Electronic and Structural Engineering of Carbon‐Based Metal‐Free Electrocatalysts for Water Splitting
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, t...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 13; pp. e1803625 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.
Carbon‐based nanomaterials are expected to be cost‐effective alternatives to noble‐metal electrocatalysts and have become a hot research field in recent years. Strategies for designing carbon‐based electrocatalysts for water splitting are summarized. Electronic and structure engineering procedures that are used to tune the activity of the carbon materials are presented systematically to provide guidance for future research. |
---|---|
AbstractList | Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.
Carbon‐based nanomaterials are expected to be cost‐effective alternatives to noble‐metal electrocatalysts and have become a hot research field in recent years. Strategies for designing carbon‐based electrocatalysts for water splitting are summarized. Electronic and structure engineering procedures that are used to tune the activity of the carbon materials are presented systematically to provide guidance for future research. Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes. Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon-based metal-free nanomaterials have been considered a class of promising low-cost materials for clean and sustainable energy-conversion reactions. However, beyond the ORR, the development of carbon-based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon-based metal-free catalysts is inadequate compared to their metal-based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon-based materials. Herein, using water splitting as an example, some state-of-the-art strategies in promoting carbon-based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic-carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon-based nanomaterials for various applications in energy-conversion processes.Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon-based metal-free nanomaterials have been considered a class of promising low-cost materials for clean and sustainable energy-conversion reactions. However, beyond the ORR, the development of carbon-based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon-based metal-free catalysts is inadequate compared to their metal-based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon-based materials. Herein, using water splitting as an example, some state-of-the-art strategies in promoting carbon-based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic-carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon-based nanomaterials for various applications in energy-conversion processes. |
Author | Jiao, Yan Vasileff, Anthony Zheng, Yao Qiao, Shi‐Zhang Wang, Xuesi |
Author_xml | – sequence: 1 givenname: Xuesi orcidid: 0000-0002-2477-8111 surname: Wang fullname: Wang, Xuesi organization: The University of Adelaide – sequence: 2 givenname: Anthony surname: Vasileff fullname: Vasileff, Anthony organization: The University of Adelaide – sequence: 3 givenname: Yan orcidid: 0000-0003-1329-4290 surname: Jiao fullname: Jiao, Yan organization: The University of Adelaide – sequence: 4 givenname: Yao orcidid: 0000-0002-2411-8041 surname: Zheng fullname: Zheng, Yao email: yao.zheng01@adelaide.edu.au organization: The University of Adelaide – sequence: 5 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30276904$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFrFDEYhoNU7Hb16lECXrzs-iWTZCbHdd2q0OKhiseQyXxTUmaTNclQ9uZP8Df2l3TKbhUKIjmEhOd5-fjeM3ISYkBCXjNYMgD-3nZbu-TAGqgUl8_IjEnOFgK0PCEz0JVcaCWaU3KW8w0AaAXqBTmtgNdKg5gRvxnQlRSDd9SGjl6VNLoyJjvQTbj2ATH5cE1jT9c2tTHc_fr9wWbs6CUWO0yv84RIjyHOTn_7XDLtY6I_bMFEr3aDL2XKeEme93bI-Op4z8n388239efFxddPX9ari4UTbBq3aZWqpey4AJCWCy4Ruo41UiGvKt3qhvcOdSW4Yw1aJyzUjutetQokSlHNybtD7i7FnyPmYrY-OxwGGzCO2XDGZC0rmM6cvH2C3sQxhWm6idJKSVZP5Jy8OVJju8XO7JLf2rQ3j0ucAHEAXIo5J-yN88UWH0NJ1g-GgXnoyjx0Zf50NWnLJ9pj8j8FfRBu_YD7_9Bm9fFy9de9B2spp3o |
CitedBy_id | crossref_primary_10_1021_acsnano_9b09554 crossref_primary_10_1021_jacs_0c13002 crossref_primary_10_1016_j_cattod_2023_114129 crossref_primary_10_1021_acsami_9b13586 crossref_primary_10_1016_j_cej_2021_128809 crossref_primary_10_1088_1361_6463_ac4b56 crossref_primary_10_1016_j_ccr_2024_216112 crossref_primary_10_1021_jacs_3c12780 crossref_primary_10_1002_adfm_202003000 crossref_primary_10_1002_smll_202106279 crossref_primary_10_1021_acs_jpclett_0c00703 crossref_primary_10_1016_S1872_5813_21_60109_3 crossref_primary_10_1002_smtd_202301469 crossref_primary_10_1002_admi_202200098 crossref_primary_10_1016_j_matt_2021_09_024 crossref_primary_10_1016_j_flatc_2022_100415 crossref_primary_10_1016_j_mattod_2019_12_003 crossref_primary_10_1021_acsomega_1c00184 crossref_primary_10_1016_j_jelechem_2021_115514 crossref_primary_10_1021_acsnano_0c05088 crossref_primary_10_1002_smll_202301261 crossref_primary_10_1016_j_jcis_2022_12_105 crossref_primary_10_1039_C9CC04869C crossref_primary_10_1002_adfm_202008028 crossref_primary_10_1039_D0NJ06191C crossref_primary_10_1016_j_jece_2022_108189 crossref_primary_10_1039_D0TA01697G crossref_primary_10_1039_D1TA07393A crossref_primary_10_1039_D0TA02411B crossref_primary_10_1680_jsuin_20_00028 crossref_primary_10_1002_smtd_202000988 crossref_primary_10_1039_D2CY00050D crossref_primary_10_1016_j_ccr_2023_215644 crossref_primary_10_1021_acscatal_4c06814 crossref_primary_10_1016_j_jechem_2020_06_033 crossref_primary_10_1016_j_nanoen_2019_104194 crossref_primary_10_1002_smll_201906775 crossref_primary_10_1002_ente_202301504 crossref_primary_10_1002_adma_202401448 crossref_primary_10_1039_D4SE00457D crossref_primary_10_1002_smll_202105524 crossref_primary_10_1021_acssuschemeng_9b03906 crossref_primary_10_3390_catal14010057 crossref_primary_10_1039_D2DT01111E crossref_primary_10_1021_acsanm_4c00221 crossref_primary_10_1021_acs_jpcc_0c05898 crossref_primary_10_1021_acscatal_9b04060 crossref_primary_10_1021_acscatal_2c06067 crossref_primary_10_1093_nsr_nwac231 crossref_primary_10_1002_smll_202001642 crossref_primary_10_1016_j_jcis_2024_07_009 crossref_primary_10_1021_acsaem_0c00361 crossref_primary_10_1039_C9NR08102J crossref_primary_10_1002_adfm_202010561 crossref_primary_10_1002_smll_202305289 crossref_primary_10_1002_anie_202103557 crossref_primary_10_1002_cey2_85 crossref_primary_10_1007_s10854_019_02773_0 crossref_primary_10_1016_j_cej_2020_128325 crossref_primary_10_1021_acs_energyfuels_3c02732 crossref_primary_10_1002_smll_201903363 crossref_primary_10_1039_D1TA02795F crossref_primary_10_1007_s40243_022_00214_3 crossref_primary_10_1016_j_carbon_2021_07_064 crossref_primary_10_1016_j_ijhydene_2019_11_204 crossref_primary_10_1002_adfm_202101797 crossref_primary_10_1038_s41598_019_52412_1 crossref_primary_10_1007_s40843_020_1566_6 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1039_D0TA00413H crossref_primary_10_1016_j_scitotenv_2023_167146 crossref_primary_10_1021_jacs_9b05006 crossref_primary_10_1016_j_jcis_2020_05_089 crossref_primary_10_1039_C9TA10088A crossref_primary_10_1021_acsaem_2c03514 crossref_primary_10_1021_jacs_1c13374 crossref_primary_10_1021_acsami_9b18961 crossref_primary_10_1021_acssuschemeng_1c05661 crossref_primary_10_1002_smll_202302272 crossref_primary_10_1016_j_apsusc_2020_147909 crossref_primary_10_1016_j_ijhydene_2022_05_002 crossref_primary_10_1039_D4TA03866E crossref_primary_10_1021_acsami_0c14768 crossref_primary_10_1039_D0NR01612H crossref_primary_10_1021_acssuschemeng_0c03938 crossref_primary_10_1002_aenm_202103426 crossref_primary_10_1149_1945_7111_ac6986 crossref_primary_10_1021_acsami_9b08483 crossref_primary_10_1016_j_jelechem_2023_117489 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1016_j_cclet_2018_11_021 crossref_primary_10_3390_ma16134828 crossref_primary_10_1002_smll_202201291 crossref_primary_10_1002_advs_202301045 crossref_primary_10_1002_cplu_202400278 crossref_primary_10_1002_adma_202307779 crossref_primary_10_1039_C9TA04163J crossref_primary_10_1002_smtd_202100945 crossref_primary_10_1021_acs_inorgchem_3c01384 crossref_primary_10_1016_j_ccr_2020_213468 crossref_primary_10_1002_aenm_201901227 crossref_primary_10_1002_advs_202412805 crossref_primary_10_1016_j_electacta_2023_143464 crossref_primary_10_1039_D0TA09495A crossref_primary_10_1002_smsc_202100061 crossref_primary_10_1039_D3QM00723E crossref_primary_10_1007_s10854_020_03216_x crossref_primary_10_1002_chem_201902998 crossref_primary_10_1007_s12274_023_6221_x crossref_primary_10_1039_D0TA03392H crossref_primary_10_1002_smll_202307830 crossref_primary_10_1021_acssuschemeng_8b06030 crossref_primary_10_1007_s11356_020_11058_7 crossref_primary_10_1016_j_cej_2020_126045 crossref_primary_10_1039_D0SE00399A crossref_primary_10_1016_j_ijhydene_2020_11_098 crossref_primary_10_1039_D3NJ00675A crossref_primary_10_1021_acsami_9b21575 crossref_primary_10_26599_NRE_2022_9120036 crossref_primary_10_3390_ma16103760 crossref_primary_10_1007_s42773_024_00388_1 crossref_primary_10_1149_1945_7111_ac7172 crossref_primary_10_1002_asia_202400166 crossref_primary_10_1039_D3TA00318C crossref_primary_10_1016_j_ensm_2020_06_022 crossref_primary_10_1002_er_7800 crossref_primary_10_1039_D0EE01617A crossref_primary_10_1039_C9TA12866B crossref_primary_10_1002_cssc_202100055 crossref_primary_10_1039_D0SE00548G crossref_primary_10_1002_cssc_202401301 crossref_primary_10_1002_smll_202307943 crossref_primary_10_1007_s41918_022_00136_8 crossref_primary_10_1007_s11705_022_2153_3 crossref_primary_10_1039_D2TA05953C crossref_primary_10_1002_adma_202405664 crossref_primary_10_1002_cctc_202400259 crossref_primary_10_1016_j_apmt_2022_101670 crossref_primary_10_1016_j_cej_2021_131133 crossref_primary_10_1016_j_jallcom_2024_173837 crossref_primary_10_1021_acs_langmuir_4c03427 crossref_primary_10_1002_ente_202401978 crossref_primary_10_1007_s11814_020_0626_y crossref_primary_10_1039_D3RA00589E crossref_primary_10_1016_j_inoche_2024_112972 crossref_primary_10_1021_acs_inorgchem_3c01639 crossref_primary_10_1002_ange_202103557 crossref_primary_10_1039_C9EE03573G crossref_primary_10_1021_acsnano_9b02510 crossref_primary_10_1038_s41467_023_43963_z crossref_primary_10_1016_j_xcrp_2022_100784 crossref_primary_10_1016_j_ccr_2024_215899 crossref_primary_10_1039_D0MA00745E crossref_primary_10_1039_D0TA06368A crossref_primary_10_1002_smll_202305220 crossref_primary_10_1016_j_jpowsour_2021_229635 crossref_primary_10_1039_C9CE01533G crossref_primary_10_1021_acs_inorgchem_2c03840 crossref_primary_10_1021_acsami_9b16224 crossref_primary_10_1021_acsanm_4c04400 crossref_primary_10_1002_slct_202202382 crossref_primary_10_1088_2053_1583_ac46f9 crossref_primary_10_3389_fmats_2022_1090412 crossref_primary_10_1039_D2EE00686C crossref_primary_10_1016_j_cej_2022_138063 crossref_primary_10_1021_acssuschemeng_1c00575 crossref_primary_10_1021_acs_chemrev_1c00191 crossref_primary_10_1002_adfm_202107196 crossref_primary_10_1039_D1CC04770A crossref_primary_10_1002_aenm_202101202 crossref_primary_10_1021_acs_inorgchem_9b02333 crossref_primary_10_1007_s40242_020_0107_1 crossref_primary_10_1016_j_horiz_2021_100002 crossref_primary_10_1002_adma_202006274 crossref_primary_10_1002_advs_202001002 crossref_primary_10_1002_chem_201904769 crossref_primary_10_1002_smtd_202401492 crossref_primary_10_1016_j_apsusc_2020_146183 crossref_primary_10_1039_D1EE00306B crossref_primary_10_1016_j_fuel_2024_133761 crossref_primary_10_1002_anie_201914647 crossref_primary_10_1002_smll_202311452 crossref_primary_10_1002_adma_202301359 crossref_primary_10_1002_eom2_12013 crossref_primary_10_1039_C9TA04361F crossref_primary_10_1002_adfm_202007423 crossref_primary_10_1002_smll_202408811 crossref_primary_10_1016_j_cogsc_2020_100398 crossref_primary_10_1039_D0NR06857H crossref_primary_10_1039_D0TA03138K crossref_primary_10_1039_D2SC02346F crossref_primary_10_1016_j_jpowsour_2020_229330 crossref_primary_10_1002_ange_201914647 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1039_D1DT00658D crossref_primary_10_3390_ma13010114 crossref_primary_10_1002_adfm_202010968 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1007_s40843_019_1176_6 crossref_primary_10_1016_j_seppur_2024_126454 crossref_primary_10_1016_j_mtchem_2021_100634 crossref_primary_10_1016_j_apsusc_2020_147292 crossref_primary_10_1021_acsnano_9b06244 crossref_primary_10_54097_ex006g06 crossref_primary_10_1016_j_rser_2021_111771 crossref_primary_10_1039_C9TA09104A crossref_primary_10_1039_D1NR02592A crossref_primary_10_1073_pnas_2202812119 crossref_primary_10_1002_smll_202001295 crossref_primary_10_1039_C9EE00555B crossref_primary_10_1002_adma_201806403 crossref_primary_10_1016_j_electacta_2021_137712 crossref_primary_10_1016_j_carbon_2020_06_002 crossref_primary_10_1021_acsnano_0c06535 crossref_primary_10_1002_anie_202211094 crossref_primary_10_1039_C9QI01367A crossref_primary_10_1016_j_mcat_2021_112109 crossref_primary_10_1021_acsami_0c06506 crossref_primary_10_1002_ange_202211094 crossref_primary_10_1039_D0CC07735F crossref_primary_10_1016_j_gee_2020_11_009 crossref_primary_10_1016_j_checat_2021_06_017 crossref_primary_10_1186_s42833_019_0006_2 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1021_accountsmr_1c00190 crossref_primary_10_1002_cnl2_105 crossref_primary_10_1016_j_nanoen_2023_109183 crossref_primary_10_1007_s12209_024_00416_y crossref_primary_10_1039_D0CP00468E crossref_primary_10_1016_j_nanoen_2019_02_043 crossref_primary_10_1002_chem_202000211 crossref_primary_10_1039_D2TA09416A crossref_primary_10_1021_acsnano_2c08499 crossref_primary_10_1039_D0NR07275C crossref_primary_10_1021_acs_chemrev_2c00429 crossref_primary_10_1002_adfm_202010472 crossref_primary_10_1021_accountsmr_1c00194 crossref_primary_10_1039_D2CC06895H crossref_primary_10_1002_smll_202412435 crossref_primary_10_1016_j_jpowsour_2021_230514 crossref_primary_10_3390_nano15010065 crossref_primary_10_1039_D0TA10596A crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_3390_molecules28083292 crossref_primary_10_1002_adfm_201910534 crossref_primary_10_1016_j_checat_2022_07_001 crossref_primary_10_1002_cssc_201901628 crossref_primary_10_1016_j_colsurfa_2024_134933 crossref_primary_10_1007_s41918_020_00066_3 crossref_primary_10_1016_j_est_2023_108824 |
Cites_doi | 10.1039/C6TA05863A 10.1002/anie.201510495 10.1002/anie.201410050 10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B 10.1039/C5CP02014J 10.1039/C6TA09315A 10.1039/C6CC07217H 10.1021/nn901850u 10.1038/nnano.2015.48 10.1021/acs.accounts.6b00635 10.1021/ja3089923 10.1016/j.electacta.2014.08.001 10.1039/C5NH00002E 10.1002/anie.201403946 10.1002/adma.201606207 10.1002/aenm.201602928 10.1038/nnano.2010.93 10.1002/adfm.201401264 10.1002/adma.201602912 10.1038/nenergy.2016.130 10.1002/adfm.201302940 10.1126/science.1168049 10.1002/aenm.201602068 10.1021/ja500432h 10.1002/adma.201601406 10.1002/chem.201601535 10.1002/adma.201500821 10.1002/anie.201409080 10.1002/ppsc.201600207 10.1038/srep07557 10.1021/ja4027715 10.1038/nnano.2012.72 10.1002/adma.201604942 10.1002/adma.201506112 10.1039/C4CS00470A 10.1002/anie.201407031 10.1002/adfm.201606352 10.1016/j.ensm.2015.08.001 10.1021/cr300367d 10.1002/adma.201401848 10.1016/j.jcat.2014.03.011 10.1021/nn501434a 10.1149/1.1856988 10.1002/ange.201607405 10.1002/anie.201411125 10.1021/jp1048887 10.1021/acsnano.7b03290 10.1021/cm502260m 10.1039/C4CC02713B 10.1002/adma.201305608 10.1021/cr900070d 10.1021/nn506701x 10.1002/celc.201500268 10.1038/ncomms4783 10.1039/C7TA03999A 10.1039/c2ee03479d 10.1002/aenm.201501870 10.1021/acscatal.5b00601 10.1038/ncomms3390 10.1039/c2cs35307e |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201803625 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30276904 10_1002_adma_201803625 ADMA201803625 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP160104866; DP170104464; LP160100927; DE160101163; FL170100154 – fundername: Australian Research Council grantid: FL170100154 – fundername: Australian Research Council grantid: DP160104866 – fundername: Australian Research Council grantid: DP170104464 – fundername: Australian Research Council grantid: LP160100927 – fundername: Australian Research Council grantid: DE160101163 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4135-8b66755d24005a2425e0dd1856e2339b982fce9342c18eac4a07c29f6b605e543 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:19:48 EDT 2025 Fri Jul 25 03:55:31 EDT 2025 Wed Feb 19 02:33:11 EST 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Jul 01 00:44:45 EDT 2025 Wed Jan 22 16:23:52 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | metal-free electrocatalysts oxygen evolution reactions hydrogen evolution reactions water splitting carbon engineering |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4135-8b66755d24005a2425e0dd1856e2339b982fce9342c18eac4a07c29f6b605e543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1329-4290 0000-0002-4568-8422 0000-0002-2477-8111 0000-0002-2411-8041 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201803625 |
PMID | 30276904 |
PQID | 2196651775 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2115753030 proquest_journals_2196651775 pubmed_primary_30276904 crossref_citationtrail_10_1002_adma_201803625 crossref_primary_10_1002_adma_201803625 wiley_primary_10_1002_adma_201803625_ADMA201803625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Mar |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-Mar |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 2 2015; 1 2017; 7 2014; 314 2015; 17 2013; 4 2015; 5 2005; 152 2017; 27 2013; 42 2015; 54 2015; 10 2009; 110 2014; 26 2016; 52 2014; 24 2016; 128 2017; 29 2015; 9 2014; 136 2016; 55 2016; 4 2017; 50 2016; 6 2014; 5 2015; 27 2014; 4 2016; 1 2010; 114 2017; 11 2015; 44 2017; 34 1999; 11 2013; 113 2013; 135 2014; 143 2012; 7 2014; 8 2016; 28 2014; 50 2010; 5 2010; 4 2012; 5 2009; 323 2014; 53 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 152 start-page: J23 year: 2005 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 3783 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 931 year: 2015 publication-title: ACS Nano – volume: 5 start-page: 4133 year: 2015 publication-title: ACS Catal. – volume: 29 start-page: 1606207 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 2390 year: 2013 publication-title: Nat. Commun. – volume: 110 start-page: 132 year: 2009 publication-title: Chem. Rev. – volume: 2 start-page: 1929 year: 2015 publication-title: ChemElectroChem – volume: 26 start-page: 5868 year: 2014 publication-title: Chem. Mater. – volume: 4 start-page: 1321 year: 2010 publication-title: ACS Nano – volume: 11 start-page: 7293 year: 2017 publication-title: ACS Nano – volume: 1 start-page: 17 year: 2015 publication-title: Energy Storage Mater. – volume: 7 start-page: 394 year: 2012 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 5956 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1602068 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 154 year: 1999 publication-title: Adv. Mater. – volume: 28 start-page: 9532 year: 2016 publication-title: Adv. Mater. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 52 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 1604942 year: 2017 publication-title: Adv. Mater. – volume: 114 start-page: 18182 year: 2010 publication-title: J. Phys. Chem. C – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 113 start-page: 5782 year: 2013 publication-title: Chem. Rev. – volume: 1 start-page: 16130 year: 2016 publication-title: Nat. Energy – volume: 54 start-page: 2131 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 2230 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 34 start-page: 1600207 year: 2017 publication-title: Part. Part. Syst. Charact. – volume: 4 start-page: 7557 year: 2014 publication-title: Sci. Rep. – volume: 4 start-page: 13726 year: 2016 publication-title: J. Mater. Chem. A – volume: 135 start-page: 2013 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 41 year: 2016 publication-title: Nanoscale Horiz. – volume: 27 start-page: 5372 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 519 year: 2017 publication-title: J. Mater. Chem. A – volume: 24 start-page: 2072 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1606352 year: 2017 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 10326 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 5 start-page: 316 year: 2010 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 6717 year: 2012 publication-title: Energy Environ. Sci. – volume: 8 start-page: 5290 year: 2014 publication-title: ACS Nano – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 16733 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 1501870 year: 2016 publication-title: Adv. Energy Mater. – volume: 26 start-page: 6074 year: 2014 publication-title: Adv. Mater. – volume: 128 start-page: 13490 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 915 year: 2017 publication-title: Acc. Chem. Res. – volume: 50 start-page: 9340 year: 2014 publication-title: Chem. Commun. – volume: 5 start-page: 17064 year: 2017 publication-title: J. Mater. Chem. A – volume: 52 start-page: 13008 year: 2016 publication-title: Chem. Commun. – volume: 54 start-page: 4646 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 42 start-page: 3088 year: 2013 publication-title: Chem. Soc. Rev. – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 143 start-page: 291 year: 2014 publication-title: Electrochim. Acta – volume: 53 start-page: 7281 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 13934 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1602928 year: 2017 publication-title: Adv. Energy Mater. – volume: 314 start-page: 66 year: 2014 publication-title: J. Catal. – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 2925 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 6845 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_7_27_1 doi: 10.1039/C6TA05863A – ident: e_1_2_7_29_1 doi: 10.1002/anie.201510495 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201410050 – ident: e_1_2_7_34_1 doi: 10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B – ident: e_1_2_7_39_1 doi: 10.1039/C5CP02014J – ident: e_1_2_7_19_1 doi: 10.1039/C6TA09315A – ident: e_1_2_7_36_1 doi: 10.1039/C6CC07217H – ident: e_1_2_7_3_1 doi: 10.1021/nn901850u – ident: e_1_2_7_22_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_7_49_1 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_7_42_1 doi: 10.1021/ja3089923 – ident: e_1_2_7_16_1 doi: 10.1016/j.electacta.2014.08.001 – ident: e_1_2_7_48_1 doi: 10.1039/C5NH00002E – ident: e_1_2_7_54_1 doi: 10.1002/anie.201403946 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201606207 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.201602928 – ident: e_1_2_7_33_1 doi: 10.1038/nnano.2010.93 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201401264 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201602912 – ident: e_1_2_7_24_1 doi: 10.1038/nenergy.2016.130 – ident: e_1_2_7_46_1 doi: 10.1002/adfm.201302940 – ident: e_1_2_7_5_1 doi: 10.1126/science.1168049 – ident: e_1_2_7_20_1 doi: 10.1002/aenm.201602068 – ident: e_1_2_7_25_1 doi: 10.1021/ja500432h – ident: e_1_2_7_41_1 doi: 10.1002/adma.201601406 – ident: e_1_2_7_30_1 doi: 10.1002/chem.201601535 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201500821 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201409080 – ident: e_1_2_7_18_1 doi: 10.1002/ppsc.201600207 – ident: e_1_2_7_10_1 doi: 10.1038/srep07557 – ident: e_1_2_7_47_1 doi: 10.1021/ja4027715 – ident: e_1_2_7_4_1 doi: 10.1038/nnano.2012.72 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201604942 – ident: e_1_2_7_58_1 doi: 10.1002/adma.201506112 – ident: e_1_2_7_9_1 doi: 10.1039/C4CS00470A – ident: e_1_2_7_26_1 doi: 10.1002/anie.201407031 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.201606352 – ident: e_1_2_7_59_1 doi: 10.1016/j.ensm.2015.08.001 – ident: e_1_2_7_1_1 doi: 10.1021/cr300367d – ident: e_1_2_7_45_1 doi: 10.1002/adma.201401848 – ident: e_1_2_7_35_1 doi: 10.1016/j.jcat.2014.03.011 – ident: e_1_2_7_17_1 doi: 10.1021/nn501434a – ident: e_1_2_7_7_1 doi: 10.1149/1.1856988 – ident: e_1_2_7_31_1 doi: 10.1002/ange.201607405 – ident: e_1_2_7_57_1 doi: 10.1002/anie.201411125 – ident: e_1_2_7_6_1 doi: 10.1021/jp1048887 – ident: e_1_2_7_21_1 doi: 10.1021/acsnano.7b03290 – ident: e_1_2_7_44_1 doi: 10.1021/cm502260m – ident: e_1_2_7_11_1 doi: 10.1039/C4CC02713B – ident: e_1_2_7_56_1 doi: 10.1002/adma.201305608 – ident: e_1_2_7_2_1 doi: 10.1021/cr900070d – ident: e_1_2_7_52_1 doi: 10.1021/nn506701x – ident: e_1_2_7_55_1 doi: 10.1002/celc.201500268 – ident: e_1_2_7_51_1 doi: 10.1038/ncomms4783 – ident: e_1_2_7_40_1 doi: 10.1039/C7TA03999A – ident: e_1_2_7_50_1 doi: 10.1039/c2ee03479d – ident: e_1_2_7_60_1 doi: 10.1002/aenm.201501870 – ident: e_1_2_7_14_1 doi: 10.1021/acscatal.5b00601 – ident: e_1_2_7_13_1 doi: 10.1038/ncomms3390 – ident: e_1_2_7_43_1 doi: 10.1039/c2cs35307e |
SSID | ssj0009606 |
Score | 2.663116 |
SecondaryResourceType | review_article |
Snippet | Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials... Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon-based metal-free nanomaterials... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1803625 |
SubjectTerms | Carbon carbon engineering Carbon nanotubes Carbon nitride Catalysis Catalysts Clean energy Conversion Electrocatalysts Graphene Hydrogen evolution hydrogen evolution reactions metal‐free electrocatalysts Nanomaterials Oxygen evolution reactions Oxygen reduction reactions Platinum Structural engineering Water splitting |
Title | Electronic and Structural Engineering of Carbon‐Based Metal‐Free Electrocatalysts for Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803625 https://www.ncbi.nlm.nih.gov/pubmed/30276904 https://www.proquest.com/docview/2196651775 https://www.proquest.com/docview/2115753030 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4GRLHduJjKa0QEhxYBLfIWyUESlFbDnDiE_hGvoSxk4YWhJDgFst24tgz4zf2-BmhPaZMrJU2RKZUEKYzSTSIDlFpZKWKueI2sH2ei5NrdnrLb8dO8Zf8EPWCm9eMYK-9gis9OPwkDVU28AbFmbfB_pS5D9jyqOjikz_Kw_NAtpdwIgXLRqyNET2crD45K32DmpPINUw9nXmkRo0uI07uD56G-sC8fOFz_M9fLaC5CpfiZilIi2jKFUtodoytcBndtesrc7AqLL4M1LOetgOPlcO9Lm6pvu4V769vRzBHWnzmAOFDqtN3DlcvCctGz4PhAANqxjeAePv4EgBxCMNeQded9lXrhFQ3NRADkyAnmRbgeHDrA1K58l6Mi6wFKCAcTRKpZUa7xsmEURNnYOqZilJDZVdo8KYcZ8kqmi56hVtHOHIGjIxNuXOU6ThW1oETZ6w1LgWhShqIjEYqNxWNub9N4yEvCZhp7rswr7uwgfbr8o8lgcePJbdGA59XijzIwaALweM0hezdOhtU0O-rqML1nnyZGEAvYIGogdZKgak_5beFhYxYA9Ew7L-0IW8enzXr1MZfKm2iGXiWZZzcFpoGWXDbAJyGeicoxweayBDQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ReoAeoKVAt1BqpEo9GRLHTuLj8lhtC8uhgNpb5NdKCJStdpdDOfET-I39JYydB2wrVIkenYwTx54Zf2NPPgN84srEWmlDZcZSynUuqUbVoSqLrFSxUMIGts-TtH_Ov_4QTTah_xem4odoF9y8ZQR_7Q3cL0jvPrCGKhuIg-LcO2HxAl76Y709ff7BtwcGKQ_QA91eIqhMed7wNkZsd7b-7Lz0F9icxa5h8uktg26aXeWcXO5cT_WOufmD0fG_vus1LNXQlHQrXXoDc65cgVePCAvfwsVhe2oOUaUlp4F91jN3kEdyZDQk-2qsR-Xv27s9nCYtGTgE-VjqjZ0j9UPCytGvyXRCEDiT7wh6x-QUMXHIxF6F897h2X6f1oc1UIPzoKC5TjH2ENbnpArlAxkXWYtoIHUsSaSWORsaJxPOTJyjt-cqygyTw1RjQOUET9ZgvhyV7h2QyBn0MzYTzjGu41hZh3Gcsda4DPUq6QBthqowNZO5P1Djqqg4mFnhu7Bou7ADn1v5nxWHx5OSm83IF7UtTwr06SlqVpbh7e32Nlqh31pRpRtde5kYcS_CgagD65XGtK_yO8OpjHgHWBj3f7Sh6B4Mum3p_XMqfYSF_tnguDj-cnK0AYt4XVZpc5swj3rhPiCOmuqtYCn3oUIU7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dThQxFD4RTIxcoAjCKkpNSLwqzHTazvRyZdkgCDEigbtJ_zYxkFmyu1zolY_gM_oknnZmh10MMZHLzrQznfb8fKftfAdgm2ubGm0sVTmTlJtCUYOiQ3WeOKVToYWLbJ8n8uCMH16Ii5m_-Gt-iHbBLWhGtNdBwa_dYPeWNFS7yBuUFsEGiwV4zGWiQvKG3pdbAqmAzyPbXiaokryY0jYmbHe-_bxb-gtrzkPX6Hv6z0BPe10fObncuZmYHfvjDqHjQz7rOSw3wJR0a0lagUe-egFLM3SFq_Btv82ZQ3TlyGnkng28HWSmHhkOyJ4emWH1--evD-gkHTn2CPGx1B95T5qHxHWj7-PJmCBsJucIeUfkFBFxPIe9Bmf9_a97B7RJ1UAtekFBCyMx8hAunEgVOoQxPnEOsYD0LMuUUQUbWK8yzmxaoK3nOsktUwNpMJzygmcvYbEaVn4DSOItWhmXC-8ZN2mqnccozjpnfY5SlXWATmeqtA2PeUincVXWDMysDENYtkPYgfdt_euawePempvTiS8bTR6XaNGlFGme4-137W3UwbCxois_vAl1UkS9CAaSDqzXAtO-KuwLS5XwDrA47f_oQ9ntHXfb0qv_abQFTz73-uWnjydHr-EpXlb1mblNWESx8G8QRE3M26gnfwBPixOb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+Structural+Engineering+of+Carbon-Based+Metal-Free+Electrocatalysts+for+Water+Splitting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xuesi&rft.au=Vasileff%2C+Anthony&rft.au=Jiao%2C+Yan&rft.au=Zheng%2C+Yao&rft.date=2019-03-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=13&rft.spage=e1803625&rft_id=info:doi/10.1002%2Fadma.201803625&rft_id=info%3Apmid%2F30276904&rft.externalDocID=30276904 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |