[11C]Carboxylated Tetrazines for Facile Labeling of Trans‐Cyclooctene‐Functionalized PeptoBrushes

Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for preta...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 43; no. 12; pp. e2100655 - n/a
Main Authors García‐Vázquez, Rocío, Battisti, Umberto Maria, Shalgunov, Vladimir, Schäfer, Gabriela, Barz, Matthias, Herth, Matthias Manfred
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [11C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [11C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET. Herein, the first 11C‐carboxylation of tetrazines is reported. These radiolabeled molecules are then clicked with a trans‐cyclooctene (TCO)‐functionalized PeptoBrushes. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized theranostic macromolecules, so that their localization and distribution shortly after injection can be assessed by positron emission tomography (PET).
AbstractList Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [ 11 C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [ 11 C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [ 11 C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11 C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.
Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [11C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [11C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET. Herein, the first 11C‐carboxylation of tetrazines is reported. These radiolabeled molecules are then clicked with a trans‐cyclooctene (TCO)‐functionalized PeptoBrushes. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized theranostic macromolecules, so that their localization and distribution shortly after injection can be assessed by positron emission tomography (PET).
Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine – trans‐cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO‐functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO‐containing graft copolymers, namely PeptoBrushes (polyglutamic acid‐graft‐polysarcosine), novel [11C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11C]tetrazine production is easy and scalable, while indirect TCO‐PeptoBrushes labeling with these [11C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11C‐labeling of diverse TCO‐functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.
Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine - trans-cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO-functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO-containing graft copolymers, namely PeptoBrushes (polyglutamic acid-graft-polysarcosine), novel [ C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [ C]tetrazine production is easy and scalable, while indirect TCO-PeptoBrushes labeling with these [ C]tetrazines is mild, fast, and quantitative. This strategy allows facile C-labeling of diverse TCO-functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.
Author Battisti, Umberto Maria
Herth, Matthias Manfred
García‐Vázquez, Rocío
Barz, Matthias
Shalgunov, Vladimir
Schäfer, Gabriela
Author_xml – sequence: 1
  givenname: Rocío
  surname: García‐Vázquez
  fullname: García‐Vázquez, Rocío
  organization: University of Copenhagen
– sequence: 2
  givenname: Umberto Maria
  orcidid: 0000-0002-1012-8644
  surname: Battisti
  fullname: Battisti, Umberto Maria
  organization: University of Copenhagen
– sequence: 3
  givenname: Vladimir
  orcidid: 0000-0001-8956-1207
  surname: Shalgunov
  fullname: Shalgunov, Vladimir
  organization: Nuclear Medicine & PET
– sequence: 4
  givenname: Gabriela
  surname: Schäfer
  fullname: Schäfer, Gabriela
  organization: Leiden Academic Centre for Drug Research (LACDR) Leiden University Einsteinweg 55
– sequence: 5
  givenname: Matthias
  surname: Barz
  fullname: Barz, Matthias
  organization: Leiden Academic Centre for Drug Research (LACDR) Leiden University Einsteinweg 55
– sequence: 6
  givenname: Matthias Manfred
  orcidid: 0000-0002-7788-513X
  surname: Herth
  fullname: Herth, Matthias Manfred
  email: matthias.herth@sund.ku.dk
  organization: Nuclear Medicine & PET
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34888977$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFLwzAYhoMozk2vHqXgxUtnkqZrepzFqTBRZJ5ESpp-0Y4umUmLbid_gr_RX2LGpoIXT8kHz_fw8b5dtK2NBoQOCe4TjOnpTFjZp5j6YRDHW2iPxJSEUUqTbf_HlIYkigYd1HVuijHmDNNd1IkY5zxNkj0ED4Rkj5mwhXlb1KKBMphAY8Wy0uACZWwwErKqIRiLAupKPwVGBRMrtPt8_8gWsjZGNqDBT6NWy6YyWtTV0mtuYd6YM9u6Z3D7aEeJ2sHB5u2h-9H5JLsMxzcXV9lwHEpGojj0p7NCljGVIOMyTSWhqeK8LJgsueJEMV6kZRGpmFCmhCwoHShQVMiEgEpJ1EMna-_cmpcWXJPPKiehroUG07qcDjCPGWE88ejxH3RqWuuPX1GJDyfCyUrYX1PSGucsqHxuK5_5Iic4XxWQrwrIfwrwC0cbbVvMoPzBvxP3QLoGXn2qi390-fXwLvuVfwHcdZcG
CitedBy_id crossref_primary_10_1021_acs_bioconjchem_3c00286
crossref_primary_10_3390_ph15060685
crossref_primary_10_1016_j_nucmedbio_2024_108877
crossref_primary_10_1021_acs_bioconjchem_2c00583
crossref_primary_10_3390_molecules27134022
crossref_primary_10_3390_molecules28030931
crossref_primary_10_3390_ph16040497
crossref_primary_10_1016_j_ejmech_2023_115862
Cites_doi 10.1021/acsnano.8b04433
10.1021/ma502497x
10.1038/s41467-018-03880-y
10.1038/s41467-018-07755-0
10.1021/acsomega.0c00524
10.1016/j.biomaterials.2018.06.021
10.1021/bm401542z
10.1016/j.ejps.2011.02.002
10.1039/c3nr02519e
10.1021/acsnano.9b06905
10.2967/jnumed.117.189944
10.1039/c3py00347g
10.1002/marc.1994.030150315
10.1039/D0BM02149K
10.1039/c3cc41027g
10.1016/j.biomaterials.2018.05.005
10.1039/D1SC02789A
10.1039/D1TB01316E
10.1021/acsanm.0c01834
10.1002/marc.201500403
10.1021/acs.macromol.8b00258
10.1021/ml500065q
10.1016/j.addr.2010.07.009
10.7150/thno.14742
10.1002/smll.201907574
10.1021/acsptsci.1c00133
10.1039/c3py00189j
10.1002/anie.201107263
10.1155/2018/7641304
10.1039/C8CS00473K
10.1016/j.tetlet.2018.12.028
10.1021/ol800829q
10.1016/j.nucmedbio.2020.11.003
10.1016/j.progpolymsci.2018.01.002
10.1002/smll.201904716
10.1002/anie.199728121
10.1021/acsptsci.1c00007
10.1039/C8CS00395E
10.1021/acsnano.1c05713
10.1002/jlcr.3596
10.1002/anie.201609655
10.1002/jlcr.3258
10.1039/C4CS00329B
10.2967/jnumed.117.189993
10.1021/acs.jmedchem.1c01326
10.1016/j.bmcl.2019.02.014
10.2967/jnumed.116.186940
ContentType Journal Article
Copyright 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202100655
DatabaseName Wiley Open Access Journals
Wiley Online Library Free Content
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 10_1002_marc_202100655
34888977
MARC202100655
Genre article
Journal Article
GrantInformation_xml – fundername: Novo Nordisk Fonden
  funderid: NNF18SA0034956
– fundername: European Union's EU Framework Programme for Research and Innovation Horizon 2020
  funderid: 670261
– fundername: Horizon 2020 Framework Programme
  funderid: 813528
– fundername: Horizon 2020 Framework Programme
  grantid: 813528
– fundername: Novo Nordisk Fonden
  grantid: NNF18SA0034956
– fundername: European Union's EU Framework Programme for Research and Innovation Horizon 2020
  grantid: 670261
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4135-5214bcd52cec5d99c129f88db4cd8f81f48b9db3f5124facb226fef2ac71ef913
IEDL.DBID 24P
ISSN 1022-1336
IngestDate Wed Dec 04 02:36:58 EST 2024
Tue Nov 19 06:30:32 EST 2024
Fri Dec 06 01:26:50 EST 2024
Sat Sep 28 08:22:23 EDT 2024
Sat Aug 24 00:56:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords theranostics
polymers
tetrazine ligation
11C labeling
PET
PeptoBrush
Language English
License Attribution
2021 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4135-5214bcd52cec5d99c129f88db4cd8f81f48b9db3f5124facb226fef2ac71ef913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7788-513X
0000-0002-1012-8644
0000-0001-8956-1207
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100655
PMID 34888977
PQID 2678973071
PQPubID 1016394
PageCount 7
ParticipantIDs proquest_miscellaneous_2608541487
proquest_journals_2678973071
crossref_primary_10_1002_marc_202100655
pubmed_primary_34888977
wiley_primary_10_1002_marc_202100655_MARC202100655
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2015; 36
2015; 58
2013; 4
2021; 4
2021; 64
2013; 49
2019; 15
2018; 81
2020; 16
2020; 14
2008; 10
2018; 61
2021; 93
2013; 5
2010; 62
2012; 51
2018; 9
2016; 6
2015; 48
2021; 15
2020; 5
2018; 2018
2019; 60
2014; 5
2020; 3
2021; 12
2017; 58
2018; 179
2018; 178
1997; 36
2019; 48
2015; 44
2017; 56
2011; 42
2014; 15
2019; 29
1994; 15
2018; 51
2018; 12
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 9
  start-page: 3543
  year: 2021
  publication-title: Biomater. Sci.
– volume: 49
  start-page: 3805
  year: 2013
  publication-title: Chem. Commun.
– volume: 9
  start-page: 5306
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 8242
  year: 2020
  publication-title: ACS Omega
– volume: 58
  start-page: 1380
  year: 2017
  publication-title: J. Nucl. Med.
– volume: 14
  start-page: 568
  year: 2020
  publication-title: ACS Nano
– volume: 60
  start-page: 272
  year: 2019
  publication-title: Tetrahedron Lett.
– volume: 6
  start-page: 887
  year: 2016
  publication-title: Theranostics
– volume: 15
  start-page: 279
  year: 1994
  publication-title: Macromol. Rapid Commun.
– volume: 58
  start-page: 1553
  year: 2017
  publication-title: J. Nucl. Med.
– volume: 44
  start-page: 2405
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 51
  start-page: 2653
  year: 2018
  publication-title: Macromolecules
– volume: 178
  start-page: 373
  year: 2018
  publication-title: Biomaterials
– volume: 4
  start-page: 824
  year: 2021
  publication-title: ACS Pharmacol. Transl. Sci.
– volume: 93
  start-page: 19
  year: 2021
  publication-title: Nucl. Med. Biol.
– volume: 4
  start-page: 1556
  year: 2021
  publication-title: ACS Pharmacol. Transl. Sci.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 58
  start-page: 65
  year: 2015
  publication-title: J. Labelled Compd. Radiopharm.
– volume: 4
  start-page: 3182
  year: 2013
  publication-title: Polym. Chem.
– volume: 64
  year: 2021
  publication-title: J. Med. Chem.
– volume: 2018
  year: 2018
  publication-title: J. Chem.
– volume: 51
  start-page: 2698
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 179
  start-page: 209
  year: 2018
  publication-title: Biomaterials
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 5
  start-page: 7476
  year: 2013
  publication-title: Nanoscale
– volume: 4
  start-page: 2989
  year: 2013
  publication-title: Polym. Chem.
– volume: 36
  start-page: 2812
  year: 1997
  publication-title: Angew. Chem., Int. Ed.
– volume: 81
  start-page: 163
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 62
  start-page: 1064
  year: 2010
  publication-title: Adv. Drug Delivery Rev.
– volume: 10
  start-page: 2697
  year: 2008
  publication-title: Org. Lett.
– volume: 29
  start-page: 986
  year: 2019
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 48
  start-page: 351
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 2074
  year: 2015
  publication-title: Macromolecules
– volume: 48
  start-page: 1077
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 36
  start-page: 1943
  year: 2015
  publication-title: Macromol. Rapid Commun.
– volume: 12
  start-page: 8646
  year: 2018
  publication-title: ACS Nano
– volume: 42
  start-page: 484
  year: 2011
  publication-title: Eur. J. Pharm. Sci.
– volume: 56
  start-page: 248
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 83S
  year: 2017
  publication-title: J. Nucl. Med.
– volume: 9
  start-page: 1484
  year: 2018
  publication-title: Nat. Commun.
– volume: 61
  start-page: 237
  year: 2018
  publication-title: J. Labelled Compd. Radiopharm.
– volume: 5
  start-page: 668
  year: 2014
  publication-title: ACS Med. Chem. Lett.
– volume: 9
  start-page: 7878
  year: 2021
  publication-title: J. Mater. Chem. B
– volume: 15
  start-page: 548
  year: 2014
  publication-title: Biomacromolecules
– ident: e_1_2_7_4_1
  doi: 10.1021/acsnano.8b04433
– ident: e_1_2_7_18_1
  doi: 10.1021/ma502497x
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-018-03880-y
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-018-07755-0
– ident: e_1_2_7_41_1
  doi: 10.1021/acsomega.0c00524
– ident: e_1_2_7_12_1
  doi: 10.1016/j.biomaterials.2018.06.021
– ident: e_1_2_7_34_1
  doi: 10.1021/bm401542z
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ejps.2011.02.002
– ident: e_1_2_7_29_1
  doi: 10.1039/c3nr02519e
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.9b06905
– ident: e_1_2_7_9_1
  doi: 10.2967/jnumed.117.189944
– ident: e_1_2_7_35_1
  doi: 10.1039/c3py00347g
– ident: e_1_2_7_15_1
  doi: 10.1002/marc.1994.030150315
– ident: e_1_2_7_5_1
  doi: 10.1039/D0BM02149K
– ident: e_1_2_7_31_1
  doi: 10.1039/c3cc41027g
– ident: e_1_2_7_11_1
  doi: 10.1016/j.biomaterials.2018.05.005
– ident: e_1_2_7_38_1
  doi: 10.1039/D1SC02789A
– ident: e_1_2_7_1_1
  doi: 10.1039/D1TB01316E
– ident: e_1_2_7_23_1
  doi: 10.1021/acsanm.0c01834
– ident: e_1_2_7_22_1
  doi: 10.1002/marc.201500403
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.macromol.8b00258
– ident: e_1_2_7_43_1
  doi: 10.1021/ml500065q
– ident: e_1_2_7_3_1
  doi: 10.1016/j.addr.2010.07.009
– ident: e_1_2_7_14_1
  doi: 10.7150/thno.14742
– ident: e_1_2_7_24_1
  doi: 10.1002/smll.201907574
– ident: e_1_2_7_37_1
  doi: 10.1021/acsptsci.1c00133
– ident: e_1_2_7_36_1
  doi: 10.1039/c3py00189j
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201107263
– ident: e_1_2_7_32_1
  doi: 10.1155/2018/7641304
– ident: e_1_2_7_8_1
  doi: 10.1039/C8CS00473K
– ident: e_1_2_7_33_1
  doi: 10.1016/j.tetlet.2018.12.028
– ident: e_1_2_7_45_1
  doi: 10.1021/ol800829q
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nucmedbio.2020.11.003
– ident: e_1_2_7_21_1
  doi: 10.1016/j.progpolymsci.2018.01.002
– ident: e_1_2_7_25_1
  doi: 10.1002/smll.201904716
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.199728121
– ident: e_1_2_7_39_1
  doi: 10.1021/acsptsci.1c00007
– ident: e_1_2_7_10_1
  doi: 10.1039/C8CS00395E
– ident: e_1_2_7_19_1
  doi: 10.1021/acsnano.1c05713
– ident: e_1_2_7_42_1
  doi: 10.1002/jlcr.3596
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201609655
– ident: e_1_2_7_28_1
  doi: 10.1002/jlcr.3258
– ident: e_1_2_7_17_1
  doi: 10.1039/C4CS00329B
– ident: e_1_2_7_7_1
  doi: 10.2967/jnumed.117.189993
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.jmedchem.1c01326
– ident: e_1_2_7_30_1
  doi: 10.1016/j.bmcl.2019.02.014
– ident: e_1_2_7_2_1
  doi: 10.2967/jnumed.116.186940
SSID ssj0008402
Score 2.4654756
Snippet Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click‐reactive groups greatly enhances the versatility of their potential...
Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2100655
SubjectTerms 11C labeling
Antibodies
Brachytherapy
Chemical synthesis
Emission analysis
Graft copolymers
Imaging
Labeling
Localization
Macromolecules
Nanoparticles
PeptoBrush
PET
Polymers
Positron emission
Positron emission tomography
Radiation therapy
Radiolabelling
tetrazine ligation
theranostics
Tomography
Title [11C]Carboxylated Tetrazines for Facile Labeling of Trans‐Cyclooctene‐Functionalized PeptoBrushes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100655
https://www.ncbi.nlm.nih.gov/pubmed/34888977
https://www.proquest.com/docview/2678973071
https://search.proquest.com/docview/2608541487
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HPQivq0vIgieQs1mkyZHiZYiVopYKIiEfaJQmtK0oJ78Cf5Gf4nfJm20eBC8BJZkd8PM7Hzf7DKzhJwaZpjl6a7gkUKAYrgbGxG4mgIrDacm9G1ycvs2bHXZdS_o_cjiL-tDVBtudmUU_toucC7y-nfRUFvqAfEdQhagaLBIlsFtQnuHAWWdyhcjfCnPOxFyIRoLZ2Ubz2l9vv88LP3imvPUtcCe5jpZm5JG56LU8gZZ0INNspLM7mrbIvrB85LHhI9E9vLaB31Uzr0ej4rS0bkDXuo0ucTIzg0XRQK6kxmngKnP94_kVfazTII8a7SaALpyf_D5DcN09HCcwQDyJ51vk27z6j5pudMLFFwJbAoQZHpMSBVQqWWg4lgC3E0UKcGkikzkGRaJWAnfAPWZ4VKAixltKJcNT5vY83fI0iAb6D3iRNoA2FVDBdL2gjp9HdoETKaDUNBGjZzN5JcOyzoZaVkRmaZW0mkl6Ro5nIk3na6XPKXAzBjOpuHVyEn1GkK0xxd8oLOJ_Qb0EIYVYbLdUi3VVD78EAbAG1ro6Y9_SNsXd0nV2v9PpwOySq1VFRsyh2RpPJroI_CTsTguTBDPyzv6BZU_4Hs
link.rule.ids 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFL0qdAEbSnmUUFqMhMTKgMeP2EtkGqWQIISChISQNU-1KopR4ixg1U_gG_mSnrFjo9AFEixH43l47r1zz53HGaJdE5jA4nRX8FghQDHcTYwIXc3gKw1nJvLt5eT-WdS9DE6uwvo0ob0LU_FDNAtu1jLK-doauF2QPnhmDbVcDwjwELPAjYZz9BE279lTXccXzwxSiF-qDU_EXAjHopq38ZAdzJaf9Uv_gc1Z7Fo6n84nEnW3qzMnf_YnhdiXDy8YHd_1X8u0NIWmzlGlS5_pgx6u0EJavwi3Svra89KblI8EunELkKqcgS5GJUH12AH6dTpcok2nx0V5zd3JjVM6w6e_j-m9vM1zCYiukerAnVarkL8fUM25vityqNn4lx6v0WXnxyDtutNnGlwJDxgilPUCIVXIpJahShIJCGHiWIlAqtjEnglikSjhG2CLwHApgPiMNozLtqdN4vnrND_Mh3qDnFgbwAfVVqG0paA0vo7sNc9Ah5Fg7Rbt1ULK7io2jqziXWaZHbasGbYWbdUyzKZWOc4YPHOCKa3ttWinycYg2k0SPtT5xH4DEAr1jdHYl0r2TVM-ZjtUgBxWSvCVPmT9o4u0SW2-pdA2LXQH_V7W-3l2-pUWmVXjcgloi-aL0UR_AyIqxPdS5_8B5iYE9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIkE3vCkDBYKExCpt4ziZZFmlRAXaqqpaqRJCkV9XIKrJaCazoCs-gW_kSzhOJikDCyRYRo4f8b32OdeOj4lesWTpeXqoVWYRoLAKc9ZJ6ASwkpXgNPaHkw-P0v0z-e48Of_lFH-nDzEsuPmR0c7XfoBPLW9fiYZ6qQfEdwhZgKLJdbohU5F79fy9kysBKYQv3X4nQi5EY2kv27gjtlfzr8LSH1xzlbq22FPeIdW3uvvl5MvWotFb5vI3Qcf_-ay7dHtJTIPdzpPu0TU3uU-3iv4-uAfkPkRR8bFQM41WXICi2uDUNbNWnnoegPsGpTKoMjhQuj3kHtQctFD449v34qu5qGsDgu7wVAJMuzXIz5co5thNmxpONv_k5g_prHxzWuyHy0saQgP8SxDIRlIbmwjjTGLz3IBAcJZZLY3NOItYZjq3OmYwC8nKaPA9diyUGUeO8yh-RGuTeuIeU5A5BnmwY5sYnwsuE7vUH_KULkm1GI_odW-jatppcVSd6rKofLdVQ7eNaLM3YbUck_NKAJdzTGjjaEQvh2R0ot8iURNXL_w7oKBw3gyVbXSmH6qKMdehAKSI1oB_aUN1uHtSDE9P_iXTC7p5vFdWB2-P3j-ldeGduF3_2aS1ZrZwz0CHGv289fif17MDpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5B11C%5DCarboxylated+Tetrazines+for+Facile+Labeling+of+Trans%E2%80%90Cyclooctene%E2%80%90Functionalized+PeptoBrushes&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Garc%C3%ADa%E2%80%90V%C3%A1zquez%2C+Roc%C3%ADo&rft.au=Battisti%2C+Umberto+Maria&rft.au=Shalgunov%2C+Vladimir&rft.au=Sch%C3%A4fer%2C+Gabriela&rft.date=2022-06-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=43&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmarc.202100655&rft.externalDBID=10.1002%252Fmarc.202100655&rft.externalDocID=MARC202100655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon