Discrimination of the Enantiotopic Faces of Structurally Unbiased Carbenium Ions Employing a Cyclohexadiene‐Based Chiral Hydride Source
An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C−H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 29; pp. e202305295 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
17.07.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C−H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid‐promoted process, in which a delicate intermolecular capture of a carbenium‐ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non‐covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer‐hydrogenation methods involving the cyclohexadiene platform.
A chiral cyclohexadiene‐based dihydrogen surrogate can distinguish between the enantiotopic faces of benzylic carbenium ions (see Scheme). No covalent interactions are required but instead dispersion controls the facial discrimination as verified by computations. |
---|---|
AbstractList | An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C−H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid‐promoted process, in which a delicate intermolecular capture of a carbenium‐ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non‐covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer‐hydrogenation methods involving the cyclohexadiene platform.
A chiral cyclohexadiene‐based dihydrogen surrogate can distinguish between the enantiotopic faces of benzylic carbenium ions (see Scheme). No covalent interactions are required but instead dispersion controls the facial discrimination as verified by computations. An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C-H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid-promoted process, in which a delicate intermolecular capture of a carbenium-ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non-covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer-hydrogenation methods involving the cyclohexadiene platform.An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C-H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid-promoted process, in which a delicate intermolecular capture of a carbenium-ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non-covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer-hydrogenation methods involving the cyclohexadiene platform. An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C-H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Bronsted acid-promoted process, in which a delicate intermolecular capture of a carbenium-ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non-covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer-hydrogenation methods involving the cyclohexadiene platform. An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C−H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid‐promoted process, in which a delicate intermolecular capture of a carbenium‐ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non‐covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer‐hydrogenation methods involving the cyclohexadiene platform. An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C-H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid-promoted process, in which a delicate intermolecular capture of a carbenium-ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non-covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer-hydrogenation methods involving the cyclohexadiene platform. An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C−H bond at an asymmetrically substituted carbon atom is disclosed. The net reaction is a transfer hydrogenation of alkenes (styrenes) only employing chiral cyclohexadienes as dihydrogen surrogates. The trityl cation is used to initiate a Brønsted acid‐promoted process, in which a delicate intermolecular capture of a carbenium‐ion intermediate by the aforementioned chiral hydride source is enantioselectivity determining. Exclusively non‐covalent interactions are rendering one of the transition states energetically more favored, giving the reduction products in good enantiomeric ratios. The computed reaction mechanism supports the present findings as well as previous results obtained from studies on other transfer‐hydrogenation methods involving the cyclohexadiene platform.Dedicated to Professor Larry E. Overman on the occasion of his 80th birthday |
Author | Qu, Zheng‐Wang Wolff, Benedikt Oestreich, Martin Grimme, Stefan |
Author_xml | – sequence: 1 givenname: Benedikt orcidid: 0000-0001-5101-4881 surname: Wolff fullname: Wolff, Benedikt organization: Technische Universität Berlin – sequence: 2 givenname: Zheng‐Wang orcidid: 0000-0001-6631-3681 surname: Qu fullname: Qu, Zheng‐Wang email: qu@thch.uni-bonn.de organization: Rheinische Friedrich-Wilhelms-Universität Bonn – sequence: 3 givenname: Stefan orcidid: 0000-0002-5844-4371 surname: Grimme fullname: Grimme, Stefan organization: Rheinische Friedrich-Wilhelms-Universität Bonn – sequence: 4 givenname: Martin orcidid: 0000-0002-1487-9218 surname: Oestreich fullname: Oestreich, Martin email: martin.oestreich@tu-berlin.de organization: Technische Universität Berlin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37158564$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gyhFZ4oJUZfFHnDjHErZ0pQoOLefIccasq8Re7ESQG9fe-I38ErzsskiVEPjgD_l5Z0bvzCk6ct4BQs8pWVBC2GvlLCwYYZwIVolH6IQKRjNelvwo3XPOs1IKeoxOY7xLvJSkeIKOeUmFFEV-gu7f2qiDHaxTo_UOe4PHNeClUy69R7-xGl8qDXH7czOGSY9TUH0_44-utSpCh2sVWnB2GvDKu4iXw6b3s3WfsML1rHu_hq-qs-Dgx7fvb3aKtU0x8NXcBdsBvvFT0PAUPTaqj_Bsf56h28vlbX2VXX94t6ovrjOdUy6yAioDUMmOVi0xXHamZEx0grWVIcKYjnOadiYLkLSQXc51QXirC1lVtCr5GXq1C7sJ_vMEcWyG5AD0vXLgp9gwSakoKsG26MsH6F2q1KXiEsUFZ0VOaKJe7KmpHaBrNslNFebmt8cJkDvgC7TeRJ2s0HDACEl9LIUkJUmL1nb81YjaT25M0vP_lyZ6saN18DEGMAeSkmY7Lc12WprDtCRB_kCg9-nHoGz_d1m1r8r2MP8jSXPxfrX8o_0Jp4vTqQ |
CitedBy_id | crossref_primary_10_1055_a_2508_2092 crossref_primary_10_1002_ijch_202300027 crossref_primary_10_1016_j_checat_2024_100962 crossref_primary_10_1055_s_0042_1751572 |
Cites_doi | 10.1002/anie.201504941 10.1021/ja050626v 10.1021/ol800858c 10.1002/chem.202001609 10.1002/ijch.202300027 10.1126/science.aaq0445 10.1039/P29930000799 10.1021/jacs.9b00862 10.1021/jacs.2c10975 10.1002/chem.201200497 10.1002/anie.202216000 10.1039/a901759c 10.1002/ajoc.201800359 10.1021/jp050536c 10.1055/a-2000-8183 10.1002/aic.690480220 10.1002/chem.202100439 10.1002/anie.200804025 10.1103/PhysRevLett.91.146401 10.1055/s-0036-1588871 10.1016/j.tetlet.2012.04.102 10.1039/B717914F 10.1021/acscatal.7b04489 10.1016/j.chempr.2020.11.022 10.1002/9780471678656 10.1021/cr4001385 10.1002/anie.200352128 10.1021/jacs.6b10690 10.1002/jcc.21759 10.1021/ja00492a034 10.1016/j.tetlet.2009.02.018 10.1021/ja062102g 10.1063/1.3382344 10.1021/jo010438x 10.1055/s-0039-1690233 10.1002/adsc.201201017 10.1039/C7SC01657C 10.1038/s41557-020-00558-1 10.1039/D0OB00361A 10.1039/b508541a 10.1021/ja502885c 10.1002/anie.201903111 10.1021/ja00743a061 10.1021/ar00175a001 10.1039/b515623h 10.1002/anie.197301731 10.1055/s-0035-1560396 10.1038/s41586-018-0042-1 10.1021/acs.orglett.6b01016 10.1039/C7CC06195A 10.1002/anie.200702586 10.1039/c7sc01657c 10.1039/c7cc06195a 10.1039/d0ob00361a 10.1039/b717914f 10.1002/jcc.21600 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202305295 |
DatabaseName | Wiley Online Library Open Access CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Web of Science CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37158564 001007580700001 10_1002_anie_202305295 ANIE202305295 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Einstein Stiftung Berlin – fundername: Deutsche Forschungsgemeinschaft funderid: Oe 249/18-1; 490737079 – fundername: Technische Universität Berlin – fundername: Deutsche Forschungsgemeinschaft; German Research Foundation (DFG) grantid: 490737079 – fundername: Projekt DEAL – fundername: Deutsche Forschungsgemeinschaft grantid: Oe 249/18-1 – fundername: Deutsche Forschungsgemeinschaft grantid: 490737079 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4135-6e9fee98d19b0f38df7225d52b9f05ffd331ffd286e8168d43c603bc68991973 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 2 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001007580700001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:58:16 EDT 2025 Fri Jul 25 11:46:32 EDT 2025 Mon Jul 21 06:00:41 EDT 2025 Fri Aug 29 16:17:33 EDT 2025 Wed Jul 09 18:41:12 EDT 2025 Tue Jul 01 01:47:11 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Jan 22 16:21:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Alkenes CARBOCATIONS CYCLOHEXA-1,4-DIENES ALKYLATION B(C6F5)-CATALYZED TRANSFER Hydrogenation Cationic Reactions Stereoselectivity Density Functional Calculations INTERMOLECULAR REACTIONS DIHYDROGEN 4+2 CYCLOADDITION BASIS-SETS S(N)1-TYPE REACTIONS |
Language | English |
License | Attribution 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4135-6e9fee98d19b0f38df7225d52b9f05ffd331ffd286e8168d43c603bc68991973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5844-4371 0000-0002-1487-9218 0000-0001-5101-4881 0000-0001-6631-3681 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202305295 |
PMID | 37158564 |
PQID | 2835326401 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | webofscience_primary_001007580700001CitationCount crossref_primary_10_1002_anie_202305295 proquest_miscellaneous_2811569527 pubmed_primary_37158564 webofscience_primary_001007580700001 wiley_primary_10_1002_anie_202305295_ANIE202305295 crossref_citationtrail_10_1002_anie_202305295 proquest_journals_2835326401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 17, 2023 |
PublicationDateYYYYMMDD | 2023-07-17 |
PublicationDate_xml | – month: 07 year: 2023 text: July 17, 2023 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 27 2017; 8 1973; 12 2017; 49 2023; 145 2019; 58 2012; 18 2020; 12 2008; 6 2014; 136 2020; 18 2018; 7 2023; 62 2023; 63 2018; 8 2002; 48 1971; 93 2003; 91 1978; 100 2005; 109 2013; 113 2013; 355 2016; 48 2006; 128 2004; 43 2021; 7 2023; 55 2019; 30 2009 2012; 50 53 2015; 54 2006; 8 2011; 32 2008; 10 2004 1993 2001; 66 2016; 18 2019; 141 2017; 139 1999 2017; 53 1990; 23 2018; 359 2018; 556 2005; 127 2008; 47 2010; 132 2020; 26 2005; 7 2007; 46 Moss R. A. (e_1_2_3_5_1) 2004 e_1_2_3_50_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_37_2 e_1_2_3_4_1 e_1_2_3_18_2 e_1_2_3_12_1 e_1_2_3_56_2 e_1_2_3_8_2 e_1_2_3_33_2 e_1_2_3_58_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_31_1 e_1_2_3_52_2 e_1_2_3_54_2 e_1_2_3_10_2 e_1_2_3_60_2 e_1_2_3_62_1 e_1_2_3_26_2 e_1_2_3_28_1 e_1_2_3_49_1 e_1_2_3_24_1 e_1_2_3_45_1 e_1_2_3_47_1 e_1_2_3_41_1 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_22_1 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_17_1 e_1_2_3_59_2 e_1_2_3_3_1 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_55_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_1 e_1_2_3_57_2 e_1_2_3_30_1 e_1_2_3_30_2 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_53_2 e_1_2_3_61_2 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_48_1 e_1_2_3_25_2 e_1_2_3_44_1 e_1_2_3_21_2 e_1_2_3_42_2 Olah, GA (WOS:000170874200001) 2001; 66 Grimme, S (WOS:000276971500005) 2010; 132 Naredla, RR (WOS:000330095300002) 2013; 113 Margarita, C (WOS:000393355600001) 2017; 139 FRY, JL (WOS:A1978FX16500034) 1978; 100 Fu, TH (WOS:000306152500032) 2012; 53 Wolff, B (WOS:000992285300001) 2023; 63 Kikuchi, J (WOS:000553001100001) 2020; 26 Kikuchi, J (WOS:000657810800001) 2021; 27 OLAH, GA (WOS:A1973P178400001) 1973; 12 Fu, TH (WOS:000267070700033) 2009; 50 Weigend, F (WOS:000235989200003) 2006; 8 Olah, G.A. (001007580700001.4) 2004 Braun, M (WOS:000188595500022) 2004; 43 Schultz, AG (WOS:000082398800001) 1999 Gualandi, A (WOS:000447542200004) 2018; 7 Banerjee, S (WOS:000438475100053) 2018; 8 Lu, P (WOS:000919253100002) 2023; 55 Tsuji, N (WOS:000428657000040) 2018; 359 Tao, JM (WOS:000185719500032) 2003; 91 Singh, D (WOS:000913116000001) 2023; 62 Mazuela, J (WOS:000327862400015) 2013; 355 Moss, R.A. (001007580700001.5) 2004 Ghosh, S (WOS:000925324300001) 2023 Mühlthau, F (WOS:000239278600040) 2006; 128 Eckert, F (WOS:000173922300019) 2002; 48 Yuan, WM (WOS:000411187100010) 2017; 53 Rubenbauer, P (WOS:000262048700013) 2008; 47 Chatterjee, I (WOS:000376476300035) 2016; 18 Grimme, S (WOS:000306921600029) 2012; 18 Isomura, M (WOS:000462260400033) 2019; 141 Kikuchi, J (WOS:000476608700029) 2019; 58 KLAMT, A (WOS:A1993LB78100003) 1993 Shintani, R (WOS:000249967100025) 2007; 46 Allouche, AR (WOS:000285311200017) 2011; 32 Chung, JYL (WOS:000257629200031) 2008; 10 Zhang, X (WOS:000660002500014) 2021; 7 Dryzhakov, M (WOS:000372882200005) 2016; 48 King, SM (WOS:000336078400064) 2014; 136 Weigend, F (WOS:000231618300007) 2005; 7 Mühlthau, F (WOS:000230220900019) 2005; 127 FRY, JL (WOS:A1971J782500061) 1971; 93 Bao, RLY (WOS:000527017400021) 2020; 18 Gualandi, A (WOS:000406065500028) 2017; 49 Shibata, T (WOS:000253423400011) 2008; 6 Walker, JCL (WOS:000501818500003) 2019; 30 Keess, S (WOS:000404617300001) 2017; 8 SCHULTZ, AG (WOS:A1990DN53600001) 1990; 23 Wendlandt, AE (WOS:000430793000036) 2018; 556 Properzi, R (WOS:000573437300002) 2020; 12 Chatterjee, I (WOS:000363396000049) 2015; 54 Zhao, Y (WOS:000230122600016) 2005; 109 |
References_xml | – volume: 48 start-page: 935 year: 2016 end-page: 959 publication-title: Synthesis – volume: 49 start-page: 3433 year: 2017 end-page: 3443 publication-title: Synthesis – volume: 53 start-page: 10390 year: 2017 end-page: 10393 publication-title: Chem. Commun. – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 2216 year: 2019 end-page: 2232 publication-title: Synlett – volume: 18 start-page: 9955 year: 2012 end-page: 9964 publication-title: Chem. Eur. J. – start-page: 1263 year: 1999 end-page: 1271 publication-title: Chem. Commun. – volume: 12 start-page: 1174 year: 2020 end-page: 1179 publication-title: Nat. Chem. – volume: 48 start-page: 369 year: 2002 end-page: 385 publication-title: AIChE J. – volume: 359 start-page: 1501 year: 2018 end-page: 1505 publication-title: Science – volume: 32 start-page: 1456 year: 2011 end-page: 1465 publication-title: J. Comput. Chem. – volume: 136 start-page: 6884 year: 2014 end-page: 6887 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 6905 year: 2013 end-page: 6948 publication-title: Chem. Rev. – volume: 132 start-page: 154104 year: 2010 end-page: 154119 publication-title: J. Chem. Phys. – volume: 54 start-page: 12158 year: 2015 end-page: 12162 publication-title: Angew. Chem. Int. Ed. – volume: 93 start-page: 3558 year: 1971 end-page: 3559 publication-title: J. Am. Chem. Soc. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 2956 year: 2020 end-page: 2961 publication-title: Org. Biomol. Chem. – volume: 43 start-page: 514 year: 2004 end-page: 517 publication-title: Angew. Chem. Int. Ed. – start-page: 799 year: 1993 end-page: 805 publication-title: J. Chem. Soc. Perkin Trans. 2 – volume: 8 start-page: 1057 year: 2006 end-page: 1065 publication-title: Phys. Chem. Chem. Phys. – volume: 141 start-page: 4738 year: 2019 end-page: 4748 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1451 year: 2021 end-page: 1486 publication-title: Chem – year: 2004 – volume: 109 start-page: 5656 year: 2005 end-page: 5667 publication-title: J. Phys. Chem. A – volume: 18 start-page: 2463 year: 2016 end-page: 2466 publication-title: Org. Lett. – volume: 139 start-page: 1346 year: 2017 end-page: 1356 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 9348 year: 2005 end-page: 9349 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 2884 year: 2023 end-page: 2900 publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 5943 year: 2001 end-page: 5957 publication-title: J. Org. Chem. – volume: 27 start-page: 10215 year: 2021 end-page: 10225 publication-title: Chem. Eur. J. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 464 year: 2008 end-page: 467 publication-title: Org. Biomol. Chem. – volume: 10 start-page: 3037 year: 2008 end-page: 3040 publication-title: Org. Lett. – volume: 46 start-page: 7277 year: 2007 end-page: 7280 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 10106 year: 2008 end-page: 10109 publication-title: Angew. Chem. Int. Ed. – volume: 556 start-page: 447 year: 2018 end-page: 451 publication-title: Nature – volume: 63 year: 2023 publication-title: Isr. J. Chem. – volume: 8 start-page: 6163 year: 2018 end-page: 6176 publication-title: ACS Catal. – volume: 8 start-page: 4688 year: 2017 end-page: 4695 publication-title: Chem. Sci. – volume: 26 start-page: 11124 year: 2020 end-page: 11128 publication-title: Chem. Eur. J. – volume: 55 start-page: 1042 year: 2023 end-page: 1052 publication-title: Synthesis – volume: 128 start-page: 9668 year: 2006 end-page: 9675 publication-title: J. Am. Chem. Soc. – volume: 50 53 start-page: 3253 3530 year: 2009 2012 end-page: 3257 publication-title: Tetrahedron Lett. Tetrahedron Lett. – volume: 23 start-page: 207 year: 1990 end-page: 213 publication-title: Acc. Chem. Res. – volume: 7 start-page: 1957 year: 2018 end-page: 1981 publication-title: Asian J. Org. Chem. – volume: 58 start-page: 8458 year: 2019 end-page: 8462 publication-title: Angew. Chem. Int. Ed. – volume: 100 start-page: 7641 year: 1978 end-page: 7644 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 173 year: 1973 end-page: 212 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 355 start-page: 2569 year: 2013 end-page: 2583 publication-title: Adv. Synth. Catal. – ident: e_1_2_3_32_2 doi: 10.1002/anie.201504941 – ident: e_1_2_3_13_2 doi: 10.1021/ja050626v – ident: e_1_2_3_12_1 – ident: e_1_2_3_16_1 doi: 10.1021/ol800858c – ident: e_1_2_3_19_2 doi: 10.1002/chem.202001609 – ident: e_1_2_3_50_1 – ident: e_1_2_3_7_2 doi: 10.1002/ijch.202300027 – ident: e_1_2_3_22_1 doi: 10.1126/science.aaq0445 – volume-title: Reactive Intermediate Chemistry year: 2004 ident: e_1_2_3_5_1 – ident: e_1_2_3_58_2 doi: 10.1039/P29930000799 – ident: e_1_2_3_25_2 doi: 10.1021/jacs.9b00862 – ident: e_1_2_3_26_2 doi: 10.1021/jacs.2c10975 – ident: e_1_2_3_61_2 doi: 10.1002/chem.201200497 – ident: e_1_2_3_47_1 doi: 10.1002/anie.202216000 – ident: e_1_2_3_43_2 doi: 10.1039/a901759c – ident: e_1_2_3_9_2 doi: 10.1002/ajoc.201800359 – ident: e_1_2_3_52_2 doi: 10.1021/jp050536c – ident: e_1_2_3_24_1 – ident: e_1_2_3_38_2 doi: 10.1055/a-2000-8183 – ident: e_1_2_3_59_2 doi: 10.1002/aic.690480220 – ident: e_1_2_3_20_2 doi: 10.1002/chem.202100439 – ident: e_1_2_3_15_2 doi: 10.1002/anie.200804025 – ident: e_1_2_3_53_2 doi: 10.1103/PhysRevLett.91.146401 – ident: e_1_2_3_10_2 doi: 10.1055/s-0036-1588871 – ident: e_1_2_3_30_2 doi: 10.1016/j.tetlet.2012.04.102 – ident: e_1_2_3_45_1 doi: 10.1039/B717914F – ident: e_1_2_3_62_1 – ident: e_1_2_3_39_1 doi: 10.1021/acscatal.7b04489 – ident: e_1_2_3_8_2 doi: 10.1016/j.chempr.2020.11.022 – ident: e_1_2_3_31_1 – ident: e_1_2_3_4_1 doi: 10.1002/9780471678656 – ident: e_1_2_3_3_1 doi: 10.1021/cr4001385 – ident: e_1_2_3_21_2 doi: 10.1002/anie.200352128 – ident: e_1_2_3_37_2 doi: 10.1021/jacs.6b10690 – ident: e_1_2_3_60_2 – ident: e_1_2_3_55_2 doi: 10.1002/jcc.21759 – ident: e_1_2_3_29_1 doi: 10.1021/ja00492a034 – ident: e_1_2_3_30_1 doi: 10.1016/j.tetlet.2009.02.018 – ident: e_1_2_3_14_2 doi: 10.1021/ja062102g – ident: e_1_2_3_54_2 doi: 10.1063/1.3382344 – ident: e_1_2_3_1_1 doi: 10.1021/jo010438x – ident: e_1_2_3_40_1 doi: 10.1055/s-0039-1690233 – ident: e_1_2_3_48_1 doi: 10.1002/adsc.201201017 – ident: e_1_2_3_35_2 doi: 10.1039/C7SC01657C – ident: e_1_2_3_27_1 doi: 10.1038/s41557-020-00558-1 – ident: e_1_2_3_36_1 – ident: e_1_2_3_46_1 doi: 10.1039/D0OB00361A – ident: e_1_2_3_51_2 – ident: e_1_2_3_56_2 doi: 10.1039/b508541a – ident: e_1_2_3_49_1 doi: 10.1021/ja502885c – ident: e_1_2_3_17_1 – ident: e_1_2_3_18_2 doi: 10.1002/anie.201903111 – ident: e_1_2_3_41_1 – ident: e_1_2_3_28_1 doi: 10.1021/ja00743a061 – ident: e_1_2_3_42_2 doi: 10.1021/ar00175a001 – ident: e_1_2_3_57_2 doi: 10.1039/b515623h – ident: e_1_2_3_2_1 doi: 10.1002/anie.197301731 – ident: e_1_2_3_6_1 – ident: e_1_2_3_11_2 doi: 10.1055/s-0035-1560396 – ident: e_1_2_3_23_1 doi: 10.1038/s41586-018-0042-1 – ident: e_1_2_3_33_2 doi: 10.1021/acs.orglett.6b01016 – ident: e_1_2_3_34_2 doi: 10.1039/C7CC06195A – ident: e_1_2_3_44_1 doi: 10.1002/anie.200702586 – volume: 12 start-page: 1174 year: 2020 ident: WOS:000573437300002 article-title: Catalytic enantiocontrol over a non-classical carbocation publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-00558-1 – volume: 49 start-page: 3433 year: 2017 ident: WOS:000406065500028 article-title: Stereoselective SN1-Type Reaction of Enols and Enolates publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0036-1588871 – volume: 50 start-page: 3253 year: 2009 ident: WOS:000267070700033 article-title: Synthesis of β-heteroaryl propionates via trapping of carbocations with π-nucleophiles publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2009.02.018 – volume: 359 start-page: 1501 year: 2018 ident: WOS:000428657000040 article-title: Activation of olefins via asymmetric Bronsted acid catalysis publication-title: SCIENCE doi: 10.1126/science.aaq0445 – volume: 8 start-page: 1057 year: 2006 ident: WOS:000235989200003 article-title: Accurate Coulomb-fitting basis sets for H to Rn publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/b515623h – volume: 18 start-page: 9955 year: 2012 ident: WOS:000306921600029 article-title: Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201200497 – volume: 127 start-page: 9348 year: 2005 ident: WOS:000230220900019 article-title: High facial diastereoselectivity in intra- and intermolecular reactions of chiral benzylic cations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja050626v – volume: 53 start-page: 3530 year: 2012 ident: WOS:000306152500032 article-title: Synthesis of β-heteroaryl propionates via trapping of carbocations with π-nucleophiles (vol 50, pg 3253, 2009) publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2012.04.102 – volume: 30 start-page: 2216 year: 2019 ident: WOS:000501818500003 article-title: Ionic Transfer Reactions with Cyclohexadiene-Based Surrogates publication-title: SYNLETT doi: 10.1055/s-0039-1690233 – volume: 43 start-page: 514 year: 2004 ident: WOS:000188595500022 article-title: Titanium(IV)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200352128 – volume: 139 start-page: 1346 year: 2017 ident: WOS:000393355600001 article-title: Evolution and Prospects of the Asymmetric Hydrogenation of Unfunctionalized Olefins publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b10690 – volume: 58 start-page: 8458 year: 2019 ident: WOS:000476608700029 article-title: Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral BrOnsted Acids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201903111 – volume: 55 start-page: 1042 year: 2023 ident: WOS:000919253100002 article-title: Earth-Abundant Transition Metal Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Alkenes publication-title: SYNTHESIS-STUTTGART doi: 10.1055/a-2000-8183 – volume: 23 start-page: 207 year: 1990 ident: WOS:A1990DN53600001 article-title: ENANTIOSELECTIVE METHODS FOR CHIRAL CYCLOHEXANE RING SYNTHESIS publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 8 start-page: 4688 year: 2017 ident: WOS:000404617300001 article-title: Cyclohexa-1,4-dienes in transition-metal-free ionic transfer processes publication-title: CHEMICAL SCIENCE doi: 10.1039/c7sc01657c – volume: 91 start-page: ARTN 146401 year: 2003 ident: WOS:000185719500032 article-title: Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids publication-title: PHYSICAL REVIEW LETTERS doi: 10.1103/PhysRevLett.91.146401 – volume: 53 start-page: 10390 year: 2017 ident: WOS:000411187100010 article-title: Cyclohexa-1,3-diene-based dihydrogen and hydrosilane surrogates in B(C6F5)3-catalysed transfer processes publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c7cc06195a – volume: 7 start-page: 1957 year: 2018 ident: WOS:000447542200004 article-title: Catalytic Stereoselective SN1-Type Reactions Promoted by Chiral Phosphoric Acids as BrOnsted Acid Catalysts publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.201800359 – volume: 18 start-page: 2463 year: 2016 ident: WOS:000376476300035 article-title: Bronsted Acid-Catalyzed Transfer Hydrogenation of Imines and Alkenes Using Cyclohexa-1,4-dienes as Dihydrogen Surrogates publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b01016 – volume: 100 start-page: 7641 year: 1978 ident: WOS:A1978FX16500034 article-title: ASYMMETRIC REDUCTIONS OF CARBOCATIONS BY CHIRAL ORGANOSILICON HYDRIDES - STEREOCHEMICAL NATURE OF CARBOCATION CAPTURED publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 136 start-page: 6884 year: 2014 ident: WOS:000336078400064 article-title: A Method for the Selective Hydrogenation of Alkenyl Halides to Alkyl Halides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja502885c – volume: 10 start-page: 3037 year: 2008 ident: WOS:000257629200031 article-title: Diastereoselective Friedel-Crafts alkylation of indoles with chiral (α-phenyl benzylic cations.: Asymmetric synthesis of anti-1,1,2-triarylalkanes publication-title: ORGANIC LETTERS doi: 10.1021/ol800858c – volume: 18 start-page: 2956 year: 2020 ident: WOS:000527017400021 article-title: Rh(i)-Catalyzed enantioselective and scalable [4+2] cycloaddition of 1,3-dienes with dialkyl acetylenedicarboxylates publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/d0ob00361a – volume: 556 start-page: 447 year: 2018 ident: WOS:000430793000036 article-title: Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction publication-title: NATURE doi: 10.1038/s41586-018-0042-1 – volume: 48 start-page: 369 year: 2002 ident: WOS:000173922300019 article-title: Fast solvent screening via quantum chemistry: COSMO-RS approach publication-title: AICHE JOURNAL – start-page: 1263 year: 1999 ident: WOS:000082398800001 article-title: The asymmetric Birch reduction and reduction-alkylation strategies for synthesis of natural products publication-title: CHEMICAL COMMUNICATIONS – volume: 7 start-page: 3297 year: 2005 ident: WOS:000231618300007 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS – volume: 8 start-page: 6163 year: 2018 ident: WOS:000438475100053 article-title: B(C6F5)3: Catalyst or Initiator? Insights from Computational Studies into Surrogate Silicon Chemistry publication-title: ACS CATALYSIS doi: 10.1021/acscatal.7b04489 – year: 2004 ident: 001007580700001.5 publication-title: Reactive Intermediate Chemistry – volume: 12 start-page: 173 year: 1973 ident: WOS:A1973P178400001 article-title: CARBOCATIONS AND ELECTROPHILIC REACTIONS publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 48 start-page: 935 year: 2016 ident: WOS:000372882200005 article-title: Recent Advances in Direct Catalytic Dehydrative Substitution of Alcohols publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0035-1560396 – year: 2004 ident: 001007580700001.4 publication-title: Carbocation Chemistry – volume: 141 start-page: 4738 year: 2019 ident: WOS:000462260400033 article-title: Coordination-Induced Stereocontrol over Carbocations: Asymmetric Reductive Deoxygenation of Racemic Tertiary Alcohols publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b00862 – volume: 46 start-page: 7277 year: 2007 ident: WOS:000249967100025 article-title: A cationic rhodium-chiral diene complex as a high-performance catalyst for the intramolecular asymmetric [4+2] cycloaddition of alkyne-1,3-dienes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200702586 – volume: 6 start-page: 464 year: 2008 ident: WOS:000253423400011 article-title: Rh-catalyzed intermolecular and enantioselective [4+2] cycloaddition of 1,3-dienes with dimethyl acetylenedicarboxylate publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b717914f – volume: 7 start-page: 1451 year: 2021 ident: WOS:000660002500014 article-title: Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers publication-title: CHEM doi: 10.1016/j.chempr.2020.11.022 – volume: 113 start-page: 6905 year: 2013 ident: WOS:000330095300002 article-title: Contemporary Carbocation Chemistry: Applications in Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr4001385 – volume: 66 start-page: 5943 year: 2001 ident: WOS:000170874200001 article-title: 100 years of carbocations and their significance in chemistry publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo010438x – volume: 109 start-page: 5656 year: 2005 ident: WOS:000230122600016 article-title: Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp050536c – volume: 32 start-page: 174 year: 2011 ident: WOS:000285311200017 article-title: Gabedit-A Graphical User Interface for Computational Chemistry Softwares publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY doi: 10.1002/jcc.21600 – volume: 132 start-page: ARTN 154104 year: 2010 ident: WOS:000276971500005 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.3382344 – start-page: 799 year: 1993 ident: WOS:A1993LB78100003 article-title: COSMO - A NEW APPROACH TO DIELECTRIC SCREENING IN SOLVENTS WITH EXPLICIT EXPRESSIONS FOR THE SCREENING ENERGY AND ITS GRADIENT publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2 – volume: 26 start-page: 11124 year: 2020 ident: WOS:000553001100001 article-title: Chiral Bronsted Acid Catalyzed Enantioconvergent Propargylic Substitution Reaction of Racemic Secondary Propargylic Alcohols with Thiols publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202001609 – volume: 27 start-page: 10215 year: 2021 ident: WOS:000657810800001 article-title: Enantioconvergent Substitution Reactions of Racemic Electrophiles by Organocatalysis publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202100439 – volume: 47 start-page: 10106 year: 2008 ident: WOS:000262048700013 article-title: Bi(OTf)3-Catalyzed Diastereoselective SN1-Type Reactions of Chiral Propargylic Acetates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200804025 – year: 2023 ident: WOS:000925324300001 article-title: Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c10975 – volume: 54 start-page: 12158 year: 2015 ident: WOS:000363396000049 article-title: B(C6F5)3-Catalyzed Transfer of Dihydrogen from One Unsaturated Hydrocarbon to Another publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201504941 – volume: 63 year: 2023 ident: WOS:000992285300001 article-title: The Two Faces of Carbenium Ions: Intermolecular Trapping of Prochiral Carbocations with Stereocontrol publication-title: ISRAEL JOURNAL OF CHEMISTRY doi: 10.1002/ijch.202300027 – volume: 128 start-page: 9668 year: 2006 ident: WOS:000239278600040 article-title: Chiral α-branched benzylic carbocations:: Diastereoselective intermolecular reactions with arene nucleophiles and NMR spectroscopic studies publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja062102g – volume: 355 start-page: 2569 year: 2013 ident: WOS:000327862400015 article-title: A Phosphite-Pyridine/Iridium Complex Library as Highly Selective Catalysts for the Hydrogenation of Minimally Functionalized Olefins publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201201017 – volume: 93 start-page: 3558 year: 1971 ident: WOS:A1971J782500061 article-title: STEREOSELECTIVE ATTACK AT ONE ENANTIOTOPIC FACE OF A CARBONIUM ION BY CHIRAL NUCLEOPHILE publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 62 year: 2023 ident: WOS:000913116000001 article-title: Chemodivergent, Regio- and Enantioselective Cycloaddition Reactions between 1,3-Dienes and Alkynes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202216000 |
SSID | ssj0028806 |
Score | 2.4379842 |
Snippet | An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C−H bond at an asymmetrically substituted carbon atom is... An enantioselective reduction of simple carbenium ions with cyclohexadienes containing a hydridic C-H bond at an asymmetrically substituted carbon atom is... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202305295 |
SubjectTerms | Alkenes Cationic Reactions Chemistry Chemistry, Multidisciplinary Density Functional Calculations Enantiomers Hydrides Hydrogen bonds Hydrogenation Ions Physical Sciences Reaction mechanisms Reduction Science & Technology Stereoselectivity Styrenes |
Title | Discrimination of the Enantiotopic Faces of Structurally Unbiased Carbenium Ions Employing a Cyclohexadiene‐Based Chiral Hydride Source |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202305295 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001007580700001 https://www.ncbi.nlm.nih.gov/pubmed/37158564 https://www.proquest.com/docview/2835326401 https://www.proquest.com/docview/2811569527 |
Volume | 62 |
WOS | 001007580700001 |
WOSCitedRecordID | wos001007580700001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BL3ChvAmUykiVOGWb2Ek2OZawqy0SFaKt1Fvk-KFGbJOK7kosJ67c-hv7S5hxHnSLEAgu0Ua2d2V7Ht-sx98A7EhBamQCP1YWAxStQz8zVvoqNQo9EC9Td3r-_iCZHUfvTuKTa7f4W36I4Q830gxnr0nBZXmx-5M0lG5gj6j4tzurQiNMCVuEij4O_FEchbO9XiSET1Xoe9bGgO-uD1_3Sr9AzRteaR3IOk803QTZz6FNQPk0Wi7Kkfp6g97xfyZ5H-51MJXttXL1AG6Z-iHcyfvqcI_g-9uKDA4l0tDWssYyhJJsQnk1VbNozivFppTuRS2HjqSWCD7mK3ZclxW6Ts1y-bk0dbU8Y_so-qytPYyelEmWr9S8OTVfXD6aufp2-aYdcVrhd7DZimrCG3boDh4ew9F0cpTP_K6sg6_QY8Z-YjJrTJbqMCsDK1Jtx2hUdMzLzAaxtVqIEJ88TQwVBdGRUEkgSpVgaBhmY_EENuqmNs-AqVSnWlpuZaAjhEIySiOLAWBoVCKj0Hrg97taqI7ynCpvzIuWrJkXtL7FsL4evB76n7dkH7_tudULSdEp_UVB1HWIhjFi9eDV0Iz7QmcwsjbNkvogBE-ymI89eNoK1_BTYhxi8JZEHuxcl7ahneJ3RHgpWmmC5h6Ef9Mt7yZOHAcLD7gTtz9Mr9g72J8Mb8__ZdALuEuffcdBugUbKGjmJeK3RbkNt3n0Ydtp6g-XOz5P |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcigX3g9DgUUq4uTU3rUd-8Ch5KGEtjnQVOrNsvehWqR21SaCcOLKjZ_CX-Ev8EuY8QtShEBIPXCJlOzajnfn8c3u7DcAW4kgNdKO7UuDAYpSrh1pk9gy1BI9EE_Dcvd8fxKMDr3XR_7RGnxpzsJU_BDtghtpRmmvScFpQXr7B2soHcHuUPXvcrOqzqvc1ct3GLWdvxz3cYqfcz4cTHsjuy4sYEu02b4d6MhoHYXKjVLHiFCZLoq18nkaGcc3Rgnh4icPA01lKZQnZOCIVAYYnLhRV-Btr8BVqiJObP39Ny1hFUdtqM4zCWFT2fuGJtLh26t_d9UN_oJtL7jBVeRcur7hDfjaDFqV8fK2s5inHfnhAp_k_zSqN-F6jcPZTqU4t2BN57dho9eUv7sDn_oZWVTKFCLZZYVhiJXZgBKHsmJenGaSDSmfjVoOShZeYjCZLdlhnmaIDRTrJWepzrPFCRujbrOquDJCBZaw3lLOimP9vky4098-fn5VXXGc4T3YaElF7zU7KHdW7sL0MgbiHqznRa4fAJOhClViuEkc5SHWS7zQMxjhuloGiecaC-xGimJZc7pTaZFZXLFR85imM26n04IXbf_Tis3ktz03G6GMa6t2HhM3H8J9DMkteNY247zQJlOS62JBfTDGCCKfdy24Xwlz-yjRdTE6DTwLtn6W7radFigQwobohij2sMD9m269-sWJxGFuAS_F-w-vF-9MxoP228N_uegpbIym-3vx3niy-wiu0e92Sbi6CesodPoxgtV5-qS0DwziS9ac779img0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxBuXAotUxMnU3rUd-8ChOIkSClGltlJvlr0P1VKwozYV5MaVG_-E_8QvYWb9gIAQCKmXSM6u7dgzs_NNZvYbgJ1ckBlpzw2lwQBFKd9NtMldGWuJHogXsc2ev5tFk-PgzUl4sgFfu70wDT9E_4cbWYZdr8nAF8rs_iANpR3YL6n5t81VtWWV-3r1AYO281fTIUr4Oefj0VE6cdu-Aq7EJTt0I50YrZNY-UnhGRErM0CtViEvEuOFxighfPzkcaSpK4UKhIw8UcgIYxM_GQi87BW4SglGqiHjwUEf4aExNNuZhHCp633HEunx3fWfu-4Ff4O2v3jBdeBsPd_4FtxsISvba3TsNmzo6g5cT7tOcXfh87CkxYeKakjMrDYMYSUbUY1NWS_rRSnZmEq_aOTQEtYS2cd8xY6rokQ3qlianxW6Ki_esymaAWv6EKNXZTlLV3Jen-qPtjZNf_v05XVzxmmJ12CTFfWH1-zQJiHuwdFliOI-bFZ1pR8Ck7GKVW64yT0VICzKgzgwGAz6WkZ54BsH3O6NZ7KlP6cuHPOsIW7mGUko6yXkwIt-_qIh_vjjzO1OgFm7AJxnRGOHyBijVwee9cMoF8rH5JWuL2gOwvEoCfnAgQeN4PtbiYGPgVwUOLDzsyb04xTLI9qLccUmmO6A_y_T0vbBie9g6QC3WvWXx8v2ZtNRf7T1Pyc9hWsHw3H2djrbfwQ36GvXUpNuwybqnH6MsG5ZPLGmxCC7ZNP9DkvDV8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrimination+of+the+Enantiotopic+Faces+of+Structurally+Unbiased+Carbenium+Ions+Employing+a+Cyclohexadiene%E2%80%90Based+Chiral+Hydride+Source&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wolff%2C+Benedikt&rft.au=Qu%2C+Zheng%E2%80%90Wang&rft.au=Grimme%2C+Stefan&rft.au=Oestreich%2C+Martin&rft.date=2023-07-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=29&rft_id=info:doi/10.1002%2Fanie.202305295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202305295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |