[11C]Carboxylated Tetrazines for Facile Labeling of Trans‐Cyclooctene‐Functionalized PeptoBrushes
Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for preta...
Saved in:
Published in | Macromolecular rapid communications. Vol. 43; no. 12; pp. e2100655 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [11C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [11C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.
Herein, the first 11C‐carboxylation of tetrazines is reported. These radiolabeled molecules are then clicked with a trans‐cyclooctene (TCO)‐functionalized PeptoBrushes. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized theranostic macromolecules, so that their localization and distribution shortly after injection can be assessed by positron emission tomography (PET). |
---|---|
AbstractList | Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [
11
C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [
11
C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [
11
C]tetrazines is mild, fast, and quantitative. This strategy allows facile
11
C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET. Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [11C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [11C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET. Herein, the first 11C‐carboxylation of tetrazines is reported. These radiolabeled molecules are then clicked with a trans‐cyclooctene (TCO)‐functionalized PeptoBrushes. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized theranostic macromolecules, so that their localization and distribution shortly after injection can be assessed by positron emission tomography (PET). Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [11C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [11C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET. Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine - trans-cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO-functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO-containing graft copolymers, namely PeptoBrushes (polyglutamic acid-graft-polysarcosine), novel [ C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [ C]tetrazine production is easy and scalable, while indirect TCO-PeptoBrushes labeling with these [ C]tetrazines is mild, fast, and quantitative. This strategy allows facile C-labeling of diverse TCO-functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET. |
Author | Battisti, Umberto Maria Herth, Matthias Manfred García‐Vázquez, Rocío Barz, Matthias Shalgunov, Vladimir Schäfer, Gabriela |
Author_xml | – sequence: 1 givenname: Rocío surname: García‐Vázquez fullname: García‐Vázquez, Rocío organization: University of Copenhagen – sequence: 2 givenname: Umberto Maria orcidid: 0000-0002-1012-8644 surname: Battisti fullname: Battisti, Umberto Maria organization: University of Copenhagen – sequence: 3 givenname: Vladimir orcidid: 0000-0001-8956-1207 surname: Shalgunov fullname: Shalgunov, Vladimir organization: Nuclear Medicine & PET – sequence: 4 givenname: Gabriela surname: Schäfer fullname: Schäfer, Gabriela organization: Leiden Academic Centre for Drug Research (LACDR) Leiden University Einsteinweg 55 – sequence: 5 givenname: Matthias surname: Barz fullname: Barz, Matthias organization: Leiden Academic Centre for Drug Research (LACDR) Leiden University Einsteinweg 55 – sequence: 6 givenname: Matthias Manfred orcidid: 0000-0002-7788-513X surname: Herth fullname: Herth, Matthias Manfred email: matthias.herth@sund.ku.dk organization: Nuclear Medicine & PET |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34888977$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFLwzAYhoMozk2vHqXgxUtnkqZrepzFqTBRZJ5ESpp-0Y4umUmLbid_gr_RX2LGpoIXT8kHz_fw8b5dtK2NBoQOCe4TjOnpTFjZp5j6YRDHW2iPxJSEUUqTbf_HlIYkigYd1HVuijHmDNNd1IkY5zxNkj0ED4Rkj5mwhXlb1KKBMphAY8Wy0uACZWwwErKqIRiLAupKPwVGBRMrtPt8_8gWsjZGNqDBT6NWy6YyWtTV0mtuYd6YM9u6Z3D7aEeJ2sHB5u2h-9H5JLsMxzcXV9lwHEpGojj0p7NCljGVIOMyTSWhqeK8LJgsueJEMV6kZRGpmFCmhCwoHShQVMiEgEpJ1EMna-_cmpcWXJPPKiehroUG07qcDjCPGWE88ejxH3RqWuuPX1GJDyfCyUrYX1PSGucsqHxuK5_5Iic4XxWQrwrIfwrwC0cbbVvMoPzBvxP3QLoGXn2qi390-fXwLvuVfwHcdZcG |
CitedBy_id | crossref_primary_10_1021_acs_bioconjchem_3c00286 crossref_primary_10_3390_ph15060685 crossref_primary_10_1016_j_nucmedbio_2024_108877 crossref_primary_10_1021_acs_bioconjchem_2c00583 crossref_primary_10_3390_molecules27134022 crossref_primary_10_3390_molecules28030931 crossref_primary_10_3390_ph16040497 crossref_primary_10_1016_j_ejmech_2023_115862 |
Cites_doi | 10.1021/acsnano.8b04433 10.1021/ma502497x 10.1038/s41467-018-03880-y 10.1038/s41467-018-07755-0 10.1021/acsomega.0c00524 10.1016/j.biomaterials.2018.06.021 10.1021/bm401542z 10.1016/j.ejps.2011.02.002 10.1039/c3nr02519e 10.1021/acsnano.9b06905 10.2967/jnumed.117.189944 10.1039/c3py00347g 10.1002/marc.1994.030150315 10.1039/D0BM02149K 10.1039/c3cc41027g 10.1016/j.biomaterials.2018.05.005 10.1039/D1SC02789A 10.1039/D1TB01316E 10.1021/acsanm.0c01834 10.1002/marc.201500403 10.1021/acs.macromol.8b00258 10.1021/ml500065q 10.1016/j.addr.2010.07.009 10.7150/thno.14742 10.1002/smll.201907574 10.1021/acsptsci.1c00133 10.1039/c3py00189j 10.1002/anie.201107263 10.1155/2018/7641304 10.1039/C8CS00473K 10.1016/j.tetlet.2018.12.028 10.1021/ol800829q 10.1016/j.nucmedbio.2020.11.003 10.1016/j.progpolymsci.2018.01.002 10.1002/smll.201904716 10.1002/anie.199728121 10.1021/acsptsci.1c00007 10.1039/C8CS00395E 10.1021/acsnano.1c05713 10.1002/jlcr.3596 10.1002/anie.201609655 10.1002/jlcr.3258 10.1039/C4CS00329B 10.2967/jnumed.117.189993 10.1021/acs.jmedchem.1c01326 10.1016/j.bmcl.2019.02.014 10.2967/jnumed.116.186940 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH – notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202100655 |
DatabaseName | Wiley Open Access Journals Wiley Online Library Free Content PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 10_1002_marc_202100655 34888977 MARC202100655 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Novo Nordisk Fonden funderid: NNF18SA0034956 – fundername: European Union's EU Framework Programme for Research and Innovation Horizon 2020 funderid: 670261 – fundername: Horizon 2020 Framework Programme funderid: 813528 – fundername: Horizon 2020 Framework Programme grantid: 813528 – fundername: Novo Nordisk Fonden grantid: NNF18SA0034956 – fundername: European Union's EU Framework Programme for Research and Innovation Horizon 2020 grantid: 670261 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4135-5214bcd52cec5d99c129f88db4cd8f81f48b9db3f5124facb226fef2ac71ef913 |
IEDL.DBID | 24P |
ISSN | 1022-1336 |
IngestDate | Wed Dec 04 02:36:58 EST 2024 Tue Nov 19 06:30:32 EST 2024 Fri Dec 06 01:26:50 EST 2024 Sat Sep 28 08:22:23 EDT 2024 Sat Aug 24 00:56:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | theranostics polymers tetrazine ligation 11C labeling PET PeptoBrush |
Language | English |
License | Attribution 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4135-5214bcd52cec5d99c129f88db4cd8f81f48b9db3f5124facb226fef2ac71ef913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7788-513X 0000-0002-1012-8644 0000-0001-8956-1207 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100655 |
PMID | 34888977 |
PQID | 2678973071 |
PQPubID | 1016394 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2608541487 proquest_journals_2678973071 crossref_primary_10_1002_marc_202100655 pubmed_primary_34888977 wiley_primary_10_1002_marc_202100655_MARC202100655 |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2015; 36 2015; 58 2013; 4 2021; 4 2021; 64 2013; 49 2019; 15 2018; 81 2020; 16 2020; 14 2008; 10 2018; 61 2021; 93 2013; 5 2010; 62 2012; 51 2018; 9 2016; 6 2015; 48 2021; 15 2020; 5 2018; 2018 2019; 60 2014; 5 2020; 3 2021; 12 2017; 58 2018; 179 2018; 178 1997; 36 2019; 48 2015; 44 2017; 56 2011; 42 2014; 15 2019; 29 1994; 15 2018; 51 2018; 12 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 9 start-page: 3543 year: 2021 publication-title: Biomater. Sci. – volume: 49 start-page: 3805 year: 2013 publication-title: Chem. Commun. – volume: 9 start-page: 5306 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 8242 year: 2020 publication-title: ACS Omega – volume: 58 start-page: 1380 year: 2017 publication-title: J. Nucl. Med. – volume: 14 start-page: 568 year: 2020 publication-title: ACS Nano – volume: 60 start-page: 272 year: 2019 publication-title: Tetrahedron Lett. – volume: 6 start-page: 887 year: 2016 publication-title: Theranostics – volume: 15 start-page: 279 year: 1994 publication-title: Macromol. Rapid Commun. – volume: 58 start-page: 1553 year: 2017 publication-title: J. Nucl. Med. – volume: 44 start-page: 2405 year: 2015 publication-title: Chem. Soc. Rev. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 51 start-page: 2653 year: 2018 publication-title: Macromolecules – volume: 178 start-page: 373 year: 2018 publication-title: Biomaterials – volume: 4 start-page: 824 year: 2021 publication-title: ACS Pharmacol. Transl. Sci. – volume: 93 start-page: 19 year: 2021 publication-title: Nucl. Med. Biol. – volume: 4 start-page: 1556 year: 2021 publication-title: ACS Pharmacol. Transl. Sci. – volume: 15 year: 2019 publication-title: Small – volume: 58 start-page: 65 year: 2015 publication-title: J. Labelled Compd. Radiopharm. – volume: 4 start-page: 3182 year: 2013 publication-title: Polym. Chem. – volume: 64 year: 2021 publication-title: J. Med. Chem. – volume: 2018 year: 2018 publication-title: J. Chem. – volume: 51 start-page: 2698 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 179 start-page: 209 year: 2018 publication-title: Biomaterials – volume: 12 year: 2021 publication-title: Chem. Sci. – volume: 16 year: 2020 publication-title: Small – volume: 5 start-page: 7476 year: 2013 publication-title: Nanoscale – volume: 4 start-page: 2989 year: 2013 publication-title: Polym. Chem. – volume: 36 start-page: 2812 year: 1997 publication-title: Angew. Chem., Int. Ed. – volume: 81 start-page: 163 year: 2018 publication-title: Prog. Polym. Sci. – volume: 62 start-page: 1064 year: 2010 publication-title: Adv. Drug Delivery Rev. – volume: 10 start-page: 2697 year: 2008 publication-title: Org. Lett. – volume: 29 start-page: 986 year: 2019 publication-title: Bioorg. Med. Chem. Lett. – volume: 3 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 48 start-page: 351 year: 2019 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 2074 year: 2015 publication-title: Macromolecules – volume: 48 start-page: 1077 year: 2019 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 1943 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 12 start-page: 8646 year: 2018 publication-title: ACS Nano – volume: 42 start-page: 484 year: 2011 publication-title: Eur. J. Pharm. Sci. – volume: 56 start-page: 248 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 83S year: 2017 publication-title: J. Nucl. Med. – volume: 9 start-page: 1484 year: 2018 publication-title: Nat. Commun. – volume: 61 start-page: 237 year: 2018 publication-title: J. Labelled Compd. Radiopharm. – volume: 5 start-page: 668 year: 2014 publication-title: ACS Med. Chem. Lett. – volume: 9 start-page: 7878 year: 2021 publication-title: J. Mater. Chem. B – volume: 15 start-page: 548 year: 2014 publication-title: Biomacromolecules – ident: e_1_2_7_4_1 doi: 10.1021/acsnano.8b04433 – ident: e_1_2_7_18_1 doi: 10.1021/ma502497x – ident: e_1_2_7_13_1 doi: 10.1038/s41467-018-03880-y – ident: e_1_2_7_27_1 doi: 10.1038/s41467-018-07755-0 – ident: e_1_2_7_41_1 doi: 10.1021/acsomega.0c00524 – ident: e_1_2_7_12_1 doi: 10.1016/j.biomaterials.2018.06.021 – ident: e_1_2_7_34_1 doi: 10.1021/bm401542z – ident: e_1_2_7_6_1 doi: 10.1016/j.ejps.2011.02.002 – ident: e_1_2_7_29_1 doi: 10.1039/c3nr02519e – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.9b06905 – ident: e_1_2_7_9_1 doi: 10.2967/jnumed.117.189944 – ident: e_1_2_7_35_1 doi: 10.1039/c3py00347g – ident: e_1_2_7_15_1 doi: 10.1002/marc.1994.030150315 – ident: e_1_2_7_5_1 doi: 10.1039/D0BM02149K – ident: e_1_2_7_31_1 doi: 10.1039/c3cc41027g – ident: e_1_2_7_11_1 doi: 10.1016/j.biomaterials.2018.05.005 – ident: e_1_2_7_38_1 doi: 10.1039/D1SC02789A – ident: e_1_2_7_1_1 doi: 10.1039/D1TB01316E – ident: e_1_2_7_23_1 doi: 10.1021/acsanm.0c01834 – ident: e_1_2_7_22_1 doi: 10.1002/marc.201500403 – ident: e_1_2_7_26_1 doi: 10.1021/acs.macromol.8b00258 – ident: e_1_2_7_43_1 doi: 10.1021/ml500065q – ident: e_1_2_7_3_1 doi: 10.1016/j.addr.2010.07.009 – ident: e_1_2_7_14_1 doi: 10.7150/thno.14742 – ident: e_1_2_7_24_1 doi: 10.1002/smll.201907574 – ident: e_1_2_7_37_1 doi: 10.1021/acsptsci.1c00133 – ident: e_1_2_7_36_1 doi: 10.1039/c3py00189j – ident: e_1_2_7_46_1 doi: 10.1002/anie.201107263 – ident: e_1_2_7_32_1 doi: 10.1155/2018/7641304 – ident: e_1_2_7_8_1 doi: 10.1039/C8CS00473K – ident: e_1_2_7_33_1 doi: 10.1016/j.tetlet.2018.12.028 – ident: e_1_2_7_45_1 doi: 10.1021/ol800829q – ident: e_1_2_7_47_1 doi: 10.1016/j.nucmedbio.2020.11.003 – ident: e_1_2_7_21_1 doi: 10.1016/j.progpolymsci.2018.01.002 – ident: e_1_2_7_25_1 doi: 10.1002/smll.201904716 – ident: e_1_2_7_16_1 doi: 10.1002/anie.199728121 – ident: e_1_2_7_39_1 doi: 10.1021/acsptsci.1c00007 – ident: e_1_2_7_10_1 doi: 10.1039/C8CS00395E – ident: e_1_2_7_19_1 doi: 10.1021/acsnano.1c05713 – ident: e_1_2_7_42_1 doi: 10.1002/jlcr.3596 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201609655 – ident: e_1_2_7_28_1 doi: 10.1002/jlcr.3258 – ident: e_1_2_7_17_1 doi: 10.1039/C4CS00329B – ident: e_1_2_7_7_1 doi: 10.2967/jnumed.117.189993 – ident: e_1_2_7_40_1 doi: 10.1021/acs.jmedchem.1c01326 – ident: e_1_2_7_30_1 doi: 10.1016/j.bmcl.2019.02.014 – ident: e_1_2_7_2_1 doi: 10.2967/jnumed.116.186940 |
SSID | ssj0008402 |
Score | 2.4654756 |
Snippet | Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential... Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2100655 |
SubjectTerms | 11C labeling Antibodies Brachytherapy Chemical synthesis Emission analysis Graft copolymers Imaging Labeling Localization Macromolecules Nanoparticles PeptoBrush PET Polymers Positron emission Positron emission tomography Radiation therapy Radiolabelling tetrazine ligation theranostics Tomography |
Title | [11C]Carboxylated Tetrazines for Facile Labeling of Trans‐Cyclooctene‐Functionalized PeptoBrushes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100655 https://www.ncbi.nlm.nih.gov/pubmed/34888977 https://www.proquest.com/docview/2678973071 https://search.proquest.com/docview/2608541487 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HPQivq0vIgieQs1mkyZHiZYiVopYKIiEfaJQmtK0oJ78Cf5Gf4nfJm20eBC8BJZkd8PM7Hzf7DKzhJwaZpjl6a7gkUKAYrgbGxG4mgIrDacm9G1ycvs2bHXZdS_o_cjiL-tDVBtudmUU_toucC7y-nfRUFvqAfEdQhagaLBIlsFtQnuHAWWdyhcjfCnPOxFyIRoLZ2Ubz2l9vv88LP3imvPUtcCe5jpZm5JG56LU8gZZ0INNspLM7mrbIvrB85LHhI9E9vLaB31Uzr0ej4rS0bkDXuo0ucTIzg0XRQK6kxmngKnP94_kVfazTII8a7SaALpyf_D5DcN09HCcwQDyJ51vk27z6j5pudMLFFwJbAoQZHpMSBVQqWWg4lgC3E0UKcGkikzkGRaJWAnfAPWZ4VKAixltKJcNT5vY83fI0iAb6D3iRNoA2FVDBdL2gjp9HdoETKaDUNBGjZzN5JcOyzoZaVkRmaZW0mkl6Ro5nIk3na6XPKXAzBjOpuHVyEn1GkK0xxd8oLOJ_Qb0EIYVYbLdUi3VVD78EAbAG1ro6Y9_SNsXd0nV2v9PpwOySq1VFRsyh2RpPJroI_CTsTguTBDPyzv6BZU_4Hs |
link.rule.ids | 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFL0qdAEbSnmUUFqMhMTKgMeP2EtkGqWQIISChISQNU-1KopR4ixg1U_gG_mSnrFjo9AFEixH43l47r1zz53HGaJdE5jA4nRX8FghQDHcTYwIXc3gKw1nJvLt5eT-WdS9DE6uwvo0ob0LU_FDNAtu1jLK-doauF2QPnhmDbVcDwjwELPAjYZz9BE279lTXccXzwxSiF-qDU_EXAjHopq38ZAdzJaf9Uv_gc1Z7Fo6n84nEnW3qzMnf_YnhdiXDy8YHd_1X8u0NIWmzlGlS5_pgx6u0EJavwi3Svra89KblI8EunELkKqcgS5GJUH12AH6dTpcok2nx0V5zd3JjVM6w6e_j-m9vM1zCYiukerAnVarkL8fUM25vityqNn4lx6v0WXnxyDtutNnGlwJDxgilPUCIVXIpJahShIJCGHiWIlAqtjEnglikSjhG2CLwHApgPiMNozLtqdN4vnrND_Mh3qDnFgbwAfVVqG0paA0vo7sNc9Ah5Fg7Rbt1ULK7io2jqziXWaZHbasGbYWbdUyzKZWOc4YPHOCKa3ttWinycYg2k0SPtT5xH4DEAr1jdHYl0r2TVM-ZjtUgBxWSvCVPmT9o4u0SW2-pdA2LXQH_V7W-3l2-pUWmVXjcgloi-aL0UR_AyIqxPdS5_8B5iYE9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIkE3vCkDBYKExCpt4ziZZFmlRAXaqqpaqRJCkV9XIKrJaCazoCs-gW_kSzhOJikDCyRYRo4f8b32OdeOj4lesWTpeXqoVWYRoLAKc9ZJ6ASwkpXgNPaHkw-P0v0z-e48Of_lFH-nDzEsuPmR0c7XfoBPLW9fiYZ6qQfEdwhZgKLJdbohU5F79fy9kysBKYQv3X4nQi5EY2kv27gjtlfzr8LSH1xzlbq22FPeIdW3uvvl5MvWotFb5vI3Qcf_-ay7dHtJTIPdzpPu0TU3uU-3iv4-uAfkPkRR8bFQM41WXICi2uDUNbNWnnoegPsGpTKoMjhQuj3kHtQctFD449v34qu5qGsDgu7wVAJMuzXIz5co5thNmxpONv_k5g_prHxzWuyHy0saQgP8SxDIRlIbmwjjTGLz3IBAcJZZLY3NOItYZjq3OmYwC8nKaPA9diyUGUeO8yh-RGuTeuIeU5A5BnmwY5sYnwsuE7vUH_KULkm1GI_odW-jatppcVSd6rKofLdVQ7eNaLM3YbUck_NKAJdzTGjjaEQvh2R0ot8iURNXL_w7oKBw3gyVbXSmH6qKMdehAKSI1oB_aUN1uHtSDE9P_iXTC7p5vFdWB2-P3j-ldeGduF3_2aS1ZrZwz0CHGv289fif17MDpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5B11C%5DCarboxylated+Tetrazines+for+Facile+Labeling+of+Trans%E2%80%90Cyclooctene%E2%80%90Functionalized+PeptoBrushes&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Garc%C3%ADa%E2%80%90V%C3%A1zquez%2C+Roc%C3%ADo&rft.au=Battisti%2C+Umberto+Maria&rft.au=Shalgunov%2C+Vladimir&rft.au=Sch%C3%A4fer%2C+Gabriela&rft.date=2022-06-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=43&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmarc.202100655&rft.externalDBID=10.1002%252Fmarc.202100655&rft.externalDocID=MARC202100655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |