3D Covalent Organic Framework with “the” Topology
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 20; pp. e2307666 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D3h symmetry with a tetragonal prism 8‐c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g−1. Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
The first‐ever COF featuring an unprecedented 3,8‐connected “the” net topology, TUS‐38, is crystallized with Im‐3 space group by linking a planar triangular 3‐c building block of D3h symmetry with a tetragonal prism 8‐c building block of D2h symmetry following reversible imine bonding. |
---|---|
AbstractList | Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D3h symmetry with a tetragonal prism 8‐c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g−1. Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D symmetry with a tetragonal prism 8-c node of D symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g . Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. Abstract Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D 3h symmetry with a tetragonal prism 8‐c node of D 2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g −1 . Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D3h symmetry with a tetragonal prism 8‐c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g−1. Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. The first‐ever COF featuring an unprecedented 3,8‐connected “the” net topology, TUS‐38, is crystallized with Im‐3 space group by linking a planar triangular 3‐c building block of D3h symmetry with a tetragonal prism 8‐c building block of D2h symmetry following reversible imine bonding. |
Author | Wen, Dan Ben, Teng Irie, Tsukasa Zhao, Yu Tomioka, Rina Sasaki, Kohki Negishi, Yuichi Das, Saikat Nozaki, Mika Mabuchi, Haruna |
Author_xml | – sequence: 1 givenname: Saikat orcidid: 0000-0001-7869-4231 surname: Das fullname: Das, Saikat organization: Tokyo University of Science – sequence: 2 givenname: Haruna surname: Mabuchi fullname: Mabuchi, Haruna organization: Tokyo University of Science – sequence: 3 givenname: Tsukasa orcidid: 0000-0001-5253-3341 surname: Irie fullname: Irie, Tsukasa organization: Tokyo University of Science – sequence: 4 givenname: Kohki orcidid: 0009-0009-4749-518X surname: Sasaki fullname: Sasaki, Kohki organization: Tokyo University of Science – sequence: 5 givenname: Mika orcidid: 0009-0006-6518-3815 surname: Nozaki fullname: Nozaki, Mika organization: Tokyo University of Science – sequence: 6 givenname: Rina orcidid: 0009-0009-4678-3745 surname: Tomioka fullname: Tomioka, Rina organization: Tokyo University of Science – sequence: 7 givenname: Dan surname: Wen fullname: Wen, Dan organization: Zhejiang Normal University – sequence: 8 givenname: Yu orcidid: 0000-0002-0281-0088 surname: Zhao fullname: Zhao, Yu email: zhaoyu@zjnu.edu.cn organization: Zhejiang Normal University – sequence: 9 givenname: Teng orcidid: 0000-0002-0847-330X surname: Ben fullname: Ben, Teng email: tengben@zjnu.edu.cn organization: Zhejiang Normal University – sequence: 10 givenname: Yuichi orcidid: 0000-0003-3965-1399 surname: Negishi fullname: Negishi, Yuichi email: negishi@rs.tus.ac.jp organization: Tokyo University of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38279566$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQQC0Eoh-wMqJILCwpZzt27BEVCkhFHSizlaR2m5LExW6puvWHwJ_rLyFVS5FYmO6Gd0-n10LHla00QhcYOhiA3PiyKDoECIWYc36EmphjGnJB5PFhx9BALe-nABSTKD5FDSpILBnnTcToXdC1H0mhq3kwcOOkyrOg55JSL617C5b5fBJs1p_zid6sv4KhndnCjldn6MQkhdfn-9lGr737Yfcx7A8enrq3_TCLMOWhEIykjGCq00xKGRlpIgMUIp2IaGSAcJ7IWDDGtBkxo0EAizNjJPCURlrQNrreeWfOvi-0n6sy95kuiqTSduEVkaRmYyqgRq_-oFO7cFX9naLAmKAgI1lTnR2VOeu900bNXF4mbqUwqG1QtQ2qDkHrg8u9dpGWenTAfwrWgNwBy7zQq3906uW53_-VfwNQgYNe |
CitedBy_id | crossref_primary_10_1002_ange_202404156 crossref_primary_10_1021_acsmaterialslett_4c00756 crossref_primary_10_1002_anie_202404156 |
Cites_doi | 10.1021/jacs.2c01037 10.1016/j.cej.2022.140121 10.1038/s43586-022-00181-z 10.1039/D0CS01569E 10.1126/science.aal1585 10.1039/D1SC00738F 10.1021/acs.accounts.2c00200 10.1021/jacs.0c11313 10.1126/science.1139915 10.1002/anie.202207043 10.1021/jacs.3c01070 10.1002/anie.202100434 10.1002/ange.202309026 10.1002/anie.202108522 10.1039/D1SC01742J 10.1021/acs.chemmater.6b04178 10.1021/jacs.2c07733 10.1002/9783527821099 10.1126/science.aat7679 10.1021/jacs.6b00652 10.1039/C9CS00258H 10.1002/anie.201710633 10.1021/jacs.2c01058 10.1002/advs.201801410 10.1021/jacs.0c11064 10.1039/D0CS00199F 10.1103/PhysRevB.69.235422 10.1002/aic.15699 10.1038/s41467-023-38538-x 10.1021/jacs.1c13468 10.1021/jacs.0c06605 10.1002/anie.202102665 10.1038/s41467-018-07720-x 10.1021/jacs.2c10548 10.1021/jacs.8b10334 10.1021/jacs.8b01774 10.1039/D0CS01027H 10.1021/ja8096256 10.1063/1.436393 10.1021/acs.chemmater.1c03156 10.1002/anie.202117101 10.1016/j.jhazmat.2017.10.065 10.1002/adfm.201705553 10.26434/chemrxiv‐2023‐cpvp6 10.1021/acsami.2c15152 10.1021/jacs.1c08351 10.1021/jacs.8b07670 10.1039/C2CS35072F 10.1021/jacs.1c03042 10.1021/acsami.0c17748 10.1002/anie.201411262 10.1021/jacs.0c06485 10.1039/D3GC01927F 10.1021/jacs.0c07732 10.1016/j.nanoen.2020.104498 10.1021/jacs.0c12499 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Small published by Wiley‐VCH GmbH 2024 The Authors. Small published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Small published by Wiley‐VCH GmbH – notice: 2024 The Authors. Small published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202307666 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Journals PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202307666 38279566 SMLL202307666 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province funderid: LZ22B010001 – fundername: JSPS KAKENHI funderid: 20H02698; 20H02552 – fundername: Ogasawara Foundation for the Promotion of Science and Engineering – fundername: NSFC funderid: 22201256 – fundername: Yazaki Memorial Foundation for Science and Technology – fundername: Scientific Research on Innovative Areas “Aquatic Functional Materials” funderid: 22H04562 – fundername: National Key R&D Program of China funderid: 2021YFA1200400 – fundername: JSPS KAKENHI grantid: 20H02552 – fundername: National Key R&D Program of China grantid: 2021YFA1200400 – fundername: NSFC grantid: 22201256 – fundername: Natural Science Foundation of Zhejiang Province grantid: LZ22B010001 – fundername: JSPS KAKENHI grantid: 20H02698 – fundername: Scientific Research on Innovative Areas "Aquatic Functional Materials" grantid: 22H04562 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WIN WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- NPM 31~ AASGY AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4136-8852b5213ebc9994f9f4f0304ea84df0266a978555efd5fe08057cff906b34e83 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Sat Aug 17 05:09:43 EDT 2024 Thu Oct 10 19:05:55 EDT 2024 Fri Aug 23 03:49:18 EDT 2024 Tue Oct 29 09:29:12 EDT 2024 Sat Aug 24 00:56:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | the net topology iodine capture radioactive waste covalent organic framework reticular design |
Language | English |
License | Attribution 2024 The Authors. Small published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4136-8852b5213ebc9994f9f4f0304ea84df0266a978555efd5fe08057cff906b34e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0281-0088 0000-0001-5253-3341 0000-0002-0847-330X 0000-0001-7869-4231 0009-0006-6518-3815 0009-0009-4749-518X 0000-0003-3965-1399 0009-0009-4678-3745 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307666 |
PMID | 38279566 |
PQID | 3055830949 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2929067380 proquest_journals_3055830949 crossref_primary_10_1002_smll_202307666 pubmed_primary_38279566 wiley_primary_10_1002_smll_202307666_SMLL202307666 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2018; 28 2017; 63 2023; 14 2019; 6 2018; 140 2020; 142 2004; 69 2018; 344 2023; 145 2013; 42 2015; 54 2017; 29 2023; 3 2009; 131 2021; 143 2021; 50 2019; 141 2017; 355 2022; 144 2021; 13 2018; 9 2007; 316 2023; 25 2021; 12 2021; 33 2023 2022; 61 2023; 135 2023; 454 2020; 70 2019; 48 2017; 56 2019 2020; 49 2022; 14 2016; 138 1978; 69 2022; 55 2021; 60 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 8452 year: 2021 publication-title: Chem. Sci. – volume: 70 year: 2020 publication-title: Nano Energy – volume: 48 start-page: 4375 year: 2019 publication-title: Chem. Soc. Rev. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 143 start-page: 92 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 361 start-page: 48 year: 2018 publication-title: Science – volume: 60 start-page: 9941 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 2865 year: 2023 publication-title: Nat. Commun. – volume: 50 start-page: 6871 year: 2021 publication-title: Chem. Soc. Rev. – volume: 33 start-page: 9618 year: 2021 publication-title: Chem. Mater. – volume: 141 start-page: 1807 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 5274 year: 2018 publication-title: Nat. Commun. – volume: 131 start-page: 4570 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1 year: 2023 publication-title: Nat. Rev. Methods Primers – volume: 135 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 144 start-page: 1539 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 2852 year: 2020 publication-title: Chem. Soc. Rev. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 69 start-page: 106 year: 1978 publication-title: J. Chem. Phys. – volume: 355 year: 2017 publication-title: Science – volume: 25 start-page: 6287 year: 2023 publication-title: Green Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 3302 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 8632 year: 2021 publication-title: Chem. Sci. – volume: 344 start-page: 576 year: 2018 publication-title: J. Hazard. Mater. – year: 2019 – year: 2023 publication-title: ChemRxiv – volume: 63 start-page: 3470 year: 2017 publication-title: AIChE J. – volume: 140 start-page: 5330 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 143 start-page: 7279 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 9679 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 2074 year: 2017 publication-title: Chem. Mater. – volume: 55 start-page: 1912 year: 2022 publication-title: Acc. Chem. Res. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 1227 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 316 start-page: 268 year: 2007 publication-title: Science – volume: 144 start-page: 5643 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8469 year: 2020 publication-title: Chem. Soc. Rev. – volume: 69 year: 2004 publication-title: Phys. Rev. B – volume: 144 start-page: 5728 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 2654 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2986 year: 2015 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_37_1 doi: 10.1021/jacs.2c01037 – ident: e_1_2_7_49_1 doi: 10.1016/j.cej.2022.140121 – ident: e_1_2_7_5_1 doi: 10.1038/s43586-022-00181-z – ident: e_1_2_7_51_1 – ident: e_1_2_7_9_1 doi: 10.1039/D0CS01569E – ident: e_1_2_7_2_1 doi: 10.1126/science.aal1585 – ident: e_1_2_7_12_1 doi: 10.1039/D1SC00738F – ident: e_1_2_7_13_1 doi: 10.1021/acs.accounts.2c00200 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.0c11313 – ident: e_1_2_7_21_1 doi: 10.1126/science.1139915 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202207043 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.3c01070 – ident: e_1_2_7_45_1 doi: 10.1002/anie.202100434 – ident: e_1_2_7_15_1 doi: 10.1002/ange.202309026 – ident: e_1_2_7_52_1 – ident: e_1_2_7_56_1 doi: 10.1002/anie.202108522 – ident: e_1_2_7_59_1 doi: 10.1039/D1SC01742J – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemmater.6b04178 – ident: e_1_2_7_46_1 doi: 10.1021/jacs.2c07733 – ident: e_1_2_7_1_1 doi: 10.1002/9783527821099 – ident: e_1_2_7_25_1 doi: 10.1126/science.aat7679 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.6b00652 – ident: e_1_2_7_10_1 doi: 10.1039/C9CS00258H – ident: e_1_2_7_24_1 doi: 10.1002/anie.201710633 – ident: e_1_2_7_36_1 doi: 10.1021/jacs.2c01058 – ident: e_1_2_7_8_1 doi: 10.1002/advs.201801410 – ident: e_1_2_7_41_1 doi: 10.1021/jacs.0c11064 – ident: e_1_2_7_54_1 – ident: e_1_2_7_11_1 doi: 10.1039/D0CS00199F – ident: e_1_2_7_57_1 doi: 10.1103/PhysRevB.69.235422 – ident: e_1_2_7_16_1 doi: 10.1002/aic.15699 – ident: e_1_2_7_48_1 doi: 10.1038/s41467-023-38538-x – ident: e_1_2_7_47_1 doi: 10.1021/jacs.1c13468 – ident: e_1_2_7_42_1 doi: 10.1021/jacs.0c06605 – ident: e_1_2_7_44_1 doi: 10.1002/anie.202102665 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-018-07720-x – ident: e_1_2_7_38_1 doi: 10.1021/jacs.2c10548 – ident: e_1_2_7_6_1 doi: 10.1021/jacs.8b10334 – ident: e_1_2_7_39_1 doi: 10.1021/jacs.8b01774 – ident: e_1_2_7_3_1 doi: 10.1039/D0CS01027H – ident: e_1_2_7_22_1 doi: 10.1021/ja8096256 – ident: e_1_2_7_55_1 – ident: e_1_2_7_58_1 doi: 10.1063/1.436393 – ident: e_1_2_7_33_1 doi: 10.1021/acs.chemmater.1c03156 – ident: e_1_2_7_32_1 doi: 10.1002/anie.202117101 – ident: e_1_2_7_60_1 doi: 10.1016/j.jhazmat.2017.10.065 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201705553 – ident: e_1_2_7_34_1 doi: 10.26434/chemrxiv‐2023‐cpvp6 – ident: e_1_2_7_35_1 doi: 10.1021/acsami.2c15152 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.1c08351 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.8b07670 – ident: e_1_2_7_4_1 doi: 10.1039/C2CS35072F – ident: e_1_2_7_26_1 doi: 10.1021/jacs.1c03042 – ident: e_1_2_7_61_1 doi: 10.1021/acsami.0c17748 – ident: e_1_2_7_53_1 – ident: e_1_2_7_14_1 doi: 10.1002/anie.201411262 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.0c06485 – ident: e_1_2_7_50_1 – ident: e_1_2_7_62_1 doi: 10.1039/D3GC01927F – ident: e_1_2_7_31_1 doi: 10.1021/jacs.0c07732 – ident: e_1_2_7_17_1 doi: 10.1016/j.nanoen.2020.104498 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.0c12499 |
SSID | ssj0031247 |
Score | 2.5072029 |
Snippet | Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a... Abstract Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2307666 |
SubjectTerms | Covalence covalent organic framework Degree of crystallinity Density functional theory Dipoles Iodine iodine capture radioactive waste Recyclability reticular design Structural design Structural integrity Symmetry the net topology Topology |
Title | 3D Covalent Organic Framework with “the” Topology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307666 https://www.ncbi.nlm.nih.gov/pubmed/38279566 https://www.proquest.com/docview/3055830949 https://search.proquest.com/docview/2929067380 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BJxh4PwKlChISU9rUjvMYUUtVoYIQtFK3yEnsBUgRaQeY-kPgz_WXcI6b0MKABFuiyIlzD9939vkzwBmhrvQ9niBys6XlcI9anLmR1UzcAKNFoEimVLXFjdsdOFdDNlzYxa_5IcoJN-UZ-XitHJxHWeOLNDR7elRLB6qQGSE4DsJN6qmarvZdyR9FMXjlp6tgzLIU8VbB2miTxnLz5aj0A2ouI9c89HQ2gRed1hUnD_XJOKrHb9_4HP_zV1uwMcel5oU2pG1YEekOrC-wFe4Co22zNULLxDhl6j2csdkpirtMNaNrzqbviChn0w-zr09feN2DQeey3-pa81MXrBgDmmv5PiMRqomKKEb06MhAOlItoAruO4nEnM3lmHoyxoRMmBQIOZkXSxnYbkQd4dN9qKSjVByCydBMo6YURCCISIRAZ09wxOBEKl6xIDHgvJB6-KzJNUJNo0xCJYiwFIQB1UIp4dzJslDZkU8xPw0MOC0fo3uoNQ-eitEkC0mg-Ow96tsGHGhllp-iPvEwPcSXk1wlv_QhvL_u9cq7o780OoY1vHZ0wWQVKuOXiThBUDOOarBKnNtabr6fk03ubA |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICB9yNQIEhITKHFjvMYUaEqEBigSGxWHvYCtIi2A0z9IfDn-ku4i5tAYUCCMYmcOL4733f2-TuAfcY9Hfhxhsitph039rkTCy9xjjIvRG8REskUZVtcec1b9_xOFNmEdBbG8EOUC25kGfl8TQZOC9LVT9bQ7uMD7R1QJjNi8EmYRpvnVMTg5LpkkOLovvL6Kui1HKLeKngba6w63n7cL_0Am-PYNXc-jQVIim6bnJP7w34vOUxfvzE6_uu_FmF-BE3tY6NLSzCh2ssw94WwcAUEP7HrHVROdFW2OcaZ2o0iv8umRV17OHhDUDkcvNstU4DhZRVuG6etetMZFV5wUvRpnhMEgiUoKa6SFAGkq0PtatpDVXHgZhrDNi_G6FMIoXQmtELUKfxU67DmJdxVAV-DqXanrTbAFqipyZFWTCGOyJRCe89w0oiZJmqxMLPgoBh2-WT4NaRhUmaSBkKWA2FBpZCKHNlZV5IqBRxD1NCCvfIxWghte8Rt1el3JQuJ0t7nQc2CdSPN8lM8YD5GiPhylsvklz7Im8soKq82_9JoF2aarctIRmdXF1swi_ddkz9Zganec19tI8bpJTu5Fn8A4ODxrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oJkYPvh8o6pqYeFpY2u0-jgYkqEiMQsKt2Ud7UYEIHPTED9E_xy9xumVX0IOJHnc33e12ZjrfdKZfAc4IdaTnBjEiN0uaduBSM2BOaJZjx0dv4SuSKVVt0XTqbfu6wzozu_g1P0S24KYsI5mvlYH3Y1n6Ig0dPD-p1IEqZEYIvghLtkMtVdRVvc8IpCh6r-R4FXRapmLeSmkbLVKabz_vln5gzXnomvie2joEaa91ycljcTQMi9HbN0LH__zWBqxNgalxoTVpExZEdwtWZ-gKt4HRqlHpoWqiozL0Js7IqKXVXYZa0jUm43eElJPxh9HSxy-87kC7dtmq1M3psQtmhB7NMT2PkRDlREUYIXy0pS9tqTKoIvDsWGLQ5gQYezLGhIyZFIg5mRtJ6VtOSG3h0V3IdXtdsQ8GQz0Ny1IQgSgiFgKtPcYpIyBSEYv5cR7O01Hnfc2uwTWPMuFqIHg2EHkopELhUysbcKVIHsUA1c_DafYY7UMlPYKu6I0GnPiK0N6lnpWHPS3M7FPUIy7Gh_hykojklz7wh9tGI7s6-EujE1i-q9Z446p5cwgreNvWxZMFyA1fRuIIAc4wPE50-BMTk_Be |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Covalent+Organic+Framework+with+%E2%80%9Cthe%E2%80%9D+Topology&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Das%2C+Saikat&rft.au=Mabuchi%2C+Haruna&rft.au=Irie%2C+Tsukasa&rft.au=Sasaki%2C+Kohki&rft.date=2024-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202307666&rft.externalDBID=10.1002%252Fsmll.202307666&rft.externalDocID=SMLL202307666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |