3D Covalent Organic Framework with “the” Topology

Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 20; pp. e2307666 - n/a
Main Authors Das, Saikat, Mabuchi, Haruna, Irie, Tsukasa, Sasaki, Kohki, Nozaki, Mika, Tomioka, Rina, Wen, Dan, Zhao, Yu, Ben, Teng, Negishi, Yuichi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D3h symmetry with a tetragonal prism 8‐c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g−1. Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. The first‐ever COF featuring an unprecedented 3,8‐connected “the” net topology, TUS‐38, is crystallized with Im‐3 space group by linking a planar triangular 3‐c building block of D3h symmetry with a tetragonal prism 8‐c building block of D2h symmetry following reversible imine bonding.
AbstractList Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D3h symmetry with a tetragonal prism 8‐c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g−1. Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D symmetry with a tetragonal prism 8-c node of D symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g . Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Abstract Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D 3h symmetry with a tetragonal prism 8‐c node of D 2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g −1 . Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent‐organic architectures but also helps to comprehend function from structural design point‐of‐view. Proceeding on this track, the first 3D COF, TUS‐38, with the topology is constructed by reticulating a planar triangular 3‐c node of D3h symmetry with a tetragonal prism 8‐c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS‐38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen‐rich s‐triazine rings with electron‐deficient character and ─C ═ N─ linkages composing the TUS‐38 framework that benefit to the charge–transfer and hence dipole–dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS‐38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g−1. Recyclability studies evidence that TUS‐38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework. The first‐ever COF featuring an unprecedented 3,8‐connected “the” net topology, TUS‐38, is crystallized with Im‐3 space group by linking a planar triangular 3‐c building block of D3h symmetry with a tetragonal prism 8‐c building block of D2h symmetry following reversible imine bonding.
Author Wen, Dan
Ben, Teng
Irie, Tsukasa
Zhao, Yu
Tomioka, Rina
Sasaki, Kohki
Negishi, Yuichi
Das, Saikat
Nozaki, Mika
Mabuchi, Haruna
Author_xml – sequence: 1
  givenname: Saikat
  orcidid: 0000-0001-7869-4231
  surname: Das
  fullname: Das, Saikat
  organization: Tokyo University of Science
– sequence: 2
  givenname: Haruna
  surname: Mabuchi
  fullname: Mabuchi, Haruna
  organization: Tokyo University of Science
– sequence: 3
  givenname: Tsukasa
  orcidid: 0000-0001-5253-3341
  surname: Irie
  fullname: Irie, Tsukasa
  organization: Tokyo University of Science
– sequence: 4
  givenname: Kohki
  orcidid: 0009-0009-4749-518X
  surname: Sasaki
  fullname: Sasaki, Kohki
  organization: Tokyo University of Science
– sequence: 5
  givenname: Mika
  orcidid: 0009-0006-6518-3815
  surname: Nozaki
  fullname: Nozaki, Mika
  organization: Tokyo University of Science
– sequence: 6
  givenname: Rina
  orcidid: 0009-0009-4678-3745
  surname: Tomioka
  fullname: Tomioka, Rina
  organization: Tokyo University of Science
– sequence: 7
  givenname: Dan
  surname: Wen
  fullname: Wen, Dan
  organization: Zhejiang Normal University
– sequence: 8
  givenname: Yu
  orcidid: 0000-0002-0281-0088
  surname: Zhao
  fullname: Zhao, Yu
  email: zhaoyu@zjnu.edu.cn
  organization: Zhejiang Normal University
– sequence: 9
  givenname: Teng
  orcidid: 0000-0002-0847-330X
  surname: Ben
  fullname: Ben, Teng
  email: tengben@zjnu.edu.cn
  organization: Zhejiang Normal University
– sequence: 10
  givenname: Yuichi
  orcidid: 0000-0003-3965-1399
  surname: Negishi
  fullname: Negishi, Yuichi
  email: negishi@rs.tus.ac.jp
  organization: Tokyo University of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38279566$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQQC0Eoh-wMqJILCwpZzt27BEVCkhFHSizlaR2m5LExW6puvWHwJ_rLyFVS5FYmO6Gd0-n10LHla00QhcYOhiA3PiyKDoECIWYc36EmphjGnJB5PFhx9BALe-nABSTKD5FDSpILBnnTcToXdC1H0mhq3kwcOOkyrOg55JSL617C5b5fBJs1p_zid6sv4KhndnCjldn6MQkhdfn-9lGr737Yfcx7A8enrq3_TCLMOWhEIykjGCq00xKGRlpIgMUIp2IaGSAcJ7IWDDGtBkxo0EAizNjJPCURlrQNrreeWfOvi-0n6sy95kuiqTSduEVkaRmYyqgRq_-oFO7cFX9naLAmKAgI1lTnR2VOeu900bNXF4mbqUwqG1QtQ2qDkHrg8u9dpGWenTAfwrWgNwBy7zQq3906uW53_-VfwNQgYNe
CitedBy_id crossref_primary_10_1002_ange_202404156
crossref_primary_10_1021_acsmaterialslett_4c00756
crossref_primary_10_1002_anie_202404156
Cites_doi 10.1021/jacs.2c01037
10.1016/j.cej.2022.140121
10.1038/s43586-022-00181-z
10.1039/D0CS01569E
10.1126/science.aal1585
10.1039/D1SC00738F
10.1021/acs.accounts.2c00200
10.1021/jacs.0c11313
10.1126/science.1139915
10.1002/anie.202207043
10.1021/jacs.3c01070
10.1002/anie.202100434
10.1002/ange.202309026
10.1002/anie.202108522
10.1039/D1SC01742J
10.1021/acs.chemmater.6b04178
10.1021/jacs.2c07733
10.1002/9783527821099
10.1126/science.aat7679
10.1021/jacs.6b00652
10.1039/C9CS00258H
10.1002/anie.201710633
10.1021/jacs.2c01058
10.1002/advs.201801410
10.1021/jacs.0c11064
10.1039/D0CS00199F
10.1103/PhysRevB.69.235422
10.1002/aic.15699
10.1038/s41467-023-38538-x
10.1021/jacs.1c13468
10.1021/jacs.0c06605
10.1002/anie.202102665
10.1038/s41467-018-07720-x
10.1021/jacs.2c10548
10.1021/jacs.8b10334
10.1021/jacs.8b01774
10.1039/D0CS01027H
10.1021/ja8096256
10.1063/1.436393
10.1021/acs.chemmater.1c03156
10.1002/anie.202117101
10.1016/j.jhazmat.2017.10.065
10.1002/adfm.201705553
10.26434/chemrxiv‐2023‐cpvp6
10.1021/acsami.2c15152
10.1021/jacs.1c08351
10.1021/jacs.8b07670
10.1039/C2CS35072F
10.1021/jacs.1c03042
10.1021/acsami.0c17748
10.1002/anie.201411262
10.1021/jacs.0c06485
10.1039/D3GC01927F
10.1021/jacs.0c07732
10.1016/j.nanoen.2020.104498
10.1021/jacs.0c12499
ContentType Journal Article
Copyright 2024 The Authors. Small published by Wiley‐VCH GmbH
2024 The Authors. Small published by Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202307666
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Journals
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202307666
38279566
SMLL202307666
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  funderid: LZ22B010001
– fundername: JSPS KAKENHI
  funderid: 20H02698; 20H02552
– fundername: Ogasawara Foundation for the Promotion of Science and Engineering
– fundername: NSFC
  funderid: 22201256
– fundername: Yazaki Memorial Foundation for Science and Technology
– fundername: Scientific Research on Innovative Areas “Aquatic Functional Materials”
  funderid: 22H04562
– fundername: National Key R&D Program of China
  funderid: 2021YFA1200400
– fundername: JSPS KAKENHI
  grantid: 20H02552
– fundername: National Key R&D Program of China
  grantid: 2021YFA1200400
– fundername: NSFC
  grantid: 22201256
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LZ22B010001
– fundername: JSPS KAKENHI
  grantid: 20H02698
– fundername: Scientific Research on Innovative Areas "Aquatic Functional Materials"
  grantid: 22H04562
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
NPM
31~
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4136-8852b5213ebc9994f9f4f0304ea84df0266a978555efd5fe08057cff906b34e83
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sat Aug 17 05:09:43 EDT 2024
Thu Oct 10 19:05:55 EDT 2024
Fri Aug 23 03:49:18 EDT 2024
Tue Oct 29 09:29:12 EDT 2024
Sat Aug 24 00:56:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords the net topology
iodine capture
radioactive waste
covalent organic framework
reticular design
Language English
License Attribution
2024 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4136-8852b5213ebc9994f9f4f0304ea84df0266a978555efd5fe08057cff906b34e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0281-0088
0000-0001-5253-3341
0000-0002-0847-330X
0000-0001-7869-4231
0009-0006-6518-3815
0009-0009-4749-518X
0000-0003-3965-1399
0009-0009-4678-3745
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307666
PMID 38279566
PQID 3055830949
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2929067380
proquest_journals_3055830949
crossref_primary_10_1002_smll_202307666
pubmed_primary_38279566
wiley_primary_10_1002_smll_202307666_SMLL202307666
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2018; 28
2017; 63
2023; 14
2019; 6
2018; 140
2020; 142
2004; 69
2018; 344
2023; 145
2013; 42
2015; 54
2017; 29
2023; 3
2009; 131
2021; 143
2021; 50
2019; 141
2017; 355
2022; 144
2021; 13
2018; 9
2007; 316
2023; 25
2021; 12
2021; 33
2023
2022; 61
2023; 135
2023; 454
2020; 70
2019; 48
2017; 56
2019
2020; 49
2022; 14
2016; 138
1978; 69
2022; 55
2021; 60
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 8452
  year: 2021
  publication-title: Chem. Sci.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 48
  start-page: 4375
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  start-page: 92
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 361
  start-page: 48
  year: 2018
  publication-title: Science
– volume: 60
  start-page: 9941
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 2865
  year: 2023
  publication-title: Nat. Commun.
– volume: 50
  start-page: 6871
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 33
  start-page: 9618
  year: 2021
  publication-title: Chem. Mater.
– volume: 141
  start-page: 1807
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 5274
  year: 2018
  publication-title: Nat. Commun.
– volume: 131
  start-page: 4570
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1
  year: 2023
  publication-title: Nat. Rev. Methods Primers
– volume: 135
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 144
  start-page: 1539
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 2852
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 69
  start-page: 106
  year: 1978
  publication-title: J. Chem. Phys.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 25
  start-page: 6287
  year: 2023
  publication-title: Green Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 3302
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 8632
  year: 2021
  publication-title: Chem. Sci.
– volume: 344
  start-page: 576
  year: 2018
  publication-title: J. Hazard. Mater.
– year: 2019
– year: 2023
  publication-title: ChemRxiv
– volume: 63
  start-page: 3470
  year: 2017
  publication-title: AIChE J.
– volume: 140
  start-page: 5330
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 143
  start-page: 7279
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 9679
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 2074
  year: 2017
  publication-title: Chem. Mater.
– volume: 55
  start-page: 1912
  year: 2022
  publication-title: Acc. Chem. Res.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 1227
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 316
  start-page: 268
  year: 2007
  publication-title: Science
– volume: 144
  start-page: 5643
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8469
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 69
  year: 2004
  publication-title: Phys. Rev. B
– volume: 144
  start-page: 5728
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 2654
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2986
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.2c01037
– ident: e_1_2_7_49_1
  doi: 10.1016/j.cej.2022.140121
– ident: e_1_2_7_5_1
  doi: 10.1038/s43586-022-00181-z
– ident: e_1_2_7_51_1
– ident: e_1_2_7_9_1
  doi: 10.1039/D0CS01569E
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_7_12_1
  doi: 10.1039/D1SC00738F
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.accounts.2c00200
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.0c11313
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1139915
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202207043
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.3c01070
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.202100434
– ident: e_1_2_7_15_1
  doi: 10.1002/ange.202309026
– ident: e_1_2_7_52_1
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.202108522
– ident: e_1_2_7_59_1
  doi: 10.1039/D1SC01742J
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemmater.6b04178
– ident: e_1_2_7_46_1
  doi: 10.1021/jacs.2c07733
– ident: e_1_2_7_1_1
  doi: 10.1002/9783527821099
– ident: e_1_2_7_25_1
  doi: 10.1126/science.aat7679
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.6b00652
– ident: e_1_2_7_10_1
  doi: 10.1039/C9CS00258H
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201710633
– ident: e_1_2_7_36_1
  doi: 10.1021/jacs.2c01058
– ident: e_1_2_7_8_1
  doi: 10.1002/advs.201801410
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.0c11064
– ident: e_1_2_7_54_1
– ident: e_1_2_7_11_1
  doi: 10.1039/D0CS00199F
– ident: e_1_2_7_57_1
  doi: 10.1103/PhysRevB.69.235422
– ident: e_1_2_7_16_1
  doi: 10.1002/aic.15699
– ident: e_1_2_7_48_1
  doi: 10.1038/s41467-023-38538-x
– ident: e_1_2_7_47_1
  doi: 10.1021/jacs.1c13468
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.0c06605
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.202102665
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-018-07720-x
– ident: e_1_2_7_38_1
  doi: 10.1021/jacs.2c10548
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.8b10334
– ident: e_1_2_7_39_1
  doi: 10.1021/jacs.8b01774
– ident: e_1_2_7_3_1
  doi: 10.1039/D0CS01027H
– ident: e_1_2_7_22_1
  doi: 10.1021/ja8096256
– ident: e_1_2_7_55_1
– ident: e_1_2_7_58_1
  doi: 10.1063/1.436393
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.chemmater.1c03156
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202117101
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jhazmat.2017.10.065
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201705553
– ident: e_1_2_7_34_1
  doi: 10.26434/chemrxiv‐2023‐cpvp6
– ident: e_1_2_7_35_1
  doi: 10.1021/acsami.2c15152
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.1c08351
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.8b07670
– ident: e_1_2_7_4_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.1c03042
– ident: e_1_2_7_61_1
  doi: 10.1021/acsami.0c17748
– ident: e_1_2_7_53_1
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201411262
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.0c06485
– ident: e_1_2_7_50_1
– ident: e_1_2_7_62_1
  doi: 10.1039/D3GC01927F
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.0c07732
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nanoen.2020.104498
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.0c12499
SSID ssj0031247
Score 2.5072029
Snippet Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a...
Abstract Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2307666
SubjectTerms Covalence
covalent organic framework
Degree of crystallinity
Density functional theory
Dipoles
Iodine
iodine capture
radioactive waste
Recyclability
reticular design
Structural design
Structural integrity
Symmetry
the net topology
Topology
Title 3D Covalent Organic Framework with “the” Topology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307666
https://www.ncbi.nlm.nih.gov/pubmed/38279566
https://www.proquest.com/docview/3055830949
https://search.proquest.com/docview/2929067380
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BJxh4PwKlChISU9rUjvMYUUtVoYIQtFK3yEnsBUgRaQeY-kPgz_WXcI6b0MKABFuiyIlzD9939vkzwBmhrvQ9niBys6XlcI9anLmR1UzcAKNFoEimVLXFjdsdOFdDNlzYxa_5IcoJN-UZ-XitHJxHWeOLNDR7elRLB6qQGSE4DsJN6qmarvZdyR9FMXjlp6tgzLIU8VbB2miTxnLz5aj0A2ouI9c89HQ2gRed1hUnD_XJOKrHb9_4HP_zV1uwMcel5oU2pG1YEekOrC-wFe4Co22zNULLxDhl6j2csdkpirtMNaNrzqbviChn0w-zr09feN2DQeey3-pa81MXrBgDmmv5PiMRqomKKEb06MhAOlItoAruO4nEnM3lmHoyxoRMmBQIOZkXSxnYbkQd4dN9qKSjVByCydBMo6YURCCISIRAZ09wxOBEKl6xIDHgvJB6-KzJNUJNo0xCJYiwFIQB1UIp4dzJslDZkU8xPw0MOC0fo3uoNQ-eitEkC0mg-Ow96tsGHGhllp-iPvEwPcSXk1wlv_QhvL_u9cq7o780OoY1vHZ0wWQVKuOXiThBUDOOarBKnNtabr6fk03ubA
link.rule.ids 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICB9yNQIEhITKHFjvMYUaEqEBigSGxWHvYCtIi2A0z9IfDn-ku4i5tAYUCCMYmcOL4733f2-TuAfcY9Hfhxhsitph039rkTCy9xjjIvRG8REskUZVtcec1b9_xOFNmEdBbG8EOUC25kGfl8TQZOC9LVT9bQ7uMD7R1QJjNi8EmYRpvnVMTg5LpkkOLovvL6Kui1HKLeKngba6w63n7cL_0Am-PYNXc-jQVIim6bnJP7w34vOUxfvzE6_uu_FmF-BE3tY6NLSzCh2ssw94WwcAUEP7HrHVROdFW2OcaZ2o0iv8umRV17OHhDUDkcvNstU4DhZRVuG6etetMZFV5wUvRpnhMEgiUoKa6SFAGkq0PtatpDVXHgZhrDNi_G6FMIoXQmtELUKfxU67DmJdxVAV-DqXanrTbAFqipyZFWTCGOyJRCe89w0oiZJmqxMLPgoBh2-WT4NaRhUmaSBkKWA2FBpZCKHNlZV5IqBRxD1NCCvfIxWghte8Rt1el3JQuJ0t7nQc2CdSPN8lM8YD5GiPhylsvklz7Im8soKq82_9JoF2aarctIRmdXF1swi_ddkz9Zganec19tI8bpJTu5Fn8A4ODxrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oJkYPvh8o6pqYeFpY2u0-jgYkqEiMQsKt2Ud7UYEIHPTED9E_xy9xumVX0IOJHnc33e12ZjrfdKZfAc4IdaTnBjEiN0uaduBSM2BOaJZjx0dv4SuSKVVt0XTqbfu6wzozu_g1P0S24KYsI5mvlYH3Y1n6Ig0dPD-p1IEqZEYIvghLtkMtVdRVvc8IpCh6r-R4FXRapmLeSmkbLVKabz_vln5gzXnomvie2joEaa91ycljcTQMi9HbN0LH__zWBqxNgalxoTVpExZEdwtWZ-gKt4HRqlHpoWqiozL0Js7IqKXVXYZa0jUm43eElJPxh9HSxy-87kC7dtmq1M3psQtmhB7NMT2PkRDlREUYIXy0pS9tqTKoIvDsWGLQ5gQYezLGhIyZFIg5mRtJ6VtOSG3h0V3IdXtdsQ8GQz0Ny1IQgSgiFgKtPcYpIyBSEYv5cR7O01Hnfc2uwTWPMuFqIHg2EHkopELhUysbcKVIHsUA1c_DafYY7UMlPYKu6I0GnPiK0N6lnpWHPS3M7FPUIy7Gh_hykojklz7wh9tGI7s6-EujE1i-q9Z446p5cwgreNvWxZMFyA1fRuIIAc4wPE50-BMTk_Be
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Covalent+Organic+Framework+with+%E2%80%9Cthe%E2%80%9D+Topology&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Das%2C+Saikat&rft.au=Mabuchi%2C+Haruna&rft.au=Irie%2C+Tsukasa&rft.au=Sasaki%2C+Kohki&rft.date=2024-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202307666&rft.externalDBID=10.1002%252Fsmll.202307666&rft.externalDocID=SMLL202307666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon