
  start-page: 30
  year: 2019
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 60
  start-page: 632
  year: 1995
  publication-title: Int. J. Cancer
– volume: 4
  start-page: 203
  year: 2008
  publication-title: Organogenesis
– volume: 21
  start-page: 1505
  year: 2002
  publication-title: EMBO J.
– ident: e_1_2_8_77_1
  doi: 10.1016/j.actbio.2010.10.022
– ident: e_1_2_8_81_1
  doi: 10.1016/j.abb.2018.10.010
– ident: e_1_2_8_68_1
  doi: 10.1111/j.1755-148X.2009.00590.x
– ident: e_1_2_8_1_1
  doi: 10.1002/jemt.1163
– ident: e_1_2_8_22_1
  doi: 10.1002/adhm.201800560
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1432-1033.1978.tb12778.x
– ident: e_1_2_8_18_1
  doi: 10.3390/ma3031863
– ident: e_1_2_8_6_1
  doi: 10.1038/nature17040
– ident: e_1_2_8_114_1
  doi: 10.1007/s10337-011-1979-5
– ident: e_1_2_8_84_1
  doi: 10.1016/j.cellsig.2007.05.013
– ident: e_1_2_8_101_1
  doi: 10.1002/adhm.202101989
– ident: e_1_2_8_8_1
  doi: 10.1002/adhm.202000895
– ident: e_1_2_8_85_1
  doi: 10.1002/ijc.2910600511
– ident: e_1_2_8_51_1
  doi: 10.1016/j.biomaterials.2004.02.052
– ident: e_1_2_8_15_1
  doi: 10.1038/s41551-020-0566-1
– ident: e_1_2_8_4_1
  doi: 10.1002/adhm.202001537
– start-page: 266
  volume-title: Lehrbuch Lymphologie
  year: 2010
  ident: e_1_2_8_69_1
  contributor:
    fullname: Kaiserling E.
– ident: e_1_2_8_70_1
  doi: 10.1146/annurev.bi.59.070190.004201
– ident: e_1_2_8_55_1
  doi: 10.1371/journal.pone.0005798
– ident: e_1_2_8_78_1
  doi: 10.3390/biom11101538
– ident: e_1_2_8_119_1
  doi: 10.1038/nprot.2006.236
– ident: e_1_2_8_45_1
  doi: 10.1063/5.0031475
– ident: e_1_2_8_108_1
  doi: 10.1016/j.biomaterials.2016.04.036
– ident: e_1_2_8_28_1
  doi: 10.1016/j.actbio.2018.07.020
– ident: e_1_2_8_54_1
  doi: 10.1038/s41598-019-41985-6
– ident: e_1_2_8_103_1
  doi: 10.1002/jbm.b.34979
– ident: e_1_2_8_46_1
  doi: 10.18063/ijb.v8i4.606
– ident: e_1_2_8_65_1
  doi: 10.1002/dvdy.10163
– ident: e_1_2_8_102_1
  doi: 10.1016/j.biomaterials.2011.04.066
– ident: e_1_2_8_120_1
  doi: 10.3390/cells11061055
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.0c16714
– ident: e_1_2_8_56_1
  doi: 10.1242/jcs.163774
– ident: e_1_2_8_90_1
  doi: 10.1038/428138a
– ident: e_1_2_8_110_1
  doi: 10.1007/BF02192855
– ident: e_1_2_8_94_1
  doi: 10.1002/adfm.202109810
– ident: e_1_2_8_72_1
  doi: 10.3389/fcell.2021.675080
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.202204301
– ident: e_1_2_8_49_1
  doi: 10.1101/gad.303776.117
– ident: e_1_2_8_95_1
  doi: 10.1021/acsbiomaterials.2c00370
– ident: e_1_2_8_43_1
  doi: 10.1182/blood-2008-03-145789
– ident: e_1_2_8_26_1
  doi: 10.1038/nprot.2006.202
– ident: e_1_2_8_99_1
  doi: 10.1002/adhm.201700254
– ident: e_1_2_8_38_1
  doi: 10.1016/S0002-9440(10)65285-6
– ident: e_1_2_8_63_1
  doi: 10.1161/ATVBAHA.107.158014
– ident: e_1_2_8_82_1
  doi: 10.1007/s10856-019-6232-z
– ident: e_1_2_8_9_1
  doi: 10.3389/fcell.2021.639299
– volume: 2012
  year: 2012
  ident: e_1_2_8_58_1
  publication-title: Int. J. Vasc. Med.
  contributor:
    fullname: Murakami M.
– ident: e_1_2_8_109_1
  doi: 10.1002/9780470559277.ch110148
– ident: e_1_2_8_35_1
  doi: 10.1089/ten.tea.2008.0550
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cell.2020.06.039
– ident: e_1_2_8_86_1
  doi: 10.4161/org.4.4.6926
– ident: e_1_2_8_16_1
  doi: 10.1039/D0LC00099J
– ident: e_1_2_8_75_1
  doi: 10.1016/j.biomaterials.2009.09.039
– ident: e_1_2_8_14_1
  doi: 10.1038/s41596-019-0144-8
– ident: e_1_2_8_3_1
  doi: 10.1016/j.biomaterials.2015.11.027
– ident: e_1_2_8_121_1
  doi: 10.1093/nar/29.9.e45
– ident: e_1_2_8_31_1
  doi: 10.1242/dmm.004077
– ident: e_1_2_8_52_1
  doi: 10.1016/j.molmed.2021.07.003
– ident: e_1_2_8_30_1
  doi: 10.1038/nrc2544
– ident: e_1_2_8_87_1
  doi: 10.1016/0014-4827(89)90428-X
– ident: e_1_2_8_37_1
  doi: 10.3390/gels7040255
– ident: e_1_2_8_112_1
  doi: 10.1039/C5RA14423J
– ident: e_1_2_8_47_1
  doi: 10.1242/dev.125.9.1591
– ident: e_1_2_8_76_1
  doi: 10.1016/j.biomaterials.2010.10.007
– ident: e_1_2_8_104_1
  doi: 10.3109/02652049509051126
– ident: e_1_2_8_10_1
  doi: 10.1126/scitranslmed.3006894
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.2101931118
– ident: e_1_2_8_92_1
  doi: 10.1038/nrm2125
– ident: e_1_2_8_34_1
  doi: 10.1089/ten.tea.2009.0491
– ident: e_1_2_8_62_1
  doi: 10.3892/etm.2016.3557
– ident: e_1_2_8_50_1
  doi: 10.4161/cam.4.3.11747
– ident: e_1_2_8_21_1
  doi: 10.1016/0142-9612(92)90153-F
– ident: e_1_2_8_5_1
  doi: 10.1016/j.eng.2020.03.019
– ident: e_1_2_8_19_1
  doi: 10.1016/j.mtbio.2021.100098
– volume: 3
  start-page: 71
  year: 2013
  ident: e_1_2_8_122_1
  publication-title: Biostat. Bioinf. Biomath.
  contributor:
    fullname: Rao X.
– ident: e_1_2_8_128_2
  doi: 10.1093/nar/gkab314
– ident: e_1_2_8_66_1
  doi: 10.1007/BF00316003
– ident: e_1_2_8_117_1
  doi: 10.1016/j.xpro.2022.101172
– volume: 119
  start-page: 2795
  year: 2009
  ident: e_1_2_8_41_1
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Paquet‐Fifield S.
– ident: e_1_2_8_91_1
  doi: 10.1155/2012/875742
– ident: e_1_2_8_126_1
  doi: 10.1016/j.biomaterials.2021.120779
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.202206767
– ident: e_1_2_8_53_1
  doi: 10.1016/j.stem.2018.02.009
– ident: e_1_2_8_89_1
  doi: 10.1002/advs.202001419
– ident: e_1_2_8_116_1
  doi: 10.1126/science.276.5317.1423
– ident: e_1_2_8_60_1
  doi: 10.1074/jbc.M011004200
– ident: e_1_2_8_93_1
  doi: 10.1089/ten.tea.2014.0443
– ident: e_1_2_8_107_1
  doi: 10.1126/science.aav9051
– ident: e_1_2_8_111_1
  doi: 10.1006/jmra.1995.1047
– ident: e_1_2_8_57_1
  doi: 10.1016/j.devcel.2015.06.004
– ident: e_1_2_8_96_1
  doi: 10.1002/adfm.202202430
– ident: e_1_2_8_113_1
  doi: 10.1073/pnas.1101046108
– ident: e_1_2_8_36_1
  doi: 10.1016/j.addr.2003.08.004
– ident: e_1_2_8_127_1
  doi: 10.1177/20417314221088513
– ident: e_1_2_8_59_1
  doi: 10.1083/jcb.144.4.789
– ident: e_1_2_8_74_1
  doi: 10.1002/term.292
– ident: e_1_2_8_80_1
  doi: 10.1186/1479-5876-7-41
– ident: e_1_2_8_97_1
  doi: 10.1002/smll.202200180
– ident: e_1_2_8_123_1
  doi: 10.1155/2017/6209849
– ident: e_1_2_8_25_1
  doi: 10.1007/s13758-012-0025-y
– ident: e_1_2_8_73_1
  doi: 10.1152/ajpcell.00156.2019
– volume: 31
  start-page: 1
  year: 2021
  ident: e_1_2_8_118_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Guo Y.
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.202109194
– ident: e_1_2_8_64_1
  doi: 10.1101/gad.1727208
– ident: e_1_2_8_20_1
  doi: 10.1016/S0142-9612(03)00273-4
– ident: e_1_2_8_67_1
  doi: 10.3390/cells10051008
– start-page: 1
  volume-title: Structure and Function of Collagen Type
  year: 1987
  ident: e_1_2_8_71_1
  contributor:
    fullname: Kühn K.
– ident: e_1_2_8_7_1
  doi: 10.1084/jem.20171868
– ident: e_1_2_8_79_1
  doi: 10.1073/pnas.0505047102
– ident: e_1_2_8_115_1
  doi: 10.1161/01.RES.88.6.623
– ident: e_1_2_8_23_1
  doi: 10.1002/advs.202201483
– ident: e_1_2_8_13_1
  doi: 10.1007/s40883-018-0054-2
– ident: e_1_2_8_128_1
  doi: 10.1074/jbc.M401374200
– ident: e_1_2_8_105_1
  doi: 10.1021/acsbiomaterials.6b00378
– ident: e_1_2_8_40_1
  doi: 10.3389/fcell.2018.00133
– ident: e_1_2_8_32_1
  doi: 10.1080/15476278.2015.1019687
– ident: e_1_2_8_11_1
  doi: 10.1002/bit.21185
– ident: e_1_2_8_98_1
  doi: 10.1016/j.actbio.2019.02.054
– ident: e_1_2_8_29_1
  doi: 10.1016/j.actbio.2010.07.004
– ident: e_1_2_8_61_1
  doi: 10.1093/cvr/cvw175
– ident: e_1_2_8_44_1
  doi: 10.1016/j.devcel.2021.01.018
– ident: e_1_2_8_48_1
  doi: 10.3389/fphys.2022.846936
– ident: e_1_2_8_83_1
  doi: 10.1371/journal.pone.0074686
– ident: e_1_2_8_42_1
  doi: 10.1093/emboj/21.7.1505
– ident: e_1_2_8_125_1
  doi: 10.1088/1758-5090/ac6b58
– ident: e_1_2_8_88_1
  doi: 10.3389/fbioe.2017.00025
– ident: e_1_2_8_33_1
  doi: 10.1182/blood-2011-02-338426
– ident: e_1_2_8_39_1
  doi: 10.1093/emboj/20.17.4762
– volume: 6
  start-page: 1
  year: 2020
  ident: e_1_2_8_106_1
  publication-title: Int. J. Bioprinting
  doi: 10.18063/ijb.v6i3.270
  contributor:
    fullname: Osidak E. O.
SSID ssj0009606
Score 2.5042872
Snippet Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that...
Abstract Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2209476
SubjectTerms Bioengineering
Blood
blood vasculature
Blood vessels
Capillaries
Collagen
Collagen - chemistry
Crosslinking
Endothelial Cells
Factor XIII
Fibroblasts
Humans
Hydrogels
Hydrogels - chemistry
lymphatic vasculature
Materials science
Microgels
Neovascularization, Physiologic
Peptides
Peptides - chemistry
Stiffness
Tethering
Tissue Engineering
Tissue Scaffolds - chemistry
Vascular Endothelial Growth Factor A
vascularization
Title Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Co‐Engineering of Blood and Lymphatic Vasculature
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202209476
https://www.ncbi.nlm.nih.gov/pubmed/36724374
https://www.proquest.com/docview/2803210541
https://search.proquest.com/docview/2771942312
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LnoQ364vIgieim2SJu1xdVdUXBFxxVtJTQrC0sruKq4nL979jf4SZ9Ld7i4eBC-loUmndDKZb_L4hpBDyyXA0JB7QhnjCS6tl6aaeyHqHyxMB-4Uf-tanrfF5UP4MHGKv-SHqCbc0DLceI0GrtPe8Zg0VBvHG8QYBChKzpJ5pI1B9nwmbsa0u9Jl18TVPi-WIhrRNvrseLr9tFv6hTWnoavzPWfLZGkIGmm91PIKmbH5KlmcoBJcI5_N_H3g6Fd1pzOgpygFF2etoTg3AKNGTnWPaooTZFCtY2kL2fnfKKBWepHT-6d-t6A6N2XhtYB23x9fE0JokdET3Ofual0NoB-gPHpfbmbFpYh10j5r3p2ee8MUC94jeC_paeVH1hgfhpko0kwYX0cKfHYsDTLXQ_SY-QZQoY0fFY-MzIwSqeIhB1QCN4pvkLm8yO0WoaHPTAbxZKzTQFjLIhOFKoCXZynLBGc1cjT6w8lzyaSRlJzJLEFdJJUuamR3pIBkaFG9BLNoQXgaiqBGDqrHYAu4wKFzW7xAHaWCGPBhAMI2S8VVorhUyL0oaoQ5Tf7xDUm90apXpe3_NNohC5ibvtzms0vm-t0XuwcIpp_uu04K18Yt-wGtqOdm
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHoDzKlkKNhMQpbWI7dnJc-tAWdntAbcUtctaOhLpKULuL2J566b2_kV_CjL1Ju3BAgluc2PFjPPZne_wNwDsnFMLQVERSWxtJoVxUlkZEKckfNcwk_hb_6FANjuXHL2lrTUh3YQI_RLfhRprhx2tScNqQ3r5hDTXWEwdxjisUre7CPdR5Qd4bdj_fMEgRQPd0eyKNciWzlrcx5tvL6ZfnpT_A5jJ29ZPP_mMo22IHm5PTrdm03Bpf_Mbo-F_1egKPFtCU9UNfWoU7rn4KD28RFj6Dq736Yu5JXs1kMmc7VBU6AnaW0Q4Ejk01M-fMMNqGw2gTx0bkA-AHQ2zMDmp28nV61jBT2xD43mC6n5fXtzJhTcU-kDW9jzWcY2-j_NhJMJmlA4_ncLy_d7QziBaOHKIxzpEqMjrOnLUxDmZZZri0sck0IoNcWeLHxzVqFVvEni4fa5FZVVktSy1SgdgHH7R4ASt1U7uXwNKY2wpXrbkpE-kcz2yW6gR_XpW8koL34H0rxuJb4OsoAjMzL6hhi65he7DRSrlY6O15Qb66cBGcyqQHb7vPqHF0jGJq18wwjtZJjig0wczWQu_oshJKE8Oj7AH3Mv5LGYr-7qjfhdb_JdEm3B8cjYbF8ODw0yt4gO9FMCzagJXp2cy9Rsw0Ld94rfgFJZQL0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkKpyoPTJttC6UqWeAont2MlxC6ygZVFVFcQtctaOVHWVINhFLCcuvfc39pd0xt4Nu-2hUnuLEzvj19jf2OPPAG-dUAhDUxFJbW0khXJRWRoRpdT-qGEm8af4-8fq4ER-OEvP5k7xB36IdsGNNMOP16Tg57bauSMNNdbzBnGOBopW92BFKoS_BIs-3xFIET73bHsijXIlsxltY8x3FtMvTkt_YM1F6Ornnt5DMLNcB5eTb9vjUbk9uPmN0PF_irUOa1NgyrqhJz2CJVc_htU5usIn8H2_vpl4ilczHE7YLpWENoCdZbT-gCNTzcwlM4wW4TDa0LE-3QBwzRAZs8OanX4dXTTM1DYErhpM9_P2x5wQ1lTsPfnS-1hHE-xrJI-dBodZ2u54Cie9_S-7B9H0GodogDOkioyOM2dtjENZlhkubWwyjbggV5bY8dFCrWKLyNPlAy0yqyqrZalFKhD54IMWz2C5bmq3ASyNua3QZs1NmUjneGazVCf486rklRS8A-9mrVicB7aOIvAy84IqtmgrtgObs0Yuplp7WdBNXWgCpzLpwJv2M-obbaKY2jVjjKN1kiMGTVDY89A5WlFCaeJ3lB3gvon_koeiu9fvtqEX_5LoNdz_tNcrjg6PP76EB_haBK-iTVgeXYzdFgKmUfnK68Qv8doKgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatically+Crosslinked+Collagen+as+a+Versatile+Matrix+for+In+Vitro+and+In+Vivo+Co%E2%80%90Engineering+of+Blood+and+Lymphatic+Vasculature&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=R%C3%BCtsche%2C+Dominic&rft.au=Nanni%2C+Monica&rft.au=R%C3%BCdisser%2C+Simon&rft.au=Biedermann%2C+Thomas&rft.date=2023-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202209476&rft.externalDBID=10.1002%252Fadma.202209476&rft.externalDocID=ADMA202209476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon