3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets

Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 16; pp. e2107426 - n/a
Main Authors Muzzi, Beatrice, Albino, Martin, Petrecca, Michele, Innocenti, Claudia, Fernández, César de Julián, Bertoni, Giovanni, Marquina, Clara, Ibarra, Manuel Ricardo, Sangregorio, Claudio
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202107426

Cover

Loading…
Abstract Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Magnetic nanoparticles with exchange bias at room temperature, usable in technological devices, are still challenging to obtain. The Co and Ni combined doping of wüstite@magnetite nanoparticles is a valid strategy to surpass this limitation.
AbstractList Nanometric core@shell wüstite@ferrite (Fe O@Fe O ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe  with Co  and Ni  on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co Fe O@Co Fe O  and Ni Co Fe O@Ni Co Fe O ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co  and Ni  ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.
Nanometric core@shell wüstite@ferrite (Fe 1− x O@Fe 3 O 4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe (II)  with Co (II)  and Ni (II)  on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co 0.3 Fe 0.7 O@Co 0.8 Fe 2.2 O 4  and Ni 0.17 Co 0.21 Fe 0.62 O@Ni 0.4 Co 0.3 Fe 2.3 O 4 ) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co (II)  and Ni (II)  ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.
Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4 and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4 and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.
Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.
Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Magnetic nanoparticles with exchange bias at room temperature, usable in technological devices, are still challenging to obtain. The Co and Ni combined doping of wüstite@magnetite nanoparticles is a valid strategy to surpass this limitation.
Author Ibarra, Manuel Ricardo
Marquina, Clara
Muzzi, Beatrice
Innocenti, Claudia
Sangregorio, Claudio
Fernández, César de Julián
Petrecca, Michele
Bertoni, Giovanni
Albino, Martin
Author_xml – sequence: 1
  givenname: Beatrice
  orcidid: 0000-0001-9151-7723
  surname: Muzzi
  fullname: Muzzi, Beatrice
  organization: University of Florence and INSTM
– sequence: 2
  givenname: Martin
  orcidid: 0000-0001-7438-0833
  surname: Albino
  fullname: Albino, Martin
  email: martin.albino@unifi.it
  organization: University of Florence and INSTM
– sequence: 3
  givenname: Michele
  surname: Petrecca
  fullname: Petrecca, Michele
  organization: University of Florence and INSTM
– sequence: 4
  givenname: Claudia
  surname: Innocenti
  fullname: Innocenti, Claudia
  organization: University of Florence and INSTM
– sequence: 5
  givenname: César de Julián
  surname: Fernández
  fullname: Fernández, César de Julián
  organization: IMEM – CNR
– sequence: 6
  givenname: Giovanni
  surname: Bertoni
  fullname: Bertoni, Giovanni
  organization: CNR – Istituto Nanoscienze
– sequence: 7
  givenname: Clara
  surname: Marquina
  fullname: Marquina, Clara
  organization: Universidad de Zaragoza
– sequence: 8
  givenname: Manuel Ricardo
  surname: Ibarra
  fullname: Ibarra, Manuel Ricardo
  organization: Universidad de Zaragoza
– sequence: 9
  givenname: Claudio
  orcidid: 0000-0002-2655-3901
  surname: Sangregorio
  fullname: Sangregorio, Claudio
  email: csangregorio@iccom.cnr.it
  organization: University of Florence and INSTM
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35274450$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFDEUwIO02A-9epSAl152m8xkMjO36rZqYbeKrXgMb5I325SZyZhkqD35j3nzHzPLthUKIgReEn6_x_s4IDuDG5CQV5zNOWPZcei7bp6xjLNSZPIZ2eeS5zNZZfXO452zPXIQwg1jOc9E-Zzs5UVWClGwffIzN3SFETp66kY7rKlr6cJ5PLm8xq6j337_CtFGPGnR-xTpBQxuBB-t7jBQSId-9q63YeN-cVNCorsFb9LD9fQK-xE9xMkjPfuhr2FYI31nk7eC9YAxvCC7LXQBX97HQ_L1_dnV4uNs-enD-eLtcqYFz-Us5wZbXmvQxhSyAWCpQyNKnmJTl41mDFgBjWnaCmSR_mVlmtpUGRhdiCI_JEfbvKN33ycMUaWadWoRBnRTUJnMq5JXrBAJffMEvXGTH1J1iUqDk1zkdaJe31NT06NRo7c9-Dv1MNoEiC2gvQvBY6u0jRCtG6IH2ynO1GaDarNB9bjBpM2faA-Z_ynUW-HWdnj3H1pdrpbLv-4fT4avog
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_175590
crossref_primary_10_1039_D3NA01108A
crossref_primary_10_1088_1361_648X_ac99cc
crossref_primary_10_1002_smtd_202300647
crossref_primary_10_1021_acs_chemmater_4c01421
crossref_primary_10_3390_nano13212827
crossref_primary_10_1021_acsami_3c03254
crossref_primary_10_1016_j_jallcom_2023_171056
crossref_primary_10_1039_D3CP06029B
crossref_primary_10_1021_acs_chemmater_2c02813
crossref_primary_10_1016_j_ica_2023_121545
crossref_primary_10_1063_5_0178839
crossref_primary_10_1016_j_scriptamat_2024_116055
crossref_primary_10_1021_acsanm_4c05505
crossref_primary_10_1039_D3CP04883G
Cites_doi 10.1103/PhysRevB.79.024418
10.1007/s10948-017-4044-2
10.2475/ajs.s5-22.128.131
10.1021/cm2003319
10.1103/PhysRevB.35.6847
10.1143/PTP.23.1055
10.1039/D0NA00134A
10.1063/1.4794978
10.1063/1.1413731
10.1016/j.jmmm.2017.02.040
10.1039/C6NR01303A
10.1039/C9NR02323B
10.1017/CBO9780511845000
10.1038/srep15054
10.1016/j.scriptamat.2010.04.019
10.1038/s41598-019-49642-8
10.1103/PhysRevB.78.174414
10.1107/S056774088200613X
10.1063/1.106756
10.1088/0953-8984/25/25/256004
10.1038/144327b0
10.1107/S0021889881009618
10.1021/nl2034514
10.1088/1361-6463/ab8bfe
10.1103/PhysRevLett.84.3466
10.1038/s41598-019-51631-w
10.1080/15980316.2017.1313179
10.1007/BF00549722
10.1039/c3nr02596a
10.1103/PhysRevB.96.085306
10.1016/j.jmmm.2011.05.014
10.1039/C4NR06351A
10.1016/j.jmmm.2007.05.026
10.1021/acs.chemmater.6b04768
10.1557/mrs.2013.231
10.1103/PhysRevB.84.092404
10.1039/C7NJ02558K
10.1002/anie.200603148
10.1016/j.micron.2013.08.005
10.1103/PhysRevB.101.014422
10.1080/01614940.2019.1659555
10.1021/jp300806j
10.1039/c3nr04562e
10.1021/cm062948j
10.1021/acs.chemmater.6b00623
10.1063/1.4799522
10.1016/S0304-8853(98)00266-2
10.1002/anie.200701694
10.1021/nn402487q
10.1021/acsenergylett.9b01584
10.1103/PhysRevB.70.092409
10.1039/C8NR01393D
10.1063/1.2152111
10.1021/jp207354s
ContentType Journal Article
Copyright 2022 The Authors. Small published by Wiley‐VCH GmbH
2022 The Authors. Small published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202107426
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35274450
10_1002_smll_202107426
SMLL202107426
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EU‐H2020 AMPHIBIAN Project
  funderid: 720853
– fundername: European Union's Horizon 2020 Research and Innovation Programme
  funderid: 823717‐ESTEEM3
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c4136-31def19cacdd56baa0829d471082b97bc00a05abdbf8a6571068db9d82adc5453
IEDL.DBID 24P
ISSN 1613-6810
1613-6829
IngestDate Thu Sep 04 21:54:54 EDT 2025
Fri Jul 25 12:07:36 EDT 2025
Wed Feb 19 02:25:52 EST 2025
Tue Jul 01 02:54:10 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Jan 22 16:24:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Néel temperature
doped-wüstite
core-shell nanoparticles
exchange bias
Language English
License Attribution
2022 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4136-31def19cacdd56baa0829d471082b97bc00a05abdbf8a6571068db9d82adc5453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7438-0833
0000-0002-2655-3901
0000-0001-9151-7723
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107426
PMID 35274450
PQID 2652761439
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2638718054
proquest_journals_2652761439
pubmed_primary_35274450
crossref_citationtrail_10_1002_smll_202107426
crossref_primary_10_1002_smll_202107426
wiley_primary_10_1002_smll_202107426_SMLL202107426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 35
2017; 41
2013; 25
2019; 11
2008; 78
1939; 144
2013; 7
2013; 5
2012; 12
2017; 433
2010; 63
2011; 323
2017; 30
2020; 2
2019; 62
2004; 70
2020; 53
2013; 52
2013; 113
2011; 23
2007; 19
2019; 9
2019; 4
1982; 38
2015; 5
2010
2011; 84
1999; 192
2005; 87
2017; 29
2020; 101
2008; 320
2015; 7
2017; 96
2009; 79
2013; 38
1921; 1
1960; 23
1981; 14
2000; 84
2017; 18
2016; 28
2012; 116
1931; 22
2018; 10
2001; 79
2007; 46
2016; 8
1992; 60
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Lappas A. (e_1_2_8_33_1) 2019; 9
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 9
  start-page: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 23
  start-page: 1055
  year: 1960
  publication-title: Prog. Theor. Phys.
– volume: 7
  start-page: 7132
  year: 2013
  publication-title: ACS Nano
– volume: 60
  start-page: 3060
  year: 1992
  publication-title: Appl. Phys. Lett.
– volume: 53
  year: 2020
  publication-title: J. Phys. D
– volume: 4
  start-page: 2181
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 320
  start-page: 600
  year: 2008
  publication-title: J. Magn. Magn. Mater.
– volume: 52
  start-page: 49
  year: 2013
  publication-title: Micron
– volume: 22
  start-page: 131
  year: 1931
  publication-title: Am. J. Sci.
– volume: 79
  year: 2009
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 5
  start-page: 7942
  year: 2013
  publication-title: Nanoscale
– volume: 62
  start-page: 163
  year: 2019
  publication-title: Catal. Rev.: Sci. Eng.
– volume: 41
  year: 2017
  publication-title: New J. Chem.
– volume: 30
  start-page: 2291
  year: 2017
  publication-title: J. Supercond. Nov. Magn.
– volume: 14
  start-page: 357
  year: 1981
  publication-title: J. Appl. Crystallogr.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 101
  year: 2020
  publication-title: Phys. Rev. B
– volume: 79
  start-page: 2785
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1279
  year: 2017
  publication-title: Chem. Mater.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 5
  year: 2013
  publication-title: Nanoscale
– volume: 113
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 2886
  year: 2011
  publication-title: Chem. Mater.
– volume: 19
  start-page: 3624
  year: 2007
  publication-title: Chem. Mater.
– volume: 35
  start-page: 6847
  year: 1987
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 8261
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 134
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 57
  year: 2017
  publication-title: J. Inf. Disp.
– volume: 9
  year: 2019
  publication-title: Phys. Rev. X
– volume: 28
  start-page: 4214
  year: 2016
  publication-title: Chem. Mater.
– volume: 38
  start-page: 1451
  year: 1982
  publication-title: Acta Crystallogr. B
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 12
  start-page: 246
  year: 2012
  publication-title: Nano Lett.
– volume: 46
  start-page: 6329
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 323
  start-page: 2408
  year: 2011
  publication-title: J. Magn. Magn. Mater.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 192
  start-page: 203
  year: 1999
  publication-title: J. Magn. Magn. Mater.
– year: 2010
– volume: 144
  start-page: 327
  year: 1939
  publication-title: Nature
– volume: 70
  year: 2004
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 3002
  year: 2015
  publication-title: Nanoscale
– volume: 46
  start-page: 4630
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 433
  start-page: 29
  year: 2017
  publication-title: J. Magn. Magn. Mater.
– volume: 2
  start-page: 3191
  year: 2020
  publication-title: Nanoscale Adv.
– volume: 38
  start-page: 909
  year: 2013
  publication-title: MRS Bull.
– volume: 1
  start-page: 79
  year: 1921
  publication-title: J. Mater. Sci.
– volume: 84
  start-page: 3466
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 63
  start-page: 312
  year: 2010
  publication-title: Scr. Mater.
– volume: 25
  year: 2013
  publication-title: J. Phys. Condens. Matter
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevB.79.024418
– ident: e_1_2_8_24_1
  doi: 10.1007/s10948-017-4044-2
– ident: e_1_2_8_41_1
  doi: 10.2475/ajs.s5-22.128.131
– ident: e_1_2_8_43_1
  doi: 10.1021/cm2003319
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevB.35.6847
– ident: e_1_2_8_55_1
  doi: 10.1143/PTP.23.1055
– ident: e_1_2_8_1_1
  doi: 10.1039/D0NA00134A
– ident: e_1_2_8_6_1
  doi: 10.1063/1.4794978
– ident: e_1_2_8_46_1
  doi: 10.1063/1.1413731
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jmmm.2017.02.040
– ident: e_1_2_8_26_1
  doi: 10.1039/C6NR01303A
– ident: e_1_2_8_4_1
  doi: 10.1039/C9NR02323B
– ident: e_1_2_8_30_1
  doi: 10.1017/CBO9780511845000
– ident: e_1_2_8_50_1
  doi: 10.1038/srep15054
– ident: e_1_2_8_36_1
  doi: 10.1016/j.scriptamat.2010.04.019
– ident: e_1_2_8_27_1
  doi: 10.1038/s41598-019-49642-8
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevB.78.174414
– ident: e_1_2_8_38_1
  doi: 10.1107/S056774088200613X
– ident: e_1_2_8_31_1
  doi: 10.1063/1.106756
– ident: e_1_2_8_51_1
  doi: 10.1088/0953-8984/25/25/256004
– ident: e_1_2_8_52_1
  doi: 10.1038/144327b0
– ident: e_1_2_8_37_1
  doi: 10.1107/S0021889881009618
– ident: e_1_2_8_8_1
  doi: 10.1021/nl2034514
– ident: e_1_2_8_12_1
  doi: 10.1088/1361-6463/ab8bfe
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.84.3466
– ident: e_1_2_8_3_1
  doi: 10.1038/s41598-019-51631-w
– ident: e_1_2_8_14_1
  doi: 10.1080/15980316.2017.1313179
– ident: e_1_2_8_39_1
  doi: 10.1007/BF00549722
– ident: e_1_2_8_21_1
  doi: 10.1039/c3nr02596a
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevB.96.085306
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jmmm.2011.05.014
– ident: e_1_2_8_42_1
  doi: 10.1039/C4NR06351A
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jmmm.2007.05.026
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.chemmater.6b04768
– ident: e_1_2_8_16_1
  doi: 10.1557/mrs.2013.231
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.84.092404
– ident: e_1_2_8_29_1
  doi: 10.1039/C7NJ02558K
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.200603148
– ident: e_1_2_8_35_1
  doi: 10.1016/j.micron.2013.08.005
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevB.101.014422
– volume: 9
  start-page: 041044
  year: 2019
  ident: e_1_2_8_33_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_2_1
  doi: 10.1080/01614940.2019.1659555
– ident: e_1_2_8_25_1
  doi: 10.1021/jp300806j
– ident: e_1_2_8_7_1
  doi: 10.1039/c3nr04562e
– ident: e_1_2_8_10_1
  doi: 10.1021/cm062948j
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.chemmater.6b00623
– ident: e_1_2_8_54_1
  doi: 10.1063/1.4799522
– ident: e_1_2_8_5_1
  doi: 10.1016/S0304-8853(98)00266-2
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.200701694
– ident: e_1_2_8_34_1
  doi: 10.1021/nn402487q
– ident: e_1_2_8_19_1
  doi: 10.1021/acsenergylett.9b01584
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevB.70.092409
– ident: e_1_2_8_45_1
  doi: 10.1039/C8NR01393D
– ident: e_1_2_8_47_1
  doi: 10.1063/1.2152111
– ident: e_1_2_8_23_1
  doi: 10.1021/jp207354s
SSID ssj0031247
Score 2.4651296
Snippet Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual...
Nanometric core@shell wüstite@ferrite (Fe 1− x O@Fe 3 O 4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their...
Nanometric core@shell wüstite@ferrite (Fe O@Fe O ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual...
Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual...
Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107426
SubjectTerms Antiferromagnetism
Bias
Coercivity
core‐shell nanoparticles
Crystal structure
Crystallography
Divalent cations
doped‐wüstite
Doping
exchange bias
Exchanging
Ferric Compounds
Ferrites
Ferrous Compounds
Iron oxides
Low temperature
Magnetic properties
Magnetism
Magnets
Nanoparticles
Nanoparticles - chemistry
Nanotechnology
Nickel
Néel temperature
Oxidation
Particle Size
Room temperature
Temperature
Transition temperature
Wustite
Title 3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107426
https://www.ncbi.nlm.nih.gov/pubmed/35274450
https://www.proquest.com/docview/2652761439
https://www.proquest.com/docview/2638718054
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5q-6IPYr1Ga9mC4FNoutnLyVu1F4r0lGJb7FvYqwhtIuek4Jt_zDf_mDObnLSHIoIQEjbZISGT2fk2O_MNwDsfRFSl9rkxpckFrRRSgmQuVaiijOgifIq2OFFHF-LTpby8k8Xf80OMP9zIMtJ4TQZu7Hz7ljR0fn1FSwecIgq5egBrlF9LNQy4OF2MxSV6r1ReBZ1WTsxbC9rGgm8vyy-7pXtYcxm6Jt9z-AQeD6CRfei1vA4roXkKj-5QCT6Dn6Vn04BImu2nFCjWRrbXzsLuGUV6si-_f1FQQNiNxMTYBYajKk6Xh6g4ZnBjp7MWlU6yFCYUWJciarHRXrPzgPC6p19mBz_6bGH28RvKTc3XJnTz53BxeHC-d5QPxRVyh35L4djrQ9ypnHHeS2WNoSRbj64Kj7bS1hWFKaSx3saJURLPq4m3lZ9w4x3CrvIFrDZtE14BM0YLablDUxbCalsVLu5oXUVdKGcLn0G-eLe1G5jHqQDGVd1zJvOadFGPusjg_dj_e8-58deeGwtV1YPtzWuuJNeIOsoqg63xMr5AWgoxTWhvqE-JM8UJ4tUMXvYqHm-FkFQLIYsMeNL5P56hPpseH4-t1_8j9AYecsqqSAFBG7DazW7CW8Q6nd1MnzPu9z_zPzic99M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7o-qA-yHpbq7saQfCpbDfNZfq27o1RZ5aFnUXfStIkIuy2MtMF3_xjvvnHPCe96CAiCIWSNqElJ8n5knznC8Ar50VQuXapMblJBe0UUoBkKpUvggzoIlxkW5yq6YV491EObEKKhen0IcYFN-oZcbymDk4L0ru_VENXV5e0d8CJUsjVTbglEJxTw-bibBiMc3Rf8XwV9FopSW8Nuo0Z310vv-6X_gCb69g1Op-TTbjXo0b2pjPzfbjh6wdw9zctwYfwLXds7hFKs6MYA8WawA6bpd8_J6on-_DjO7EC_H4gKcbWMxxWcb7c0-KYwYudLRu0OpUlnpBnbaTUYqK5YguP-LrTX2bHX7twYXbwGcvNzafat6tHcHFyvDicpv3pCmmFjkvh4Ot82CsqUzknlTWGomwd-iq820LbKstMJo11NkyMkvhcTZwt3IQbVyHuyh_DRt3U_gkwY7SQllfYl4Ww2hZZFfa0LoLOVGUzl0A61G1Z9dLjdALGZdmJJvOSbFGOtkjg9Zj_Sye68dec24Opyr7zrUquJNcIO_IigZfja6xA2gsxtW-uKU-OU8UJAtYEtjoTj59CTKqFkFkCPNr8H_9Qns9nszH19H8KvYDb08V8Vs7enr5_Bnc4hVhEdtA2bLTLa7-DwKe1z2PT_gnfw_pf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5oBdEHqbcarTqC4FNoOpmZbN56XaruloW22LcwVxHapOym4Jt_zDf_mOdMsmkXEUEIhElmSJiTmfNNzne-AXjvvAgqL1yqda5TQZFCSpBMpfJlkAFdhItsi2N1dCY-ncvzW1n8nT7E8MONRkacr2mAX7mwdSMauri8oNABJ0YhV3fhHkX8iNTHxWw5F-foveL2Kui0UlLeWso2Znxrtf2qW_oDa65C1-h7xuvwqAeNbLez8mO44-sn8PCWlOBT-JE7NvWIpNlBTIFiTWD7zdzvnBDTk3359ZNIAX4nkBJj6xnOqrhc7llxTOPBZvMGjU5tiSbkWRsZtVhoLtmpR3jdyS-zw-9dtjDb-4btpvpr7dvFMzgbH57uH6X95gqpRb-lcO51PmyXVlvnpDJaU5KtQ1eFZ1MWxmaZzqQ2zoSRVhKvq5EzpRtx7SzCrvw5rNVN7V8A07oQ0nCLQ1kIU5gys2G7KMpQZMqazCWQLvu2sr3yOG2AcVF1msm8IltUgy0S-DDUv-o0N_5ac3Npqqofe4uKK8kLRB15mcC74TZ2IIVCdO2ba6qT40pxhHg1gY3OxMOjEJIWQsgsAR5t_o93qE6mk8lQevk_jd7C_dnBuJp8PP78Ch5wSrCI3KBNWGvn1_41wp7WvIlf9m9SL_mI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3d+Metal+Doping+of+Core%40Shell+W%C3%BCstite%40ferrite+Nanoparticles+as+a+Promising+Route+toward+Room+Temperature+Exchange+Bias+Magnets&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Muzzi%2C+Beatrice&rft.au=Albino%2C+Martin&rft.au=Petrecca%2C+Michele&rft.au=Innocenti%2C+Claudia&rft.date=2022-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=16&rft_id=info:doi/10.1002%2Fsmll.202107426&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202107426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon