Electronic and Structural Engineering of Carbon‐Based Metal‐Free Electrocatalysts for Water Splitting

Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 13; pp. e1803625 - n/a
Main Authors Wang, Xuesi, Vasileff, Anthony, Jiao, Yan, Zheng, Yao, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes. Carbon‐based nanomaterials are expected to be cost‐effective alternatives to noble‐metal electrocatalysts and have become a hot research field in recent years. Strategies for designing carbon‐based electrocatalysts for water splitting are summarized. Electronic and structure engineering procedures that are used to tune the activity of the carbon materials are presented systematically to provide guidance for future research.
AbstractList Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes. Carbon‐based nanomaterials are expected to be cost‐effective alternatives to noble‐metal electrocatalysts and have become a hot research field in recent years. Strategies for designing carbon‐based electrocatalysts for water splitting are summarized. Electronic and structure engineering procedures that are used to tune the activity of the carbon materials are presented systematically to provide guidance for future research.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon-based metal-free nanomaterials have been considered a class of promising low-cost materials for clean and sustainable energy-conversion reactions. However, beyond the ORR, the development of carbon-based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon-based metal-free catalysts is inadequate compared to their metal-based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon-based materials. Herein, using water splitting as an example, some state-of-the-art strategies in promoting carbon-based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic-carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon-based nanomaterials for various applications in energy-conversion processes.Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon-based metal-free nanomaterials have been considered a class of promising low-cost materials for clean and sustainable energy-conversion reactions. However, beyond the ORR, the development of carbon-based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon-based metal-free catalysts is inadequate compared to their metal-based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon-based materials. Herein, using water splitting as an example, some state-of-the-art strategies in promoting carbon-based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic-carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon-based nanomaterials for various applications in energy-conversion processes.
Author Jiao, Yan
Vasileff, Anthony
Zheng, Yao
Qiao, Shi‐Zhang
Wang, Xuesi
Author_xml – sequence: 1
  givenname: Xuesi
  orcidid: 0000-0002-2477-8111
  surname: Wang
  fullname: Wang, Xuesi
  organization: The University of Adelaide
– sequence: 2
  givenname: Anthony
  surname: Vasileff
  fullname: Vasileff, Anthony
  organization: The University of Adelaide
– sequence: 3
  givenname: Yan
  orcidid: 0000-0003-1329-4290
  surname: Jiao
  fullname: Jiao, Yan
  organization: The University of Adelaide
– sequence: 4
  givenname: Yao
  orcidid: 0000-0002-2411-8041
  surname: Zheng
  fullname: Zheng, Yao
  email: yao.zheng01@adelaide.edu.au
  organization: The University of Adelaide
– sequence: 5
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30276904$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFDEYhoNU7Hb16lECXrzs-iWTZCbHdd2q0OKhiseQyXxTUmaTNclQ9uZP8Df2l3TKbhUKIjmEhOd5-fjeM3ISYkBCXjNYMgD-3nZbu-TAGqgUl8_IjEnOFgK0PCEz0JVcaCWaU3KW8w0AaAXqBTmtgNdKg5gRvxnQlRSDd9SGjl6VNLoyJjvQTbj2ATH5cE1jT9c2tTHc_fr9wWbs6CUWO0yv84RIjyHOTn_7XDLtY6I_bMFEr3aDL2XKeEme93bI-Op4z8n388239efFxddPX9ari4UTbBq3aZWqpey4AJCWCy4Ruo41UiGvKt3qhvcOdSW4Yw1aJyzUjutetQokSlHNybtD7i7FnyPmYrY-OxwGGzCO2XDGZC0rmM6cvH2C3sQxhWm6idJKSVZP5Jy8OVJju8XO7JLf2rQ3j0ucAHEAXIo5J-yN88UWH0NJ1g-GgXnoyjx0Zf50NWnLJ9pj8j8FfRBu_YD7_9Bm9fFy9de9B2spp3o
CitedBy_id crossref_primary_10_1021_acsnano_9b09554
crossref_primary_10_1021_jacs_0c13002
crossref_primary_10_1016_j_cattod_2023_114129
crossref_primary_10_1021_acsami_9b13586
crossref_primary_10_1016_j_cej_2021_128809
crossref_primary_10_1088_1361_6463_ac4b56
crossref_primary_10_1016_j_ccr_2024_216112
crossref_primary_10_1021_jacs_3c12780
crossref_primary_10_1002_adfm_202003000
crossref_primary_10_1002_smll_202106279
crossref_primary_10_1021_acs_jpclett_0c00703
crossref_primary_10_1016_S1872_5813_21_60109_3
crossref_primary_10_1002_smtd_202301469
crossref_primary_10_1002_admi_202200098
crossref_primary_10_1016_j_matt_2021_09_024
crossref_primary_10_1016_j_flatc_2022_100415
crossref_primary_10_1016_j_mattod_2019_12_003
crossref_primary_10_1021_acsomega_1c00184
crossref_primary_10_1016_j_jelechem_2021_115514
crossref_primary_10_1021_acsnano_0c05088
crossref_primary_10_1002_smll_202301261
crossref_primary_10_1016_j_jcis_2022_12_105
crossref_primary_10_1039_C9CC04869C
crossref_primary_10_1002_adfm_202008028
crossref_primary_10_1039_D0NJ06191C
crossref_primary_10_1016_j_jece_2022_108189
crossref_primary_10_1039_D0TA01697G
crossref_primary_10_1039_D1TA07393A
crossref_primary_10_1039_D0TA02411B
crossref_primary_10_1680_jsuin_20_00028
crossref_primary_10_1002_smtd_202000988
crossref_primary_10_1039_D2CY00050D
crossref_primary_10_1016_j_ccr_2023_215644
crossref_primary_10_1021_acscatal_4c06814
crossref_primary_10_1016_j_jechem_2020_06_033
crossref_primary_10_1016_j_nanoen_2019_104194
crossref_primary_10_1002_smll_201906775
crossref_primary_10_1002_ente_202301504
crossref_primary_10_1002_adma_202401448
crossref_primary_10_1039_D4SE00457D
crossref_primary_10_1002_smll_202105524
crossref_primary_10_1021_acssuschemeng_9b03906
crossref_primary_10_3390_catal14010057
crossref_primary_10_1039_D2DT01111E
crossref_primary_10_1021_acsanm_4c00221
crossref_primary_10_1021_acs_jpcc_0c05898
crossref_primary_10_1021_acscatal_9b04060
crossref_primary_10_1021_acscatal_2c06067
crossref_primary_10_1093_nsr_nwac231
crossref_primary_10_1002_smll_202001642
crossref_primary_10_1016_j_jcis_2024_07_009
crossref_primary_10_1021_acsaem_0c00361
crossref_primary_10_1039_C9NR08102J
crossref_primary_10_1002_adfm_202010561
crossref_primary_10_1002_smll_202305289
crossref_primary_10_1002_anie_202103557
crossref_primary_10_1002_cey2_85
crossref_primary_10_1007_s10854_019_02773_0
crossref_primary_10_1016_j_cej_2020_128325
crossref_primary_10_1021_acs_energyfuels_3c02732
crossref_primary_10_1002_smll_201903363
crossref_primary_10_1039_D1TA02795F
crossref_primary_10_1007_s40243_022_00214_3
crossref_primary_10_1016_j_carbon_2021_07_064
crossref_primary_10_1016_j_ijhydene_2019_11_204
crossref_primary_10_1002_adfm_202101797
crossref_primary_10_1038_s41598_019_52412_1
crossref_primary_10_1007_s40843_020_1566_6
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1039_D0TA00413H
crossref_primary_10_1016_j_scitotenv_2023_167146
crossref_primary_10_1021_jacs_9b05006
crossref_primary_10_1016_j_jcis_2020_05_089
crossref_primary_10_1039_C9TA10088A
crossref_primary_10_1021_acsaem_2c03514
crossref_primary_10_1021_jacs_1c13374
crossref_primary_10_1021_acsami_9b18961
crossref_primary_10_1021_acssuschemeng_1c05661
crossref_primary_10_1002_smll_202302272
crossref_primary_10_1016_j_apsusc_2020_147909
crossref_primary_10_1016_j_ijhydene_2022_05_002
crossref_primary_10_1039_D4TA03866E
crossref_primary_10_1021_acsami_0c14768
crossref_primary_10_1039_D0NR01612H
crossref_primary_10_1021_acssuschemeng_0c03938
crossref_primary_10_1002_aenm_202103426
crossref_primary_10_1149_1945_7111_ac6986
crossref_primary_10_1021_acsami_9b08483
crossref_primary_10_1016_j_jelechem_2023_117489
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1016_j_cclet_2018_11_021
crossref_primary_10_3390_ma16134828
crossref_primary_10_1002_smll_202201291
crossref_primary_10_1002_advs_202301045
crossref_primary_10_1002_cplu_202400278
crossref_primary_10_1002_adma_202307779
crossref_primary_10_1039_C9TA04163J
crossref_primary_10_1002_smtd_202100945
crossref_primary_10_1021_acs_inorgchem_3c01384
crossref_primary_10_1016_j_ccr_2020_213468
crossref_primary_10_1002_aenm_201901227
crossref_primary_10_1002_advs_202412805
crossref_primary_10_1016_j_electacta_2023_143464
crossref_primary_10_1039_D0TA09495A
crossref_primary_10_1002_smsc_202100061
crossref_primary_10_1039_D3QM00723E
crossref_primary_10_1007_s10854_020_03216_x
crossref_primary_10_1002_chem_201902998
crossref_primary_10_1007_s12274_023_6221_x
crossref_primary_10_1039_D0TA03392H
crossref_primary_10_1002_smll_202307830
crossref_primary_10_1021_acssuschemeng_8b06030
crossref_primary_10_1007_s11356_020_11058_7
crossref_primary_10_1016_j_cej_2020_126045
crossref_primary_10_1039_D0SE00399A
crossref_primary_10_1016_j_ijhydene_2020_11_098
crossref_primary_10_1039_D3NJ00675A
crossref_primary_10_1021_acsami_9b21575
crossref_primary_10_26599_NRE_2022_9120036
crossref_primary_10_3390_ma16103760
crossref_primary_10_1007_s42773_024_00388_1
crossref_primary_10_1149_1945_7111_ac7172
crossref_primary_10_1002_asia_202400166
crossref_primary_10_1039_D3TA00318C
crossref_primary_10_1016_j_ensm_2020_06_022
crossref_primary_10_1002_er_7800
crossref_primary_10_1039_D0EE01617A
crossref_primary_10_1039_C9TA12866B
crossref_primary_10_1002_cssc_202100055
crossref_primary_10_1039_D0SE00548G
crossref_primary_10_1002_cssc_202401301
crossref_primary_10_1002_smll_202307943
crossref_primary_10_1007_s41918_022_00136_8
crossref_primary_10_1007_s11705_022_2153_3
crossref_primary_10_1039_D2TA05953C
crossref_primary_10_1002_adma_202405664
crossref_primary_10_1002_cctc_202400259
crossref_primary_10_1016_j_apmt_2022_101670
crossref_primary_10_1016_j_cej_2021_131133
crossref_primary_10_1016_j_jallcom_2024_173837
crossref_primary_10_1021_acs_langmuir_4c03427
crossref_primary_10_1002_ente_202401978
crossref_primary_10_1007_s11814_020_0626_y
crossref_primary_10_1039_D3RA00589E
crossref_primary_10_1016_j_inoche_2024_112972
crossref_primary_10_1021_acs_inorgchem_3c01639
crossref_primary_10_1002_ange_202103557
crossref_primary_10_1039_C9EE03573G
crossref_primary_10_1021_acsnano_9b02510
crossref_primary_10_1038_s41467_023_43963_z
crossref_primary_10_1016_j_xcrp_2022_100784
crossref_primary_10_1016_j_ccr_2024_215899
crossref_primary_10_1039_D0MA00745E
crossref_primary_10_1039_D0TA06368A
crossref_primary_10_1002_smll_202305220
crossref_primary_10_1016_j_jpowsour_2021_229635
crossref_primary_10_1039_C9CE01533G
crossref_primary_10_1021_acs_inorgchem_2c03840
crossref_primary_10_1021_acsami_9b16224
crossref_primary_10_1021_acsanm_4c04400
crossref_primary_10_1002_slct_202202382
crossref_primary_10_1088_2053_1583_ac46f9
crossref_primary_10_3389_fmats_2022_1090412
crossref_primary_10_1039_D2EE00686C
crossref_primary_10_1016_j_cej_2022_138063
crossref_primary_10_1021_acssuschemeng_1c00575
crossref_primary_10_1021_acs_chemrev_1c00191
crossref_primary_10_1002_adfm_202107196
crossref_primary_10_1039_D1CC04770A
crossref_primary_10_1002_aenm_202101202
crossref_primary_10_1021_acs_inorgchem_9b02333
crossref_primary_10_1007_s40242_020_0107_1
crossref_primary_10_1016_j_horiz_2021_100002
crossref_primary_10_1002_adma_202006274
crossref_primary_10_1002_advs_202001002
crossref_primary_10_1002_chem_201904769
crossref_primary_10_1002_smtd_202401492
crossref_primary_10_1016_j_apsusc_2020_146183
crossref_primary_10_1039_D1EE00306B
crossref_primary_10_1016_j_fuel_2024_133761
crossref_primary_10_1002_anie_201914647
crossref_primary_10_1002_smll_202311452
crossref_primary_10_1002_adma_202301359
crossref_primary_10_1002_eom2_12013
crossref_primary_10_1039_C9TA04361F
crossref_primary_10_1002_adfm_202007423
crossref_primary_10_1002_smll_202408811
crossref_primary_10_1016_j_cogsc_2020_100398
crossref_primary_10_1039_D0NR06857H
crossref_primary_10_1039_D0TA03138K
crossref_primary_10_1039_D2SC02346F
crossref_primary_10_1016_j_jpowsour_2020_229330
crossref_primary_10_1002_ange_201914647
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1039_D1DT00658D
crossref_primary_10_3390_ma13010114
crossref_primary_10_1002_adfm_202010968
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1007_s40843_019_1176_6
crossref_primary_10_1016_j_seppur_2024_126454
crossref_primary_10_1016_j_mtchem_2021_100634
crossref_primary_10_1016_j_apsusc_2020_147292
crossref_primary_10_1021_acsnano_9b06244
crossref_primary_10_54097_ex006g06
crossref_primary_10_1016_j_rser_2021_111771
crossref_primary_10_1039_C9TA09104A
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1073_pnas_2202812119
crossref_primary_10_1002_smll_202001295
crossref_primary_10_1039_C9EE00555B
crossref_primary_10_1002_adma_201806403
crossref_primary_10_1016_j_electacta_2021_137712
crossref_primary_10_1016_j_carbon_2020_06_002
crossref_primary_10_1021_acsnano_0c06535
crossref_primary_10_1002_anie_202211094
crossref_primary_10_1039_C9QI01367A
crossref_primary_10_1016_j_mcat_2021_112109
crossref_primary_10_1021_acsami_0c06506
crossref_primary_10_1002_ange_202211094
crossref_primary_10_1039_D0CC07735F
crossref_primary_10_1016_j_gee_2020_11_009
crossref_primary_10_1016_j_checat_2021_06_017
crossref_primary_10_1186_s42833_019_0006_2
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1021_accountsmr_1c00190
crossref_primary_10_1002_cnl2_105
crossref_primary_10_1016_j_nanoen_2023_109183
crossref_primary_10_1007_s12209_024_00416_y
crossref_primary_10_1039_D0CP00468E
crossref_primary_10_1016_j_nanoen_2019_02_043
crossref_primary_10_1002_chem_202000211
crossref_primary_10_1039_D2TA09416A
crossref_primary_10_1021_acsnano_2c08499
crossref_primary_10_1039_D0NR07275C
crossref_primary_10_1021_acs_chemrev_2c00429
crossref_primary_10_1002_adfm_202010472
crossref_primary_10_1021_accountsmr_1c00194
crossref_primary_10_1039_D2CC06895H
crossref_primary_10_1002_smll_202412435
crossref_primary_10_1016_j_jpowsour_2021_230514
crossref_primary_10_3390_nano15010065
crossref_primary_10_1039_D0TA10596A
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_3390_molecules28083292
crossref_primary_10_1002_adfm_201910534
crossref_primary_10_1016_j_checat_2022_07_001
crossref_primary_10_1002_cssc_201901628
crossref_primary_10_1016_j_colsurfa_2024_134933
crossref_primary_10_1007_s41918_020_00066_3
crossref_primary_10_1016_j_est_2023_108824
Cites_doi 10.1039/C6TA05863A
10.1002/anie.201510495
10.1002/anie.201410050
10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
10.1039/C5CP02014J
10.1039/C6TA09315A
10.1039/C6CC07217H
10.1021/nn901850u
10.1038/nnano.2015.48
10.1021/acs.accounts.6b00635
10.1021/ja3089923
10.1016/j.electacta.2014.08.001
10.1039/C5NH00002E
10.1002/anie.201403946
10.1002/adma.201606207
10.1002/aenm.201602928
10.1038/nnano.2010.93
10.1002/adfm.201401264
10.1002/adma.201602912
10.1038/nenergy.2016.130
10.1002/adfm.201302940
10.1126/science.1168049
10.1002/aenm.201602068
10.1021/ja500432h
10.1002/adma.201601406
10.1002/chem.201601535
10.1002/adma.201500821
10.1002/anie.201409080
10.1002/ppsc.201600207
10.1038/srep07557
10.1021/ja4027715
10.1038/nnano.2012.72
10.1002/adma.201604942
10.1002/adma.201506112
10.1039/C4CS00470A
10.1002/anie.201407031
10.1002/adfm.201606352
10.1016/j.ensm.2015.08.001
10.1021/cr300367d
10.1002/adma.201401848
10.1016/j.jcat.2014.03.011
10.1021/nn501434a
10.1149/1.1856988
10.1002/ange.201607405
10.1002/anie.201411125
10.1021/jp1048887
10.1021/acsnano.7b03290
10.1021/cm502260m
10.1039/C4CC02713B
10.1002/adma.201305608
10.1021/cr900070d
10.1021/nn506701x
10.1002/celc.201500268
10.1038/ncomms4783
10.1039/C7TA03999A
10.1039/c2ee03479d
10.1002/aenm.201501870
10.1021/acscatal.5b00601
10.1038/ncomms3390
10.1039/c2cs35307e
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201803625
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30276904
10_1002_adma_201803625
ADMA201803625
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160104866; DP170104464; LP160100927; DE160101163; FL170100154
– fundername: Australian Research Council
  grantid: FL170100154
– fundername: Australian Research Council
  grantid: DP160104866
– fundername: Australian Research Council
  grantid: DP170104464
– fundername: Australian Research Council
  grantid: LP160100927
– fundername: Australian Research Council
  grantid: DE160101163
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4135-8b66755d24005a2425e0dd1856e2339b982fce9342c18eac4a07c29f6b605e543
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:19:48 EDT 2025
Fri Jul 25 03:55:31 EDT 2025
Wed Feb 19 02:33:11 EST 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Jul 01 00:44:45 EDT 2025
Wed Jan 22 16:23:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords metal-free electrocatalysts
oxygen evolution reactions
hydrogen evolution reactions
water splitting
carbon engineering
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4135-8b66755d24005a2425e0dd1856e2339b982fce9342c18eac4a07c29f6b605e543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1329-4290
0000-0002-4568-8422
0000-0002-2477-8111
0000-0002-2411-8041
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201803625
PMID 30276904
PQID 2196651775
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2115753030
proquest_journals_2196651775
pubmed_primary_30276904
crossref_citationtrail_10_1002_adma_201803625
crossref_primary_10_1002_adma_201803625
wiley_primary_10_1002_adma_201803625_ADMA201803625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Mar
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-Mar
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 2
2015; 1
2017; 7
2014; 314
2015; 17
2013; 4
2015; 5
2005; 152
2017; 27
2013; 42
2015; 54
2015; 10
2009; 110
2014; 26
2016; 52
2014; 24
2016; 128
2017; 29
2015; 9
2014; 136
2016; 55
2016; 4
2017; 50
2016; 6
2014; 5
2015; 27
2014; 4
2016; 1
2010; 114
2017; 11
2015; 44
2017; 34
1999; 11
2013; 113
2013; 135
2014; 143
2012; 7
2014; 8
2016; 28
2014; 50
2010; 5
2010; 4
2012; 5
2009; 323
2014; 53
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 152
  start-page: J23
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 3783
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 931
  year: 2015
  publication-title: ACS Nano
– volume: 5
  start-page: 4133
  year: 2015
  publication-title: ACS Catal.
– volume: 29
  start-page: 1606207
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2390
  year: 2013
  publication-title: Nat. Commun.
– volume: 110
  start-page: 132
  year: 2009
  publication-title: Chem. Rev.
– volume: 2
  start-page: 1929
  year: 2015
  publication-title: ChemElectroChem
– volume: 26
  start-page: 5868
  year: 2014
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1321
  year: 2010
  publication-title: ACS Nano
– volume: 11
  start-page: 7293
  year: 2017
  publication-title: ACS Nano
– volume: 1
  start-page: 17
  year: 2015
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 394
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 5956
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1602068
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 154
  year: 1999
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9532
  year: 2016
  publication-title: Adv. Mater.
– volume: 136
  start-page: 4394
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 52
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 1604942
  year: 2017
  publication-title: Adv. Mater.
– volume: 114
  start-page: 18182
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 113
  start-page: 5782
  year: 2013
  publication-title: Chem. Rev.
– volume: 1
  start-page: 16130
  year: 2016
  publication-title: Nat. Energy
– volume: 54
  start-page: 2131
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 2230
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  start-page: 1600207
  year: 2017
  publication-title: Part. Part. Syst. Charact.
– volume: 4
  start-page: 7557
  year: 2014
  publication-title: Sci. Rep.
– volume: 4
  start-page: 13726
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 2013
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 41
  year: 2016
  publication-title: Nanoscale Horiz.
– volume: 27
  start-page: 5372
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 519
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 2072
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1606352
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 10326
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 5
  start-page: 316
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 6717
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 5290
  year: 2014
  publication-title: ACS Nano
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 16733
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 1501870
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 6074
  year: 2014
  publication-title: Adv. Mater.
– volume: 128
  start-page: 13490
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 915
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 9340
  year: 2014
  publication-title: Chem. Commun.
– volume: 5
  start-page: 17064
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 13008
  year: 2016
  publication-title: Chem. Commun.
– volume: 54
  start-page: 4646
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 42
  start-page: 3088
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 143
  start-page: 291
  year: 2014
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 7281
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 13934
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1602928
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 314
  start-page: 66
  year: 2014
  publication-title: J. Catal.
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 2925
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6845
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_7_27_1
  doi: 10.1039/C6TA05863A
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.201510495
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201410050
– ident: e_1_2_7_34_1
  doi: 10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
– ident: e_1_2_7_39_1
  doi: 10.1039/C5CP02014J
– ident: e_1_2_7_19_1
  doi: 10.1039/C6TA09315A
– ident: e_1_2_7_36_1
  doi: 10.1039/C6CC07217H
– ident: e_1_2_7_3_1
  doi: 10.1021/nn901850u
– ident: e_1_2_7_22_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_7_42_1
  doi: 10.1021/ja3089923
– ident: e_1_2_7_16_1
  doi: 10.1016/j.electacta.2014.08.001
– ident: e_1_2_7_48_1
  doi: 10.1039/C5NH00002E
– ident: e_1_2_7_54_1
  doi: 10.1002/anie.201403946
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201606207
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.201602928
– ident: e_1_2_7_33_1
  doi: 10.1038/nnano.2010.93
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201401264
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201602912
– ident: e_1_2_7_24_1
  doi: 10.1038/nenergy.2016.130
– ident: e_1_2_7_46_1
  doi: 10.1002/adfm.201302940
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1168049
– ident: e_1_2_7_20_1
  doi: 10.1002/aenm.201602068
– ident: e_1_2_7_25_1
  doi: 10.1021/ja500432h
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201601406
– ident: e_1_2_7_30_1
  doi: 10.1002/chem.201601535
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201500821
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201409080
– ident: e_1_2_7_18_1
  doi: 10.1002/ppsc.201600207
– ident: e_1_2_7_10_1
  doi: 10.1038/srep07557
– ident: e_1_2_7_47_1
  doi: 10.1021/ja4027715
– ident: e_1_2_7_4_1
  doi: 10.1038/nnano.2012.72
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201604942
– ident: e_1_2_7_58_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_7_9_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201407031
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.201606352
– ident: e_1_2_7_59_1
  doi: 10.1016/j.ensm.2015.08.001
– ident: e_1_2_7_1_1
  doi: 10.1021/cr300367d
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201401848
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jcat.2014.03.011
– ident: e_1_2_7_17_1
  doi: 10.1021/nn501434a
– ident: e_1_2_7_7_1
  doi: 10.1149/1.1856988
– ident: e_1_2_7_31_1
  doi: 10.1002/ange.201607405
– ident: e_1_2_7_57_1
  doi: 10.1002/anie.201411125
– ident: e_1_2_7_6_1
  doi: 10.1021/jp1048887
– ident: e_1_2_7_21_1
  doi: 10.1021/acsnano.7b03290
– ident: e_1_2_7_44_1
  doi: 10.1021/cm502260m
– ident: e_1_2_7_11_1
  doi: 10.1039/C4CC02713B
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.201305608
– ident: e_1_2_7_2_1
  doi: 10.1021/cr900070d
– ident: e_1_2_7_52_1
  doi: 10.1021/nn506701x
– ident: e_1_2_7_55_1
  doi: 10.1002/celc.201500268
– ident: e_1_2_7_51_1
  doi: 10.1038/ncomms4783
– ident: e_1_2_7_40_1
  doi: 10.1039/C7TA03999A
– ident: e_1_2_7_50_1
  doi: 10.1039/c2ee03479d
– ident: e_1_2_7_60_1
  doi: 10.1002/aenm.201501870
– ident: e_1_2_7_14_1
  doi: 10.1021/acscatal.5b00601
– ident: e_1_2_7_13_1
  doi: 10.1038/ncomms3390
– ident: e_1_2_7_43_1
  doi: 10.1039/c2cs35307e
SSID ssj0009606
Score 2.663116
SecondaryResourceType review_article
Snippet Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials...
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon-based metal-free nanomaterials...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1803625
SubjectTerms Carbon
carbon engineering
Carbon nanotubes
Carbon nitride
Catalysis
Catalysts
Clean energy
Conversion
Electrocatalysts
Graphene
Hydrogen evolution
hydrogen evolution reactions
metal‐free electrocatalysts
Nanomaterials
Oxygen evolution reactions
Oxygen reduction reactions
Platinum
Structural engineering
Water splitting
Title Electronic and Structural Engineering of Carbon‐Based Metal‐Free Electrocatalysts for Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803625
https://www.ncbi.nlm.nih.gov/pubmed/30276904
https://www.proquest.com/docview/2196651775
https://www.proquest.com/docview/2115753030
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4GRLHduJjKa0QEhxYBLfIWyUESlFbDnDiE_hGvoSxk4YWhJDgFst24tgz4zf2-BmhPaZMrJU2RKZUEKYzSTSIDlFpZKWKueI2sH2ei5NrdnrLb8dO8Zf8EPWCm9eMYK-9gis9OPwkDVU28AbFmbfB_pS5D9jyqOjikz_Kw_NAtpdwIgXLRqyNET2crD45K32DmpPINUw9nXmkRo0uI07uD56G-sC8fOFz_M9fLaC5CpfiZilIi2jKFUtodoytcBndtesrc7AqLL4M1LOetgOPlcO9Lm6pvu4V769vRzBHWnzmAOFDqtN3DlcvCctGz4PhAANqxjeAePv4EgBxCMNeQded9lXrhFQ3NRADkyAnmRbgeHDrA1K58l6Mi6wFKCAcTRKpZUa7xsmEURNnYOqZilJDZVdo8KYcZ8kqmi56hVtHOHIGjIxNuXOU6ThW1oETZ6w1LgWhShqIjEYqNxWNub9N4yEvCZhp7rswr7uwgfbr8o8lgcePJbdGA59XijzIwaALweM0hezdOhtU0O-rqML1nnyZGEAvYIGogdZKgak_5beFhYxYA9Ew7L-0IW8enzXr1MZfKm2iGXiWZZzcFpoGWXDbAJyGeicoxweayBDQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ReoAeoKVAt1BqpEo9GRLHTuLj8lhtC8uhgNpb5NdKCJStdpdDOfET-I39JYydB2wrVIkenYwTx54Zf2NPPgN84srEWmlDZcZSynUuqUbVoSqLrFSxUMIGts-TtH_Ov_4QTTah_xem4odoF9y8ZQR_7Q3cL0jvPrCGKhuIg-LcO2HxAl76Y709ff7BtwcGKQ_QA91eIqhMed7wNkZsd7b-7Lz0F9icxa5h8uktg26aXeWcXO5cT_WOufmD0fG_vus1LNXQlHQrXXoDc65cgVePCAvfwsVhe2oOUaUlp4F91jN3kEdyZDQk-2qsR-Xv27s9nCYtGTgE-VjqjZ0j9UPCytGvyXRCEDiT7wh6x-QUMXHIxF6F897h2X6f1oc1UIPzoKC5TjH2ENbnpArlAxkXWYtoIHUsSaSWORsaJxPOTJyjt-cqygyTw1RjQOUET9ZgvhyV7h2QyBn0MzYTzjGu41hZh3Gcsda4DPUq6QBthqowNZO5P1Djqqg4mFnhu7Bou7ADn1v5nxWHx5OSm83IF7UtTwr06SlqVpbh7e32Nlqh31pRpRtde5kYcS_CgagD65XGtK_yO8OpjHgHWBj3f7Sh6B4Mum3p_XMqfYSF_tnguDj-cnK0AYt4XVZpc5swj3rhPiCOmuqtYCn3oUIU7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dThQxFD4RTIxcoAjCKkpNSLwqzHTazvRyZdkgCDEigbtJ_zYxkFmyu1zolY_gM_oknnZmh10MMZHLzrQznfb8fKftfAdgm2ubGm0sVTmTlJtCUYOiQ3WeOKVToYWLbJ8n8uCMH16Ii5m_-Gt-iHbBLWhGtNdBwa_dYPeWNFS7yBuUFsEGiwV4zGWiQvKG3pdbAqmAzyPbXiaokryY0jYmbHe-_bxb-gtrzkPX6Hv6z0BPe10fObncuZmYHfvjDqHjQz7rOSw3wJR0a0lagUe-egFLM3SFq_Btv82ZQ3TlyGnkng28HWSmHhkOyJ4emWH1--evD-gkHTn2CPGx1B95T5qHxHWj7-PJmCBsJucIeUfkFBFxPIe9Bmf9_a97B7RJ1UAtekFBCyMx8hAunEgVOoQxPnEOsYD0LMuUUQUbWK8yzmxaoK3nOsktUwNpMJzygmcvYbEaVn4DSOItWhmXC-8ZN2mqnccozjpnfY5SlXWATmeqtA2PeUincVXWDMysDENYtkPYgfdt_euawePempvTiS8bTR6XaNGlFGme4-137W3UwbCxois_vAl1UkS9CAaSDqzXAtO-KuwLS5XwDrA47f_oQ9ntHXfb0qv_abQFTz73-uWnjydHr-EpXlb1mblNWESx8G8QRE3M26gnfwBPixOb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+Structural+Engineering+of+Carbon-Based+Metal-Free+Electrocatalysts+for+Water+Splitting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xuesi&rft.au=Vasileff%2C+Anthony&rft.au=Jiao%2C+Yan&rft.au=Zheng%2C+Yao&rft.date=2019-03-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=13&rft.spage=e1803625&rft_id=info:doi/10.1002%2Fadma.201803625&rft_id=info%3Apmid%2F30276904&rft.externalDocID=30276904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon