4D‐Printed Soft and Stretchable Self‐Folding Cuff Electrodes for Small‐Nerve Interfacing

Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 12; pp. e2210206 - n/a
Main Authors Hiendlmeier, Lukas, Zurita, Francisco, Vogel, Jonas, Del Duca, Fulvia, Al Boustani, George, Peng, Hu, Kopic, Inola, Nikić, Marta, F. Teshima, Tetsuhiko, Wolfrum, Bernhard
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self‐folding electrodes will pave the way for bringing PNI to a broader clinical application. An electric peripheral nerve interface that can fold itself to a cuff around small nerves during the implantation is presented. This actuation property, combined with the use of stretchable materials, makes the device robust and straightforward to use. The stimulation and recording capabilities are shown on small nerves in vivo.
AbstractList Abstract Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self‐folding electrodes will pave the way for bringing PNI to a broader clinical application.
Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self-folding electrodes will pave the way for bringing PNI to a broader clinical application.
Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self‐folding electrodes will pave the way for bringing PNI to a broader clinical application.
Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self‐folding electrodes will pave the way for bringing PNI to a broader clinical application. An electric peripheral nerve interface that can fold itself to a cuff around small nerves during the implantation is presented. This actuation property, combined with the use of stretchable materials, makes the device robust and straightforward to use. The stimulation and recording capabilities are shown on small nerves in vivo.
Author Zurita, Francisco
Hiendlmeier, Lukas
Vogel, Jonas
Kopic, Inola
Al Boustani, George
Del Duca, Fulvia
Peng, Hu
Nikić, Marta
F. Teshima, Tetsuhiko
Wolfrum, Bernhard
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0000-0003-0219-6871
  surname: Hiendlmeier
  fullname: Hiendlmeier, Lukas
  organization: NTT Research Incorporated
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0002-6166-499X
  surname: Zurita
  fullname: Zurita, Francisco
  organization: NTT Research Incorporated
– sequence: 3
  givenname: Jonas
  orcidid: 0000-0002-4693-2554
  surname: Vogel
  fullname: Vogel, Jonas
  organization: Technical University of Munich
– sequence: 4
  givenname: Fulvia
  orcidid: 0000-0002-6684-173X
  surname: Del Duca
  fullname: Del Duca, Fulvia
  organization: NTT Research Incorporated
– sequence: 5
  givenname: George
  orcidid: 0000-0003-2723-8011
  surname: Al Boustani
  fullname: Al Boustani, George
  organization: NTT Research Incorporated
– sequence: 6
  givenname: Hu
  orcidid: 0000-0001-9432-1929
  surname: Peng
  fullname: Peng, Hu
  organization: Technical University of Munich
– sequence: 7
  givenname: Inola
  orcidid: 0000-0002-4147-462X
  surname: Kopic
  fullname: Kopic, Inola
  organization: Technical University of Munich
– sequence: 8
  givenname: Marta
  orcidid: 0000-0002-4048-7306
  surname: Nikić
  fullname: Nikić, Marta
  organization: Technical University of Munich
– sequence: 9
  givenname: Tetsuhiko
  orcidid: 0000-0002-9462-7167
  surname: F. Teshima
  fullname: F. Teshima, Tetsuhiko
  organization: NTT Research Incorporated
– sequence: 10
  givenname: Bernhard
  orcidid: 0000-0003-4438-3755
  surname: Wolfrum
  fullname: Wolfrum, Bernhard
  email: bernhard.wolfrum@tum.de
  organization: NTT Research Incorporated
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36594106$$D View this record in MEDLINE/PubMed
BookMark eNqF0D9P3DAYx3ELXQUHdO1YRWLpkuOxE9vxeDr-FAlapGNu5MSPS5ATg50UsfESeI19JTU6ekhdOtnDx19Zv30yG_yAhHyisKAA7FibXi8YMEaBgdghc8oZzUtQfEbmoAqeK1FWe2Q_xjsAUALELtkrBFclBTEnP8qT388v16EbRjTZ2tsx00O6jAHH9lY3DrM1OpvMmXemG35mq8na7NRhOwZvMGbWh2zda-eS-YbhF2YXqRWsbpM-JB-sdhE_vp0H5Obs9Gb1Nb_8fn6xWl7mbUkLkVegGquaEisjwBjOBFLZCI6Ca9MayYFykJSrBlFaxKKqCikrahO2UBQH5Msmex_8w4RxrPsutuicHtBPsWZSAC-VZDzRo3_onZ_CkD6XVKUE5bJgSS02qg0-xoC2vg9dr8NTTaF-Hb5-Hb7eDp8efH7LTk2PZsv_Lp2A2oDHzuHTf3L18uRq-R7_A2RvkpM
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00335
crossref_primary_10_2147_IJN_S418534
crossref_primary_10_1002_anbr_202300102
crossref_primary_10_1002_smll_202402214
crossref_primary_10_1038_s41563_024_01903_2
crossref_primary_10_1063_5_0189181
crossref_primary_10_1002_adhm_202400624
crossref_primary_10_1002_adma_202312263
crossref_primary_10_1002_adfm_202308613
crossref_primary_10_3390_gels10010008
crossref_primary_10_1002_aelm_202300308
crossref_primary_10_1038_s41563_024_01886_0
crossref_primary_10_1007_s12274_023_6092_1
crossref_primary_10_1002_adhm_202302896
crossref_primary_10_1002_aisy_202400055
crossref_primary_10_1002_adma_202212015
crossref_primary_10_1002_adma_202307686
crossref_primary_10_1002_adma_202402301
crossref_primary_10_1002_app_55445
crossref_primary_10_3390_mi15050594
crossref_primary_10_1002_adfm_202314575
crossref_primary_10_1039_D3NR05488H
crossref_primary_10_1186_s40580_023_00389_z
Cites_doi 10.1038/s41551-018-0335-6
10.1002/advs.202104404
10.1146/annurev.bioeng.10.061807.160518
10.1021/la049501e
10.1016/j.tem.2015.09.008
10.1002/adma.201102378
10.1038/s41371-019-0244-5
10.1002/advs.202102945
10.1002/adfm.202200269
10.1002/admt.202000034
10.1021/acsapm.0c01071
10.1016/j.cobme.2022.100368
10.1038/s41551-019-0446-8
10.1126/sciadv.abg7833
10.1088/1741-2552/abc025
10.1126/sciadv.1602326
10.1007/s40122-021-00306-4
10.1002/adfm.202210353
10.1063/1.2201874
10.3390/s18124152
10.1021/acsanm.1c01590
10.1007/BF00219055
10.1109/ELNANO.2013.6552092
10.14814/phy2.12718
10.1007/s11906-018-0821-y
10.1088/1741-2552/abfebb
10.1002/adma.201503696
10.1016/j.bios.2010.05.010
10.1063/5.0021887
10.1038/s41551-020-00615-7
10.1109/NER.2013.6695915
10.1088/1741-2552/abcdbe
10.1038/s41551-021-00817-7
10.3389/fnins.2019.00911
10.1002/adfm.201910606
10.1038/nmat4544
10.1088/1741-2552/abf398
10.1038/s41598-022-13679-z
10.1002/adhm.202201627
10.1126/sciadv.aaw1066
10.1126/scirobotics.aau8892
10.1002/adfm.202208881
10.1111/cns.13209
10.1038/nn.3905
10.1002/mame.202200306
10.3390/mi12121522
10.1002/admt.202100240
10.1016/j.comppsych.2019.152156
10.1152/jappl.1997.83.1.317
10.1109/JMEMS.2018.2881908
10.1088/1741-2560/3/4/L02
10.1002/adfm.201703019
10.1038/s41598-019-46967-2
10.1186/1743-0003-7-17
10.1007/978-3-030-41854-0_5
10.1242/jeb.201.1.155
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202210206
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library (Open Access Collection)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202210206
36594106
ADMA202210206
Genre article
Journal Article
GrantInformation_xml – fundername: Free State of Bavaria
– fundername: Federal Ministry of Education and Research
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4136-809bf9b4e8d60dd526e17b65e65adcd7501507159bee7fee38837781f0ddf033
IEDL.DBID 24P
ISSN 0935-9648
IngestDate Fri Aug 16 00:17:51 EDT 2024
Thu Oct 10 19:39:32 EDT 2024
Wed Oct 16 15:30:17 EDT 2024
Sat Sep 28 08:15:12 EDT 2024
Sat Aug 24 00:51:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords small nerves
self-folding
stretchable materials
4D printing
cuff electrodes
hydrogels
nerve interfaces
Language English
License Attribution
2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4136-809bf9b4e8d60dd526e17b65e65adcd7501507159bee7fee38837781f0ddf033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0219-6871
0000-0002-4693-2554
0000-0003-2723-8011
0000-0002-6166-499X
0000-0001-9432-1929
0000-0002-4048-7306
0000-0002-4147-462X
0000-0002-9462-7167
0000-0003-4438-3755
0000-0002-6684-173X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210206
PMID 36594106
PQID 2789615732
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2760549725
proquest_journals_2789615732
crossref_primary_10_1002_adma_202210206
pubmed_primary_36594106
wiley_primary_10_1002_adma_202210206_ADMA202210206
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 20
1997; 83
2017; 3
2019; 98
2019; 13
2020; 17
2022; 21
2020; 11
1995; 176
2020; 8
2020; 5
2020; 4
2010; 26
2019; 25
2019; 28
2011; 23
2022; 32
2022; 33
1998; 201
2010; 7
2021; 7
2019; 9
2021; 6
2019; 4
2019; 3
2021; 4
2021; 3
2015; 18
2019; 5
2019; 33
2017; 27
2006; 3
2008; 10
2014; 84
2018; 20
2016; 15
2016; 4
2015; 26
2018; 18
2021; 10
2015; 27
2021; 12
2020; 30
2020
2022; 6
2006; 88
2021; 18
2022; 9
2022; 12
2022; 11
2013
2022; 307
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Varga M. (e_1_2_9_36_1) 2013
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_19_1
Otchy T. M. (e_1_2_9_11_1) 2020; 11
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
Tibbits S. (e_1_2_9_41_1) 2014; 84
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 6797
  year: 2015
  publication-title: Adv. Mater.
– volume: 20
  start-page: 24
  year: 2018
  publication-title: Curr. Hypertens. Rep.
– volume: 28
  start-page: 36
  year: 2019
  publication-title: J. Microelectromech. Syst.
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 307
  year: 2022
  publication-title: Macromol. Mater. Eng.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 985
  year: 2021
  publication-title: Pain Ther.
– volume: 18
  start-page: 310
  year: 2015
  publication-title: Nat. Neurosci.
– volume: 23
  start-page: H268
  year: 2011
  publication-title: Adv. Mater.
– volume: 33
  start-page: 716
  year: 2019
  publication-title: J. Hum. Hypertens.
– volume: 3
  start-page: L23
  year: 2006
  publication-title: J. Neural Eng.
– volume: 4
  start-page: 181
  year: 2020
  publication-title: Nat. Biomed. Eng.
– volume: 98
  year: 2019
  publication-title: Compr. Psychiatry
– volume: 18
  year: 2021
  publication-title: J. Neural Eng.
– volume: 20
  year: 2004
  publication-title: Langmuir
– volume: 4
  year: 2016
  publication-title: Physiol. Rep.
– volume: 12
  year: 2022
  publication-title: Sci. Rep.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2019
  publication-title: Sci. Rob.
– start-page: 237
  year: 2013
  end-page: 240
– volume: 25
  start-page: 1222
  year: 2019
  publication-title: CNS Neurosci. Ther.
– volume: 10
  start-page: 275
  year: 2008
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 17
  year: 2020
  publication-title: J. Neural Eng.
– volume: 4
  start-page: 8376
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 15
  start-page: 413
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 17
  year: 2010
  publication-title: J. NeuroEng. Rehab.
– volume: 4
  start-page: 1010
  year: 2020
  publication-title: Nat. Biomed. Eng.
– start-page: 235
  year: 2013
  end-page: 238
– volume: 18
  start-page: 4152
  year: 2018
  publication-title: Sensors
– volume: 176
  start-page: 289
  year: 1995
  publication-title: J. Comp. Physiol.
– volume: 26
  start-page: 657
  year: 2015
  publication-title: Trends Endocrinol. Metab.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 21
  year: 2022
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 12
  start-page: 1522
  year: 2021
  publication-title: Micromachines
– volume: 3
  start-page: 58
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– start-page: 95
  year: 2020
  end-page: 121
– volume: 26
  start-page: 62
  year: 2010
  publication-title: Biosens. Bioelectron.
– volume: 13
  start-page: 911
  year: 2019
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 4191
  year: 2020
  publication-title: React. Fission Nat., C. R. Reun. Com. Tech.
– volume: 8
  year: 2020
  publication-title: APL Mater.
– volume: 201
  start-page: 155
  year: 1998
  publication-title: J. Exp. Biol.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 83
  start-page: 317
  year: 1997
  publication-title: J. Appl. Physiol.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 6
  start-page: 741
  year: 2022
  publication-title: Nat. Biomed. Eng.
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 3
  start-page: 243
  year: 2021
  publication-title: ACS Appl. Polym. Mater.
– volume: 84
  start-page: 116
  year: 2014
  publication-title: Archit. Des.
– ident: e_1_2_9_18_1
  doi: 10.1038/s41551-018-0335-6
– ident: e_1_2_9_32_1
  doi: 10.1002/advs.202104404
– ident: e_1_2_9_48_1
  doi: 10.1146/annurev.bioeng.10.061807.160518
– ident: e_1_2_9_56_1
  doi: 10.1021/la049501e
– ident: e_1_2_9_7_1
  doi: 10.1016/j.tem.2015.09.008
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.201102378
– ident: e_1_2_9_8_1
  doi: 10.1038/s41371-019-0244-5
– ident: e_1_2_9_10_1
  doi: 10.1002/advs.202102945
– ident: e_1_2_9_27_1
  doi: 10.1002/adfm.202200269
– ident: e_1_2_9_39_1
  doi: 10.1002/admt.202000034
– ident: e_1_2_9_55_1
  doi: 10.1021/acsapm.0c01071
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cobme.2022.100368
– ident: e_1_2_9_13_1
  doi: 10.1038/s41551-019-0446-8
– ident: e_1_2_9_33_1
  doi: 10.1126/sciadv.abg7833
– ident: e_1_2_9_15_1
  doi: 10.1088/1741-2552/abc025
– ident: e_1_2_9_57_1
  doi: 10.1126/sciadv.1602326
– ident: e_1_2_9_6_1
  doi: 10.1007/s40122-021-00306-4
– ident: e_1_2_9_43_1
  doi: 10.1002/adfm.202210353
– ident: e_1_2_9_46_1
  doi: 10.1063/1.2201874
– ident: e_1_2_9_47_1
  doi: 10.3390/s18124152
– ident: e_1_2_9_45_1
  doi: 10.1021/acsanm.1c01590
– ident: e_1_2_9_51_1
  doi: 10.1007/BF00219055
– start-page: 237
  volume-title: 2013 IEEE XXXIII Int. Scientific Conf. Electronics and Nanotechnology (ELNANO)
  year: 2013
  ident: e_1_2_9_36_1
  doi: 10.1109/ELNANO.2013.6552092
  contributor:
    fullname: Varga M.
– ident: e_1_2_9_9_1
  doi: 10.14814/phy2.12718
– ident: e_1_2_9_5_1
  doi: 10.1007/s11906-018-0821-y
– volume: 11
  start-page: 4191
  year: 2020
  ident: e_1_2_9_11_1
  publication-title: React. Fission Nat., C. R. Reun. Com. Tech.
  contributor:
    fullname: Otchy T. M.
– ident: e_1_2_9_17_1
  doi: 10.1088/1741-2552/abfebb
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201503696
– ident: e_1_2_9_12_1
  doi: 10.1016/j.bios.2010.05.010
– ident: e_1_2_9_16_1
  doi: 10.1063/5.0021887
– ident: e_1_2_9_19_1
  doi: 10.1038/s41551-020-00615-7
– ident: e_1_2_9_53_1
  doi: 10.1109/NER.2013.6695915
– ident: e_1_2_9_23_1
  doi: 10.1088/1741-2552/abcdbe
– ident: e_1_2_9_24_1
  doi: 10.1038/s41551-021-00817-7
– volume: 84
  start-page: 116
  year: 2014
  ident: e_1_2_9_41_1
  publication-title: Archit. Des.
  contributor:
    fullname: Tibbits S.
– ident: e_1_2_9_26_1
  doi: 10.3389/fnins.2019.00911
– ident: e_1_2_9_38_1
  doi: 10.1002/adfm.201910606
– ident: e_1_2_9_42_1
  doi: 10.1038/nmat4544
– ident: e_1_2_9_31_1
  doi: 10.1088/1741-2552/abf398
– ident: e_1_2_9_58_1
  doi: 10.1038/s41598-022-13679-z
– ident: e_1_2_9_29_1
  doi: 10.1002/adhm.202201627
– ident: e_1_2_9_35_1
  doi: 10.1126/sciadv.aaw1066
– ident: e_1_2_9_4_1
  doi: 10.1126/scirobotics.aau8892
– ident: e_1_2_9_50_1
  doi: 10.1002/adfm.202208881
– ident: e_1_2_9_2_1
  doi: 10.1111/cns.13209
– ident: e_1_2_9_22_1
  doi: 10.1038/nn.3905
– ident: e_1_2_9_44_1
  doi: 10.1002/mame.202200306
– ident: e_1_2_9_30_1
  doi: 10.3390/mi12121522
– ident: e_1_2_9_40_1
  doi: 10.1002/admt.202100240
– ident: e_1_2_9_1_1
  doi: 10.1016/j.comppsych.2019.152156
– ident: e_1_2_9_28_1
  doi: 10.1152/jappl.1997.83.1.317
– ident: e_1_2_9_25_1
  doi: 10.1109/JMEMS.2018.2881908
– ident: e_1_2_9_34_1
  doi: 10.1088/1741-2560/3/4/L02
– ident: e_1_2_9_49_1
  doi: 10.1002/adfm.201703019
– ident: e_1_2_9_20_1
  doi: 10.1038/s41598-019-46967-2
– ident: e_1_2_9_52_1
  doi: 10.1186/1743-0003-7-17
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-030-41854-0_5
– ident: e_1_2_9_54_1
  doi: 10.1242/jeb.201.1.155
SSID ssj0009606
Score 2.5878167
Snippet Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing...
Abstract Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2210206
SubjectTerms 4D printing
cuff electrodes
Electric Conductivity
Electrodes
Electrodes, Implanted
Folding
Hydrogels
Implantation
Materials science
Moisture effects
nerve interfaces
Peripheral nerves
Peripheral Nerves - physiology
Photopolymerization
Polyurethane resins
Printing
Robustness
self‐folding
small nerves
stretchable materials
Substrates
Title 4D‐Printed Soft and Stretchable Self‐Folding Cuff Electrodes for Small‐Nerve Interfacing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210206
https://www.ncbi.nlm.nih.gov/pubmed/36594106
https://www.proquest.com/docview/2789615732
https://search.proquest.com/docview/2760549725
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYquMChojzapYBcqRKniMSxHfu4YneFKoFQl0qciOx4fNoGtI87P4Hf2F_SmWQ3y4oDEpcokcdJNDO2v_HjG8Z-xiLNsCBLAJ03kcpB4qy3aBAd06ryOgDNd1zf6Ks_8te9un91ir_lh-gm3KhlNP01NXDnZxdr0lAXGt4gQTELcW5vI7Yx5NdC3q5pd3WTXZNW-xKrpVnRNqbiYrP-5rD0BmtuQtdm7Bntsc9L0Mj7rZW_sE9Q77PdV1SCB-xBDv49v9xOif4h8DF2rtzVeDOfkl3ofBQfwySizKhdb-KXixj5sM2CE2DGEb3y8V83maDMDe2D5M1sYXQVSh-yu9Hw7vIqWeZOSCoclohj2PpovQQTdBqCEhqywmsFWrlQBcQJDRJU1gMUESA3GKkWJosoHNM8P2Jb9WMN3xiPBgx2a85U2kmTe2MLJ4scQgwKAVPeY-crzZVPLUNG2XIhi5J0XHY67rGTlWLLZUuZlXQSF1FVkYse-9EVo4_TwoWr4XFBMhh0SVsI1WNfW4N0n8q1sjKjl4vGQu_8Q9kfXPe7p-OPVPrOdijnfLsR7YRtzacLOEVkMvdnjfPhdfBb_Ac5p9yc
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELaq9NByqEopEF51JaSeVtmH7bWPUSBKWxIhJZU4sfKux6ewqfK48xP4jfwSZnaThYgDErddebxrzfjxzdj-hrFzn4YRFkQBYOcNhLQQWJMbNIjyYVHkygHFO4YjNfgn_tzIzWlCugtT80M0ATcaGdV8TQOcAtKdZ9ZQ6yrioJicFiLd_iiIDY7IncX1M--uqtJr0nZfYJTQG97GMO5s199el16BzW3sWi0-_a_syxo18m5t5l32AcpvbOcFl-AeuxUXj_cP13Pif3B8jLMrtyU-LOdkGLogxccw9SjTrzeceG_lPb-s0-A4WHCEr3x8Z6dTlBnRQUhehQu9LVD6O5v0Lye9QbBOnhAUuC4RybDJvckFaKdC52SsIEpzJUFJ6wqHQKGCgtLkAKkHSDS6qqmOPAr7MEn2WauclXDIuNegcV6zulBW6CTXJrUiTcB5JxExJW32a6O57H9NkZHVZMhxRjrOGh232clGsdl6qCwyuoqLsCpN4jb72RRjJ6edC1vCbEUy6HUJk8ayzQ5qgzS_SpQ0IqKPx5WF3mhD1r0Ydpu3o_dU-sE-DSbDq-zq9-jvMftMCejrU2knrLWcr-AUYcoyP6s64hPwSt8b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZWIK3ggHZZFsoW8EorcYqah-3Yx4pSsY9WldqVetrIicenElBp7_wEfiO_hJmkTak4rMQtkceJNTO2Pz_mG8Z--DSMsCAKAJ03ENJCYE1u0CDKh0WRKwe03zEYqpu_4tdUTl9F8df8EM2GG_WMarymDn7vfGdDGmpdxRsU05qFOLd3hUL4QNzOYrSh3VVVdk067QuMEnpN2xjGne3629PSG6y5DV2ruaf_iR2sQCPv1lb-zD5Aecj2X1EJfmH_RO_58Wk0J_oHx8c4uHJb4sNiTnah-Cg-hplHmX593sSvlt7z6zoLjoMHjuiVj2_tbIYyQ7oHyavdQm8LlD5ik_715OomWOVOCAqclohj2OTe5AK0U6FzMlYQpbmSoKR1hUOcUCFBaXKA1AMkGleqqY48CvswSb6ynfKuhBPGvQaNw5rVhbJCJ7k2qRVpAs47iYApabHLteay-5ohI6u5kOOMdJw1Om6x9lqx2aqnPGQUiYuoKk3iFvveFKOP08GFLeFuSTK46BImjWWLHdcGaX6VKGlERB-PKwv9pw1ZtzfoNm-n76l0wT6Oev3sz8_h729sj9LP13fS2mxnMV_CGYKURX5e-eELpKjeRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D-Printed+Soft+and+Stretchable+Self-Folding+Cuff+Electrodes+for+Small-Nerve+Interfacing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hiendlmeier%2C+Lukas&rft.au=Zurita%2C+Francisco&rft.au=Vogel%2C+Jonas&rft.au=Del+Duca%2C+Fulvia&rft.date=2023-03-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=12&rft.spage=e2210206&rft_id=info:doi/10.1002%2Fadma.202210206&rft_id=info%3Apmid%2F36594106&rft.externalDocID=36594106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon