3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets
Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 16; pp. e2107426 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202107426 |
Cover
Loading…
Abstract | Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.
Magnetic nanoparticles with exchange bias at room temperature, usable in technological devices, are still challenging to obtain. The Co and Ni combined doping of wüstite@magnetite nanoparticles is a valid strategy to surpass this limitation. |
---|---|
AbstractList | Nanometric core@shell wüstite@ferrite (Fe
O@Fe
O
) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe
with Co
and Ni
on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co
Fe
O@Co
Fe
O
and Ni
Co
Fe
O@Ni
Co
Fe
O
) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co
and Ni
ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Nanometric core@shell wüstite@ferrite (Fe 1− x O@Fe 3 O 4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe (II) with Co (II) and Ni (II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co 0.3 Fe 0.7 O@Co 0.8 Fe 2.2 O 4 and Ni 0.17 Co 0.21 Fe 0.62 O@Ni 0.4 Co 0.3 Fe 2.3 O 4 ) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co (II) and Ni (II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4 and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4 and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition‐metal ions. Here, the effect of the combined substitution of Fe(II) with Co(II) and Ni(II) on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite‐based core and a ferrite shell, with tailored composition, (Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) is synthetized through a thermal‐decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II) and Ni(II) ions is performed. The dual‐doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni‐Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature. Magnetic nanoparticles with exchange bias at room temperature, usable in technological devices, are still challenging to obtain. The Co and Ni combined doping of wüstite@magnetite nanoparticles is a valid strategy to surpass this limitation. |
Author | Ibarra, Manuel Ricardo Marquina, Clara Muzzi, Beatrice Innocenti, Claudia Sangregorio, Claudio Fernández, César de Julián Petrecca, Michele Bertoni, Giovanni Albino, Martin |
Author_xml | – sequence: 1 givenname: Beatrice orcidid: 0000-0001-9151-7723 surname: Muzzi fullname: Muzzi, Beatrice organization: University of Florence and INSTM – sequence: 2 givenname: Martin orcidid: 0000-0001-7438-0833 surname: Albino fullname: Albino, Martin email: martin.albino@unifi.it organization: University of Florence and INSTM – sequence: 3 givenname: Michele surname: Petrecca fullname: Petrecca, Michele organization: University of Florence and INSTM – sequence: 4 givenname: Claudia surname: Innocenti fullname: Innocenti, Claudia organization: University of Florence and INSTM – sequence: 5 givenname: César de Julián surname: Fernández fullname: Fernández, César de Julián organization: IMEM – CNR – sequence: 6 givenname: Giovanni surname: Bertoni fullname: Bertoni, Giovanni organization: CNR – Istituto Nanoscienze – sequence: 7 givenname: Clara surname: Marquina fullname: Marquina, Clara organization: Universidad de Zaragoza – sequence: 8 givenname: Manuel Ricardo surname: Ibarra fullname: Ibarra, Manuel Ricardo organization: Universidad de Zaragoza – sequence: 9 givenname: Claudio orcidid: 0000-0002-2655-3901 surname: Sangregorio fullname: Sangregorio, Claudio email: csangregorio@iccom.cnr.it organization: University of Florence and INSTM |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35274450$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEUwIO02A-9epSAl152m8xkMjO36rZqYbeKrXgMb5I325SZyZhkqD35j3nzHzPLthUKIgReEn6_x_s4IDuDG5CQV5zNOWPZcei7bp6xjLNSZPIZ2eeS5zNZZfXO452zPXIQwg1jOc9E-Zzs5UVWClGwffIzN3SFETp66kY7rKlr6cJ5PLm8xq6j337_CtFGPGnR-xTpBQxuBB-t7jBQSId-9q63YeN-cVNCorsFb9LD9fQK-xE9xMkjPfuhr2FYI31nk7eC9YAxvCC7LXQBX97HQ_L1_dnV4uNs-enD-eLtcqYFz-Us5wZbXmvQxhSyAWCpQyNKnmJTl41mDFgBjWnaCmSR_mVlmtpUGRhdiCI_JEfbvKN33ycMUaWadWoRBnRTUJnMq5JXrBAJffMEvXGTH1J1iUqDk1zkdaJe31NT06NRo7c9-Dv1MNoEiC2gvQvBY6u0jRCtG6IH2ynO1GaDarNB9bjBpM2faA-Z_ynUW-HWdnj3H1pdrpbLv-4fT4avog |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_175590 crossref_primary_10_1039_D3NA01108A crossref_primary_10_1088_1361_648X_ac99cc crossref_primary_10_1002_smtd_202300647 crossref_primary_10_1021_acs_chemmater_4c01421 crossref_primary_10_3390_nano13212827 crossref_primary_10_1021_acsami_3c03254 crossref_primary_10_1016_j_jallcom_2023_171056 crossref_primary_10_1039_D3CP06029B crossref_primary_10_1021_acs_chemmater_2c02813 crossref_primary_10_1016_j_ica_2023_121545 crossref_primary_10_1063_5_0178839 crossref_primary_10_1016_j_scriptamat_2024_116055 crossref_primary_10_1021_acsanm_4c05505 crossref_primary_10_1039_D3CP04883G |
Cites_doi | 10.1103/PhysRevB.79.024418 10.1007/s10948-017-4044-2 10.2475/ajs.s5-22.128.131 10.1021/cm2003319 10.1103/PhysRevB.35.6847 10.1143/PTP.23.1055 10.1039/D0NA00134A 10.1063/1.4794978 10.1063/1.1413731 10.1016/j.jmmm.2017.02.040 10.1039/C6NR01303A 10.1039/C9NR02323B 10.1017/CBO9780511845000 10.1038/srep15054 10.1016/j.scriptamat.2010.04.019 10.1038/s41598-019-49642-8 10.1103/PhysRevB.78.174414 10.1107/S056774088200613X 10.1063/1.106756 10.1088/0953-8984/25/25/256004 10.1038/144327b0 10.1107/S0021889881009618 10.1021/nl2034514 10.1088/1361-6463/ab8bfe 10.1103/PhysRevLett.84.3466 10.1038/s41598-019-51631-w 10.1080/15980316.2017.1313179 10.1007/BF00549722 10.1039/c3nr02596a 10.1103/PhysRevB.96.085306 10.1016/j.jmmm.2011.05.014 10.1039/C4NR06351A 10.1016/j.jmmm.2007.05.026 10.1021/acs.chemmater.6b04768 10.1557/mrs.2013.231 10.1103/PhysRevB.84.092404 10.1039/C7NJ02558K 10.1002/anie.200603148 10.1016/j.micron.2013.08.005 10.1103/PhysRevB.101.014422 10.1080/01614940.2019.1659555 10.1021/jp300806j 10.1039/c3nr04562e 10.1021/cm062948j 10.1021/acs.chemmater.6b00623 10.1063/1.4799522 10.1016/S0304-8853(98)00266-2 10.1002/anie.200701694 10.1021/nn402487q 10.1021/acsenergylett.9b01584 10.1103/PhysRevB.70.092409 10.1039/C8NR01393D 10.1063/1.2152111 10.1021/jp207354s |
ContentType | Journal Article |
Copyright | 2022 The Authors. Small published by Wiley‐VCH GmbH 2022 The Authors. Small published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Small published by Wiley‐VCH GmbH – notice: 2022 The Authors. Small published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202107426 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 35274450 10_1002_smll_202107426 SMLL202107426 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EU‐H2020 AMPHIBIAN Project funderid: 720853 – fundername: European Union's Horizon 2020 Research and Innovation Programme funderid: 823717‐ESTEEM3 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c4136-31def19cacdd56baa0829d471082b97bc00a05abdbf8a6571068db9d82adc5453 |
IEDL.DBID | 24P |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Sep 04 21:54:54 EDT 2025 Fri Jul 25 12:07:36 EDT 2025 Wed Feb 19 02:25:52 EST 2025 Tue Jul 01 02:54:10 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Jan 22 16:24:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Néel temperature doped-wüstite core-shell nanoparticles exchange bias |
Language | English |
License | Attribution 2022 The Authors. Small published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4136-31def19cacdd56baa0829d471082b97bc00a05abdbf8a6571068db9d82adc5453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7438-0833 0000-0002-2655-3901 0000-0001-9151-7723 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107426 |
PMID | 35274450 |
PQID | 2652761439 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2638718054 proquest_journals_2652761439 pubmed_primary_35274450 crossref_citationtrail_10_1002_smll_202107426 crossref_primary_10_1002_smll_202107426 wiley_primary_10_1002_smll_202107426_SMLL202107426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1987; 35 2017; 41 2013; 25 2019; 11 2008; 78 1939; 144 2013; 7 2013; 5 2012; 12 2017; 433 2010; 63 2011; 323 2017; 30 2020; 2 2019; 62 2004; 70 2020; 53 2013; 52 2013; 113 2011; 23 2007; 19 2019; 9 2019; 4 1982; 38 2015; 5 2010 2011; 84 1999; 192 2005; 87 2017; 29 2020; 101 2008; 320 2015; 7 2017; 96 2009; 79 2013; 38 1921; 1 1960; 23 1981; 14 2000; 84 2017; 18 2016; 28 2012; 116 1931; 22 2018; 10 2001; 79 2007; 46 2016; 8 1992; 60 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Lappas A. (e_1_2_8_33_1) 2019; 9 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 9 start-page: 9 year: 2019 publication-title: Sci. Rep. – volume: 23 start-page: 1055 year: 1960 publication-title: Prog. Theor. Phys. – volume: 7 start-page: 7132 year: 2013 publication-title: ACS Nano – volume: 60 start-page: 3060 year: 1992 publication-title: Appl. Phys. Lett. – volume: 53 year: 2020 publication-title: J. Phys. D – volume: 4 start-page: 2181 year: 2019 publication-title: ACS Energy Lett. – volume: 78 year: 2008 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 320 start-page: 600 year: 2008 publication-title: J. Magn. Magn. Mater. – volume: 52 start-page: 49 year: 2013 publication-title: Micron – volume: 22 start-page: 131 year: 1931 publication-title: Am. J. Sci. – volume: 79 year: 2009 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 5 start-page: 7942 year: 2013 publication-title: Nanoscale – volume: 62 start-page: 163 year: 2019 publication-title: Catal. Rev.: Sci. Eng. – volume: 41 year: 2017 publication-title: New J. Chem. – volume: 30 start-page: 2291 year: 2017 publication-title: J. Supercond. Nov. Magn. – volume: 14 start-page: 357 year: 1981 publication-title: J. Appl. Crystallogr. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 101 year: 2020 publication-title: Phys. Rev. B – volume: 79 start-page: 2785 year: 2001 publication-title: Appl. Phys. Lett. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1279 year: 2017 publication-title: Chem. Mater. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 5 year: 2013 publication-title: Nanoscale – volume: 113 year: 2013 publication-title: J. Appl. Phys. – volume: 23 start-page: 2886 year: 2011 publication-title: Chem. Mater. – volume: 19 start-page: 3624 year: 2007 publication-title: Chem. Mater. – volume: 35 start-page: 6847 year: 1987 publication-title: Phys. Rev. B – volume: 116 start-page: 8261 year: 2012 publication-title: J. Phys. Chem. C – volume: 116 start-page: 134 year: 2012 publication-title: J. Phys. Chem. C – volume: 18 start-page: 57 year: 2017 publication-title: J. Inf. Disp. – volume: 9 year: 2019 publication-title: Phys. Rev. X – volume: 28 start-page: 4214 year: 2016 publication-title: Chem. Mater. – volume: 38 start-page: 1451 year: 1982 publication-title: Acta Crystallogr. B – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 12 start-page: 246 year: 2012 publication-title: Nano Lett. – volume: 46 start-page: 6329 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 323 start-page: 2408 year: 2011 publication-title: J. Magn. Magn. Mater. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 192 start-page: 203 year: 1999 publication-title: J. Magn. Magn. Mater. – year: 2010 – volume: 144 start-page: 327 year: 1939 publication-title: Nature – volume: 70 year: 2004 publication-title: Phys. Rev. B – volume: 7 start-page: 3002 year: 2015 publication-title: Nanoscale – volume: 46 start-page: 4630 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 433 start-page: 29 year: 2017 publication-title: J. Magn. Magn. Mater. – volume: 2 start-page: 3191 year: 2020 publication-title: Nanoscale Adv. – volume: 38 start-page: 909 year: 2013 publication-title: MRS Bull. – volume: 1 start-page: 79 year: 1921 publication-title: J. Mater. Sci. – volume: 84 start-page: 3466 year: 2000 publication-title: Phys. Rev. Lett. – volume: 63 start-page: 312 year: 2010 publication-title: Scr. Mater. – volume: 25 year: 2013 publication-title: J. Phys. Condens. Matter – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevB.79.024418 – ident: e_1_2_8_24_1 doi: 10.1007/s10948-017-4044-2 – ident: e_1_2_8_41_1 doi: 10.2475/ajs.s5-22.128.131 – ident: e_1_2_8_43_1 doi: 10.1021/cm2003319 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevB.35.6847 – ident: e_1_2_8_55_1 doi: 10.1143/PTP.23.1055 – ident: e_1_2_8_1_1 doi: 10.1039/D0NA00134A – ident: e_1_2_8_6_1 doi: 10.1063/1.4794978 – ident: e_1_2_8_46_1 doi: 10.1063/1.1413731 – ident: e_1_2_8_44_1 doi: 10.1016/j.jmmm.2017.02.040 – ident: e_1_2_8_26_1 doi: 10.1039/C6NR01303A – ident: e_1_2_8_4_1 doi: 10.1039/C9NR02323B – ident: e_1_2_8_30_1 doi: 10.1017/CBO9780511845000 – ident: e_1_2_8_50_1 doi: 10.1038/srep15054 – ident: e_1_2_8_36_1 doi: 10.1016/j.scriptamat.2010.04.019 – ident: e_1_2_8_27_1 doi: 10.1038/s41598-019-49642-8 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevB.78.174414 – ident: e_1_2_8_38_1 doi: 10.1107/S056774088200613X – ident: e_1_2_8_31_1 doi: 10.1063/1.106756 – ident: e_1_2_8_51_1 doi: 10.1088/0953-8984/25/25/256004 – ident: e_1_2_8_52_1 doi: 10.1038/144327b0 – ident: e_1_2_8_37_1 doi: 10.1107/S0021889881009618 – ident: e_1_2_8_8_1 doi: 10.1021/nl2034514 – ident: e_1_2_8_12_1 doi: 10.1088/1361-6463/ab8bfe – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.84.3466 – ident: e_1_2_8_3_1 doi: 10.1038/s41598-019-51631-w – ident: e_1_2_8_14_1 doi: 10.1080/15980316.2017.1313179 – ident: e_1_2_8_39_1 doi: 10.1007/BF00549722 – ident: e_1_2_8_21_1 doi: 10.1039/c3nr02596a – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevB.96.085306 – ident: e_1_2_8_32_1 doi: 10.1016/j.jmmm.2011.05.014 – ident: e_1_2_8_42_1 doi: 10.1039/C4NR06351A – ident: e_1_2_8_53_1 doi: 10.1016/j.jmmm.2007.05.026 – ident: e_1_2_8_11_1 doi: 10.1021/acs.chemmater.6b04768 – ident: e_1_2_8_16_1 doi: 10.1557/mrs.2013.231 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.84.092404 – ident: e_1_2_8_29_1 doi: 10.1039/C7NJ02558K – ident: e_1_2_8_9_1 doi: 10.1002/anie.200603148 – ident: e_1_2_8_35_1 doi: 10.1016/j.micron.2013.08.005 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevB.101.014422 – volume: 9 start-page: 041044 year: 2019 ident: e_1_2_8_33_1 publication-title: Phys. Rev. X – ident: e_1_2_8_2_1 doi: 10.1080/01614940.2019.1659555 – ident: e_1_2_8_25_1 doi: 10.1021/jp300806j – ident: e_1_2_8_7_1 doi: 10.1039/c3nr04562e – ident: e_1_2_8_10_1 doi: 10.1021/cm062948j – ident: e_1_2_8_28_1 doi: 10.1021/acs.chemmater.6b00623 – ident: e_1_2_8_54_1 doi: 10.1063/1.4799522 – ident: e_1_2_8_5_1 doi: 10.1016/S0304-8853(98)00266-2 – ident: e_1_2_8_20_1 doi: 10.1002/anie.200701694 – ident: e_1_2_8_34_1 doi: 10.1021/nn402487q – ident: e_1_2_8_19_1 doi: 10.1021/acsenergylett.9b01584 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevB.70.092409 – ident: e_1_2_8_45_1 doi: 10.1039/C8NR01393D – ident: e_1_2_8_47_1 doi: 10.1063/1.2152111 – ident: e_1_2_8_23_1 doi: 10.1021/jp207354s |
SSID | ssj0031247 |
Score | 2.4651296 |
Snippet | Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual... Nanometric core@shell wüstite@ferrite (Fe 1− x O@Fe 3 O 4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their... Nanometric core@shell wüstite@ferrite (Fe O@Fe O ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual... Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual... Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2107426 |
SubjectTerms | Antiferromagnetism Bias Coercivity core‐shell nanoparticles Crystal structure Crystallography Divalent cations doped‐wüstite Doping exchange bias Exchanging Ferric Compounds Ferrites Ferrous Compounds Iron oxides Low temperature Magnetic properties Magnetism Magnets Nanoparticles Nanoparticles - chemistry Nanotechnology Nickel Néel temperature Oxidation Particle Size Room temperature Temperature Transition temperature Wustite |
Title | 3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107426 https://www.ncbi.nlm.nih.gov/pubmed/35274450 https://www.proquest.com/docview/2652761439 https://www.proquest.com/docview/2638718054 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5q-6IPYr1Ga9mC4FNoutnLyVu1F4r0lGJb7FvYqwhtIuek4Jt_zDf_mDObnLSHIoIQEjbZISGT2fk2O_MNwDsfRFSl9rkxpckFrRRSgmQuVaiijOgifIq2OFFHF-LTpby8k8Xf80OMP9zIMtJ4TQZu7Hz7ljR0fn1FSwecIgq5egBrlF9LNQy4OF2MxSV6r1ReBZ1WTsxbC9rGgm8vyy-7pXtYcxm6Jt9z-AQeD6CRfei1vA4roXkKj-5QCT6Dn6Vn04BImu2nFCjWRrbXzsLuGUV6si-_f1FQQNiNxMTYBYajKk6Xh6g4ZnBjp7MWlU6yFCYUWJciarHRXrPzgPC6p19mBz_6bGH28RvKTc3XJnTz53BxeHC-d5QPxRVyh35L4djrQ9ypnHHeS2WNoSRbj64Kj7bS1hWFKaSx3saJURLPq4m3lZ9w4x3CrvIFrDZtE14BM0YLablDUxbCalsVLu5oXUVdKGcLn0G-eLe1G5jHqQDGVd1zJvOadFGPusjg_dj_e8-58deeGwtV1YPtzWuuJNeIOsoqg63xMr5AWgoxTWhvqE-JM8UJ4tUMXvYqHm-FkFQLIYsMeNL5P56hPpseH4-t1_8j9AYecsqqSAFBG7DazW7CW8Q6nd1MnzPu9z_zPzic99M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7o-qA-yHpbq7saQfCpbDfNZfq27o1RZ5aFnUXfStIkIuy2MtMF3_xjvvnHPCe96CAiCIWSNqElJ8n5knznC8Ar50VQuXapMblJBe0UUoBkKpUvggzoIlxkW5yq6YV491EObEKKhen0IcYFN-oZcbymDk4L0ru_VENXV5e0d8CJUsjVTbglEJxTw-bibBiMc3Rf8XwV9FopSW8Nuo0Z310vv-6X_gCb69g1Op-TTbjXo0b2pjPzfbjh6wdw9zctwYfwLXds7hFKs6MYA8WawA6bpd8_J6on-_DjO7EC_H4gKcbWMxxWcb7c0-KYwYudLRu0OpUlnpBnbaTUYqK5YguP-LrTX2bHX7twYXbwGcvNzafat6tHcHFyvDicpv3pCmmFjkvh4Ot82CsqUzknlTWGomwd-iq820LbKstMJo11NkyMkvhcTZwt3IQbVyHuyh_DRt3U_gkwY7SQllfYl4Ww2hZZFfa0LoLOVGUzl0A61G1Z9dLjdALGZdmJJvOSbFGOtkjg9Zj_Sye68dec24Opyr7zrUquJNcIO_IigZfja6xA2gsxtW-uKU-OU8UJAtYEtjoTj59CTKqFkFkCPNr8H_9Qns9nszH19H8KvYDb08V8Vs7enr5_Bnc4hVhEdtA2bLTLa7-DwKe1z2PT_gnfw_pf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5oBdEHqbcarTqC4FNoOpmZbN56XaruloW22LcwVxHapOym4Jt_zDf_mOdMsmkXEUEIhElmSJiTmfNNzne-AXjvvAgqL1yqda5TQZFCSpBMpfJlkAFdhItsi2N1dCY-ncvzW1n8nT7E8MONRkacr2mAX7mwdSMauri8oNABJ0YhV3fhHkX8iNTHxWw5F-foveL2Kui0UlLeWso2Znxrtf2qW_oDa65C1-h7xuvwqAeNbLez8mO44-sn8PCWlOBT-JE7NvWIpNlBTIFiTWD7zdzvnBDTk3359ZNIAX4nkBJj6xnOqrhc7llxTOPBZvMGjU5tiSbkWRsZtVhoLtmpR3jdyS-zw-9dtjDb-4btpvpr7dvFMzgbH57uH6X95gqpRb-lcO51PmyXVlvnpDJaU5KtQ1eFZ1MWxmaZzqQ2zoSRVhKvq5EzpRtx7SzCrvw5rNVN7V8A07oQ0nCLQ1kIU5gys2G7KMpQZMqazCWQLvu2sr3yOG2AcVF1msm8IltUgy0S-DDUv-o0N_5ac3Npqqofe4uKK8kLRB15mcC74TZ2IIVCdO2ba6qT40pxhHg1gY3OxMOjEJIWQsgsAR5t_o93qE6mk8lQevk_jd7C_dnBuJp8PP78Ch5wSrCI3KBNWGvn1_41wp7WvIlf9m9SL_mI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3d+Metal+Doping+of+Core%40Shell+W%C3%BCstite%40ferrite+Nanoparticles+as+a+Promising+Route+toward+Room+Temperature+Exchange+Bias+Magnets&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Muzzi%2C+Beatrice&rft.au=Albino%2C+Martin&rft.au=Petrecca%2C+Michele&rft.au=Innocenti%2C+Claudia&rft.date=2022-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=16&rft_id=info:doi/10.1002%2Fsmll.202107426&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202107426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |