Determining Structures of Layer‐by‐Layer Spin‐Coated Zinc Dicarboxylate‐Based Metal‐Organic Thin Films
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 37; pp. e202400565 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 1521-3765 |
DOI | 10.1002/chem.202400565 |
Cover
Loading…
Abstract | Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H2BDC) and biphenyl‐4,4’‐dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H2BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained.
The structures of metal‐organic thin films obtained from layer‐by‐layer spin‐coating are determined by combining grazing‐incidence wide‐angle X‐ray scattering and ab initio density functional theory simulations. The Zn2+‐to‐dicarboxylic linker molar ratio used for spin‐coating pivotally influences the resulting structure. High excess of Zn2+ generates dicarboxylate‐intercalated layered zinc hydroxides, whereas equimolar ratios or slight excess of the linker yield metal‐(hydroxide‐)organic frameworks. |
---|---|
AbstractList | Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H 2 BDC) and biphenyl‐4,4’‐dicarboxylic acid (H 2 BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H 2 BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H 2 BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn 2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g ., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained. Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H2BDC) and biphenyl‐4,4’‐dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H2BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained. The structures of metal‐organic thin films obtained from layer‐by‐layer spin‐coating are determined by combining grazing‐incidence wide‐angle X‐ray scattering and ab initio density functional theory simulations. The Zn2+‐to‐dicarboxylic linker molar ratio used for spin‐coating pivotally influences the resulting structure. High excess of Zn2+ generates dicarboxylate‐intercalated layered zinc hydroxides, whereas equimolar ratios or slight excess of the linker yield metal‐(hydroxide‐)organic frameworks. Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H2BDC) and biphenyl‐4,4’‐dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H2BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained. Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained. Thin films of crystalline solids with substantial free volume from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers easily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structural determination, e.g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, so properties can be rationally engineered and explained. |
Author | Richards, Bryce S. Zojer, Egbert Steentjes, Robbin Chen, Dong‐Hui Fischer, Jan C. Wöll, Christof Howard, Ian A. |
Author_xml | – sequence: 1 givenname: Jan C. surname: Fischer fullname: Fischer, Jan C. organization: Karlsruhe Institute of Technology – sequence: 2 givenname: Robbin surname: Steentjes fullname: Steentjes, Robbin organization: Graz University of Technology – sequence: 3 givenname: Dong‐Hui orcidid: 0000-0003-2561-2444 surname: Chen fullname: Chen, Dong‐Hui email: donghui.chen@kit.edu organization: Karlsruhe Institute of Technology – sequence: 4 givenname: Bryce S. orcidid: 0000-0001-5469-048X surname: Richards fullname: Richards, Bryce S. organization: Karlsruhe Institute of Technology – sequence: 5 givenname: Egbert orcidid: 0000-0002-6502-1721 surname: Zojer fullname: Zojer, Egbert email: egbert.zojer@tugraz.at organization: Graz University of Technology – sequence: 6 givenname: Christof orcidid: 0000-0003-1078-3304 surname: Wöll fullname: Wöll, Christof organization: Karlsruhe Institute of Technology – sequence: 7 givenname: Ian A. orcidid: 0000-0002-7327-7356 surname: Howard fullname: Howard, Ian A. email: iahoward@gmail.com organization: Karlsruhe Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38642002$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQh62Kqiy01x6rSL30kq0d_4lzbBcoSIs4QC-9WI4zAaPE3tqO2tz6CDwjT1LDQpGQUC-2xvN9o5F_e2jHeQcIvSd4STCuPpsrGJcVrhjGXPBXaEF4RUpaC76DFrhhdSk4bXbRXozXGONGUPoG7VIpWJX1BdocQIIwWmfdZXGewmTSFCAWvi_WeoZw--emnfNxXxTnG-tysfI6QVf8sM4UB9bo0Prf85Dfcu-rjrl1CkkPuToLl9pZU1xcWVcc2WGMb9HrXg8R3j3c--j70eHF6rhcn307WX1Zl4YRyktCaCM56fqeYdpJ2komqsZ0IJmmmlDANTDBOBV9hSWGTvaV1nXbSwa60zXdR5-2czfB_5wgJjXaaGAYtAM_RUUxo7gWWPKMfnyGXvspuLxdpmom6rwIy9SHB2pqR-jUJthRh1k9_mUG2BYwwccYoFfGJp2sdyloOyiC1V1k6i4y9S-yrC2faY-TXxSarfDLDjD_h1ar48PTJ_cvC3StWw |
CitedBy_id | crossref_primary_10_1515_znb_2024_0088 |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1016/j.cpc.2009.06.022 10.1016/j.ssi.2007.04.016 10.1021/am2002789 10.1021/acs.jpcb.2c02193 10.1016/j.solidstatesciences.2009.09.001 10.1002/anie.201904475 10.1016/j.cpc.2015.01.003 10.1021/jacs.7b02184 10.1021/jp106116n 10.1021/ic034787g 10.1002/sstr.202100210 10.1038/srep00786 10.1021/ic1025729 10.1038/nmat4815 10.1038/s41467-018-06829-3 10.1021/la0117000 10.1007/BFb0036826 10.1016/j.jcis.2003.10.005 10.1016/j.materresbull.2015.04.055 10.1103/PhysRevB.28.5480 10.1016/j.solidstatesciences.2008.06.018 10.1039/C4CS00096J 10.1021/am3027986 10.2147/IJN.S38858 10.1002/admi.202202259 10.1039/C6CS00930A 10.1038/s41563-022-01199-0 10.1021/acs.cgd.6b00528 10.1021/ja304361v 10.1021/acs.chemmater.1c00743 10.1021/la8008943 10.1039/C7SC04256F 10.1021/jacs.6b10913 10.1557/JMR.1998.0112 10.1021/acsomega.0c02075 10.1016/j.ccr.2018.08.024 10.1002/chem.201702037 10.1002/adma.202103287 10.1021/ja2037996 10.1107/S1600576715004434 10.1016/j.electacta.2013.04.175 10.1007/978-3-030-18252-6 10.1006/jssc.1998.7962 10.1021/acsami.0c19621 10.1002/adma.201601718 10.1016/j.tsf.2013.02.060 10.1002/adom.202200213 10.1002/chem.201002381 10.1021/acs.chemmater.2c01753 10.1039/C7CS00315C 10.1021/acsami.5b01068 10.1016/j.cpc.2017.09.007 10.1021/cm301427w 10.1039/C8CP05254A 10.1016/j.matchemphys.2008.07.127 10.1016/j.micromeso.2015.02.048 10.1055/b-0035-108183 10.3390/ma3021302 10.1002/anie.202212797 10.1039/C9TA03595H 10.1039/b101531l 10.1186/1752-153X-7-119 10.1002/anie.201606016 10.1021/acsami.6b04701 10.1039/C8AN00816G 10.1038/s41467-018-08285-5 10.1021/jacs.5b03948 10.1016/j.jcp.2009.08.008 10.1063/1.466059 10.1149/1.1838359 10.1021/jacs.7b08174 10.1002/chem.202000594 10.1021/acs.jpcc.0c02255 10.1002/adfm.202102631 10.1016/j.progsolidstchem.2021.100335 10.1002/ejic.201300650 10.1016/j.solidstatesciences.2004.10.020 10.1021/jacs.1c11150 10.1021/acsami.8b17807 10.3762/bjoc.15.132 10.1006/jssc.1999.8330 10.1021/acs.cgd.7b00396 10.1039/C9CC05161A 10.1016/j.tsf.2010.06.032 10.1103/PhysRev.131.2010 10.1039/D0SC07073D 10.1016/j.jcis.2010.03.007 10.1103/PhysRevB.107.054433 10.1039/D0NR00240B 10.1021/acsami.9b12407 10.1039/C4CC09982F 10.1021/cm991179j 10.1021/jp910363w 10.1103/PhysRevLett.124.146401 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202400565 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 38642002 10_1002_chem_202400565 CHEM202400565 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Helmholtz-Gemeinschaft funderid: HEMF, recruiting initiative; MTET 38.01.05 – fundername: Deutsche Forschungsgesellschaft (DFG) funderid: SPP 1928 COORNETS – fundername: TU Graz Lead Project funderid: Porous Materials @ Work for Sustainability |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION ACUHS EBD NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4135-1139851dff403d83b84629cde84a3a13e07e464536f2080ed8f2aa7bf84eada73 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 14:42:00 EDT 2025 Fri Jul 25 12:05:47 EDT 2025 Mon Jul 21 06:03:41 EDT 2025 Tue Jul 01 05:23:46 EDT 2025 Thu Apr 24 22:56:29 EDT 2025 Wed Jan 22 17:18:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | ab initio GIWAXS DFT Metal-Organic Framework Layer-by-layer |
Language | English |
License | Attribution 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4135-1139851dff403d83b84629cde84a3a13e07e464536f2080ed8f2aa7bf84eada73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5469-048X 0000-0002-7327-7356 0000-0003-2561-2444 0000-0002-6502-1721 0000-0003-1078-3304 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400565 |
PMID | 38642002 |
PQID | 3074678514 |
PQPubID | 986340 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3043076085 proquest_journals_3074678514 pubmed_primary_38642002 crossref_citationtrail_10_1002_chem_202400565 crossref_primary_10_1002_chem_202400565 wiley_primary_10_1002_chem_202400565_CHEM202400565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2, 2024 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2, 2024 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 64 2002; 18 1963; 131 2023; 4 2015; 70 2019; 11 2019; 55 2010; 347 2019; 10 2017; 46 2019; 15 2019; 58 2009; 113 2020; 12 2020; 124 2022; 21 2023; 107 2013; 7 2011; 17 2013; 8 2013; 5 1996; 77 2020; 8 2009; 11 2018; 9 2007; 178 2015; 48 2020; 5 2010; 518 2021; 31 2012; 134 2021; 33 2015; 137 2013; 2013 2000; 12 2018; 377 2015; 211 2010; 114 2022; 34 2008; 24 2010; 3 2001; 11 1983; 28 2012; 24 2003; 42 2022; 126 1998; 13 2019; 7 2023; 10 2018; 143 2018; 140 2023; 2301535 2009; 180 2015; 51 2013; 105 2018; 222 2017; 23 2020; 32 2011; 3 2016; 16 1999; 148 2018; 20 2015; 7 2011; 133 2014; 43 2017; 139 2016; 55 2022; 144 2021; 13 2012; 2 2021; 12 2015; 190 2022; 3 2022; 61 2017; 17 2017; 16 1991; 22 2013; 534 1993; 99 2004; 272 2011; 50 2020; 26 2005; 7 2016; 138 2022; 10 2009; 228 2016; 28 1998; 145 2016; 8 1998; 141 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 Chen D.-H. (e_1_2_9_19_1) 2023; 4 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 Arora H. (e_1_2_9_11_1) 2020; 32 Zheng Y. (e_1_2_9_5_1) 2020; 8 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 Thissen P. (e_1_2_9_29_1) 2023; 2301535 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 Kawai A. (e_1_2_9_90_1) 1991; 22 e_1_2_9_25_1 e_1_2_9_48_1 |
References_xml | – volume: 46 start-page: 5730 year: 2017 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 8477 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 3196 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 33 start-page: 1 year: 2021 publication-title: Adv. Mater. – volume: 99 start-page: 4597 year: 1993 publication-title: J. Chem. Phys. – volume: 11 start-page: 330 year: 2009 publication-title: Solid State Sci. – volume: 145 start-page: 864 year: 1998 publication-title: J. Electrochem. Soc. – volume: 70 start-page: 336 year: 2015 publication-title: Mater. Res. Bull. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 3 year: 2022 publication-title: Small Structures – volume: 2301535 start-page: 1 year: 2023 publication-title: Adv. Funct. Mater. – volume: 272 start-page: 391 year: 2004 publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 2147 year: 2001 publication-title: J. Mater. Chem. – volume: 107 start-page: 54433 year: 2023 publication-title: Phys. Rev. B – volume: 16 start-page: 342 year: 2017 publication-title: Nat. Mater. – volume: 33 start-page: 5896 year: 2021 publication-title: Chem. Mater. – volume: 21 start-page: 673 year: 2022 publication-title: Nat. Mater. – volume: 7 start-page: 227 year: 2005 publication-title: Solid State Sci. – volume: 5 start-page: 17617 year: 2020 publication-title: ACS Omega – volume: 4 year: 2023 publication-title: Chemical Physics Reviews – volume: 28 start-page: 5480 year: 1983 publication-title: Phys. Rev. B – volume: 5 start-page: 1113 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 3242 year: 2017 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 8237 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5994 year: 2014 publication-title: Chem. Soc. Rev. – volume: 148 start-page: 26 year: 1999 publication-title: J. Solid State Chem. – volume: 20 start-page: 29142 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 10 year: 2019 publication-title: Nat. Commun. – volume: 190 start-page: 33 year: 2015 publication-title: Comput. Phys. Commun. – volume: 133 start-page: 8158 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 4221 year: 2018 publication-title: Analyst – volume: 7 start-page: 11180 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 105 start-page: 289 year: 2013 publication-title: Electrochim. Acta – volume: 26 start-page: 5185 year: 2020 publication-title: Chem. Eur. J. – volume: 126 start-page: 4999 year: 2022 publication-title: J. Phys. Chem. B – volume: 144 start-page: 2189 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 297 year: 2013 publication-title: Int. J. Nanomed. – volume: 131 start-page: 2010 year: 1963 publication-title: Phys. Rev. – volume: 55 start-page: 12683 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 4812 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1 year: 2018 publication-title: Nat. Commun. – volume: 141 start-page: 229 year: 1998 publication-title: J. Solid State Chem. – volume: 534 start-page: 205 year: 2013 publication-title: Thin Solid Films – volume: 17 start-page: 1448 year: 2011 publication-title: Chem. Eur. J. – volume: 12 start-page: 6983 year: 2020 publication-title: Nanoscale – volume: 518 start-page: 6792 year: 2010 publication-title: Thin Solid Films – volume: 13 start-page: 848 year: 1998 publication-title: J. Mater. Res. – volume: 113 start-page: 491 year: 2009 publication-title: Mater. Chem. Phys. – volume: 24 start-page: 3153 year: 2012 publication-title: Chem. Mater. – volume: 10 year: 2023 publication-title: Adv. Mater. Interfaces – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 134 start-page: 9605 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1 year: 2022 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 1 year: 2013 publication-title: Chemistry Central Journal – volume: 18 start-page: 3980 year: 2002 publication-title: Langmuir – volume: 124 start-page: 13187 year: 2020 publication-title: J. Phys. Chem. C – volume: 114 start-page: 16321 year: 2010 publication-title: J. Phys. Chem. C – volume: 138 start-page: 16787 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 9590 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 17079 year: 2019 publication-title: J. Mater. Chem. A – volume: 50 start-page: 3605 year: 2011 publication-title: Inorg. Chem. – volume: 15 start-page: 1331 year: 2019 publication-title: Beilstein J. Org. Chem. – volume: 211 start-page: 82 year: 2015 publication-title: Microporous Mesoporous Mater. – volume: 16 start-page: 3969 year: 2016 publication-title: Crystal Growth and Design – volume: 64 year: 2021 publication-title: Prog. Solid State Chem. – volume: 222 start-page: 267 year: 2018 publication-title: Comput. Phys. Commun. – volume: 228 start-page: 8367 year: 2009 publication-title: J. Comput. Phys. – volume: 178 start-page: 1143 year: 2007 publication-title: Solid State Ionics – volume: 34 start-page: 9446 year: 2022 end-page: 9454 publication-title: Chem. Mater. – volume: 55 start-page: 10056 year: 2019 publication-title: Chem. Commun. – volume: 12 start-page: 3123 year: 2000 publication-title: Chem. Mater. – volume: 11 start-page: 38294 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 3367 year: 2015 publication-title: Chem. Commun. – volume: 24 start-page: 9707 year: 2008 publication-title: Langmuir – volume: 3 start-page: 2358 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1 year: 2012 publication-title: Sci. Rep. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 917 year: 2015 publication-title: J. Appl. Crystallogr. – volume: 377 start-page: 259 year: 2018 publication-title: Coord. Chem. Rev. – volume: 9 start-page: 2135 year: 2018 publication-title: Chem. Sci. – volume: 3 start-page: 1302 year: 2010 publication-title: Materials – volume: 42 start-page: 6709 year: 2003 publication-title: Inorg. Chem. – volume: 11 start-page: 2080 year: 2009 publication-title: Solid State Sci. – volume: 347 start-page: 49 year: 2010 publication-title: J. Colloid Interface Sci. – volume: 2013 start-page: 5133 year: 2013 publication-title: Eur. J. Inorg. Chem. – volume: 23 start-page: 8390 year: 2017 publication-title: Chem. Eur. J. – volume: 8 start-page: 1 year: 2020 publication-title: Adv. Opt. Mater. – volume: 8 start-page: 20459 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 4477 year: 2021 publication-title: Chem. Sci. – volume: 22 start-page: 75 year: 1991 publication-title: Ceram. Trans. – volume: 13 start-page: 2062 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 114 start-page: 2776 year: 2010 publication-title: J. Phys. Chem. C – volume: 139 start-page: 6253 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 3826 year: 2017 publication-title: Cryst. Growth Des. – volume: 180 start-page: 2175 year: 2009 publication-title: Comput. Phys. Commun. – ident: e_1_2_9_97_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_9_93_1 doi: 10.1016/j.cpc.2009.06.022 – ident: e_1_2_9_38_1 doi: 10.1016/j.ssi.2007.04.016 – ident: e_1_2_9_54_1 doi: 10.1021/am2002789 – ident: e_1_2_9_82_1 doi: 10.1021/acs.jpcb.2c02193 – volume: 32 year: 2020 ident: e_1_2_9_11_1 publication-title: Adv. Mater. – ident: e_1_2_9_76_1 doi: 10.1016/j.solidstatesciences.2009.09.001 – ident: e_1_2_9_69_1 doi: 10.1002/anie.201904475 – ident: e_1_2_9_94_1 doi: 10.1016/j.cpc.2015.01.003 – ident: e_1_2_9_86_1 doi: 10.1021/jacs.7b02184 – ident: e_1_2_9_48_1 doi: 10.1021/jp106116n – ident: e_1_2_9_77_1 doi: 10.1021/ic034787g – ident: e_1_2_9_9_1 doi: 10.1002/sstr.202100210 – ident: e_1_2_9_23_1 doi: 10.1038/srep00786 – volume: 2301535 start-page: 1 year: 2023 ident: e_1_2_9_29_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_60_1 doi: 10.1021/ic1025729 – ident: e_1_2_9_16_1 doi: 10.1038/nmat4815 – ident: e_1_2_9_32_1 doi: 10.1038/s41467-018-06829-3 – ident: e_1_2_9_92_1 doi: 10.1021/la0117000 – ident: e_1_2_9_78_1 doi: 10.1007/BFb0036826 – ident: e_1_2_9_40_1 doi: 10.1016/j.jcis.2003.10.005 – ident: e_1_2_9_50_1 doi: 10.1016/j.materresbull.2015.04.055 – ident: e_1_2_9_99_1 doi: 10.1103/PhysRevB.28.5480 – ident: e_1_2_9_41_1 doi: 10.1016/j.solidstatesciences.2008.06.018 – ident: e_1_2_9_37_1 doi: 10.1039/C4CS00096J – ident: e_1_2_9_56_1 doi: 10.1021/am3027986 – ident: e_1_2_9_45_1 doi: 10.2147/IJN.S38858 – ident: e_1_2_9_31_1 doi: 10.1002/admi.202202259 – ident: e_1_2_9_1_1 doi: 10.1039/C6CS00930A – ident: e_1_2_9_71_1 doi: 10.1038/s41563-022-01199-0 – ident: e_1_2_9_4_1 doi: 10.1021/acs.cgd.6b00528 – ident: e_1_2_9_26_1 doi: 10.1021/ja304361v – ident: e_1_2_9_30_1 doi: 10.1021/acs.chemmater.1c00743 – ident: e_1_2_9_52_1 doi: 10.1021/la8008943 – ident: e_1_2_9_73_1 doi: 10.1039/C7SC04256F – ident: e_1_2_9_27_1 doi: 10.1021/jacs.6b10913 – ident: e_1_2_9_43_1 doi: 10.1557/JMR.1998.0112 – ident: e_1_2_9_80_1 doi: 10.1021/acsomega.0c02075 – ident: e_1_2_9_3_1 doi: 10.1016/j.ccr.2018.08.024 – ident: e_1_2_9_6_1 doi: 10.1002/chem.201702037 – ident: e_1_2_9_66_1 doi: 10.1002/adma.202103287 – ident: e_1_2_9_64_1 doi: 10.1021/ja2037996 – ident: e_1_2_9_70_1 doi: 10.1107/S1600576715004434 – ident: e_1_2_9_58_1 doi: 10.1016/j.electacta.2013.04.175 – ident: e_1_2_9_81_1 doi: 10.1007/978-3-030-18252-6 – ident: e_1_2_9_59_1 doi: 10.1006/jssc.1998.7962 – ident: e_1_2_9_91_1 doi: 10.1021/acsami.0c19621 – ident: e_1_2_9_24_1 doi: 10.1002/adma.201601718 – ident: e_1_2_9_55_1 doi: 10.1016/j.tsf.2013.02.060 – volume: 8 start-page: 1 year: 2020 ident: e_1_2_9_5_1 publication-title: Adv. Opt. Mater. – volume: 22 start-page: 75 year: 1991 ident: e_1_2_9_90_1 publication-title: Ceram. Trans. – ident: e_1_2_9_7_1 doi: 10.1002/adom.202200213 – ident: e_1_2_9_65_1 doi: 10.1002/chem.201002381 – ident: e_1_2_9_67_1 doi: 10.1021/acs.chemmater.2c01753 – ident: e_1_2_9_15_1 doi: 10.1039/C7CS00315C – ident: e_1_2_9_47_1 doi: 10.1021/acsami.5b01068 – ident: e_1_2_9_101_1 – ident: e_1_2_9_95_1 doi: 10.1016/j.cpc.2017.09.007 – ident: e_1_2_9_89_1 doi: 10.1021/cm301427w – ident: e_1_2_9_33_1 doi: 10.1039/C8CP05254A – ident: e_1_2_9_79_1 doi: 10.1016/j.matchemphys.2008.07.127 – ident: e_1_2_9_22_1 doi: 10.1016/j.micromeso.2015.02.048 – ident: e_1_2_9_83_1 doi: 10.1055/b-0035-108183 – volume: 4 year: 2023 ident: e_1_2_9_19_1 publication-title: Chemical Physics Reviews – ident: e_1_2_9_63_1 doi: 10.3390/ma3021302 – ident: e_1_2_9_10_1 doi: 10.1002/anie.202212797 – ident: e_1_2_9_13_1 doi: 10.1039/C9TA03595H – ident: e_1_2_9_84_1 doi: 10.1039/b101531l – ident: e_1_2_9_46_1 doi: 10.1186/1752-153X-7-119 – ident: e_1_2_9_34_1 doi: 10.1002/anie.201606016 – ident: e_1_2_9_68_1 doi: 10.1021/acsami.6b04701 – ident: e_1_2_9_2_1 doi: 10.1039/C8AN00816G – ident: e_1_2_9_28_1 doi: 10.1038/s41467-018-08285-5 – ident: e_1_2_9_20_1 doi: 10.1021/jacs.5b03948 – ident: e_1_2_9_96_1 doi: 10.1016/j.jcp.2009.08.008 – ident: e_1_2_9_100_1 doi: 10.1063/1.466059 – ident: e_1_2_9_51_1 doi: 10.1149/1.1838359 – ident: e_1_2_9_17_1 doi: 10.1021/jacs.7b08174 – ident: e_1_2_9_62_1 doi: 10.1002/chem.202000594 – ident: e_1_2_9_36_1 doi: 10.1021/acs.jpcc.0c02255 – ident: e_1_2_9_74_1 doi: 10.1002/adfm.202102631 – ident: e_1_2_9_39_1 doi: 10.1016/j.progsolidstchem.2021.100335 – ident: e_1_2_9_72_1 doi: 10.1002/ejic.201300650 – ident: e_1_2_9_87_1 doi: 10.1016/j.solidstatesciences.2004.10.020 – ident: e_1_2_9_8_1 doi: 10.1021/jacs.1c11150 – ident: e_1_2_9_14_1 doi: 10.1021/acsami.8b17807 – ident: e_1_2_9_85_1 doi: 10.3762/bjoc.15.132 – ident: e_1_2_9_44_1 doi: 10.1006/jssc.1999.8330 – ident: e_1_2_9_57_1 doi: 10.1021/acs.cgd.7b00396 – ident: e_1_2_9_18_1 doi: 10.1039/C9CC05161A – ident: e_1_2_9_61_1 doi: 10.1016/j.tsf.2010.06.032 – ident: e_1_2_9_88_1 doi: 10.1103/PhysRev.131.2010 – ident: e_1_2_9_25_1 doi: 10.1039/D0SC07073D – ident: e_1_2_9_49_1 doi: 10.1016/j.jcis.2010.03.007 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevB.107.054433 – ident: e_1_2_9_12_1 doi: 10.1039/D0NR00240B – ident: e_1_2_9_21_1 doi: 10.1021/acsami.9b12407 – ident: e_1_2_9_42_1 doi: 10.1039/C4CC09982F – ident: e_1_2_9_75_1 doi: 10.1021/cm991179j – ident: e_1_2_9_53_1 doi: 10.1021/jp910363w – ident: e_1_2_9_98_1 doi: 10.1103/PhysRevLett.124.146401 |
SSID | ssj0009633 |
Score | 2.4665432 |
Snippet | Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for... Thin films of crystalline solids with substantial free volume from organic chromophores and metal secondary building units (SBUs) are promising for engineering... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202400565 |
SubjectTerms | ab initio Acetic acid Benzene Chromophores Density functional theory DFT Dicarboxylic acids Fabrication GIWAXS Hydroxides layer-by-layer Metal hydroxides metal-organic framework Metals Optoelectronics Structural models Structure-function relationships Thin films Zinc Zinc coatings |
Title | Determining Structures of Layer‐by‐Layer Spin‐Coated Zinc Dicarboxylate‐Based Metal‐Organic Thin Films |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400565 https://www.ncbi.nlm.nih.gov/pubmed/38642002 https://www.proquest.com/docview/3074678514 https://www.proquest.com/docview/3043076085 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4BF7jwhi0vGQlpT4HWdpP0CIUKIUBoWSTEJbJjW6q2pBWlBzjxE_iN_BJmnAd0EUKCSxQnjhPbY8_nzPgbgB0VWtTaqQ4iqUwgWzYKlPOyzGWz6VrShbTf-ew8PL6SJ9fN63e7-HN-iOqHG40MP1_TAFd6uPdGGop1op3k5AOJoAQnYXLYIlT0540_CqUrjyUvo4A4WEvWxjrfG398XCt9gJrjyNWrns4cqPKjc4-Tf7uje72bPv7H5_iTWs3DbIFL2X4uSAswYbNFmG6X4eCWYHBYOM6grmOXnnV2hEt11nfsVCFuf3l61g948Al2OehmmGj3EcoadtPNUnaI4nCnsQo9vIb3DlB_GnZmEf1jKt8TmjKKI8o63d7tcBmuOkd_28dBEa4hSFETNoMGgknEb8Y5WRcmFhqhDW-lxsZSCdUQth5ZsqOK0HHEqdbEjisVaRdLFGcViRWYyvqZ_QVMCiNpttAmDGVDYSmhIXte6lpWqQavQVB2V5IWXOYUUqOX5CzMPKF2TKp2rMHvKv8gZ_H4NOdG2ftJMZqHifBBWbBusgbb1W1sfzKuqMz2R5RHCrJyxljEai411atEjKs8fFcNuO_7L74hITaMKrX2nYfWYYbOvV8x34AplAq7iejpXm_BJJcXW36cvALHtBW6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4VeoALtOXRUB6uhMRpIbGd3c2xDUQBEg48JMRlZa9tKSLdRIQc4NSf0N_YX9IZ7wMFhCrBZaXZ9dpre-z5vB5_A7CrQotWO9VBJJUJZMtGgXJel7lsNl1LupDOO_fPwu6VPLlult6EdBYm54eofrjRyPDzNQ1w-iF98MQaipWio-TkBImoZA4-Ulhvv6o6f2KQQv3Ko8nLKCAW1pK3sc4PZt-ftUsvwOYsdvXGp7MMuvzs3Ofkdn96r_fTx2eMju-q1ydYKqAp-5Hr0mf4YLMvsNAuI8KtwPiw8J1Bc8cuPPHsFFfrbORYTyF0__v7j37AixfYxXiQodAeIZo17GaQpewQNeJOYx2GeA-f_UQTaljf4gIApfxYaMoolCjrDIa_Jqtw1Tm6bHeDImJDkKIxbAYNxJMI4Yxzsi5MLDSiG95KjY2lEqohbD2ytJUqQscRqloTO65UpF0sUaNVJNZgPhtl9iswKYykCUObMJQNhbmEhrb0UteySjV4DYKyv5K0oDOnqBrDJCdi5gm1Y1K1Yw32qvTjnMjj1ZSbZfcnxYCeJMLHZcG6yRp8rx5j-9P-isrsaEpppKCNzhizWM_VpipKxLjQw7JqwH3n_-cbEiLEqKSNt7y0Awvdy34v6R2fnX6DRbrv3Yz5JsyjhtgtBFP3etsPl3-CpRj- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTxsxFH5ikSiXQsuWstSVKnEaSGxnZnKEhCi0ECHSSIjLyDO2pYgwiQo5tKf-BH4jv4T3PAsEhJDKZSTv27Pf57H9PYDvyjeotZPYC6TSnmyYwFPWyTKX9bptSOvTe-fTrt_pyx8X9Ysnr_gzfojyhxvNDLde0wQfa7v_SBqKbaKX5HQHEkHJLMxLvxqSXLfOHwmkULwyY_Iy8IiEtaBtrPL96fTTaukF1pyGrk73tJdAFbXOrpxc7U1u473k7zNCx_c0axk-5sCUHWSS9AlmTPoZPjQLe3ArMG7lN2dQ2bGeo52d4F6djSw7UQjc7__dxX_w4xysNx6k6GiOEMtqdjlIE9ZCefgdYxOG6Idhh6hANTs1CP_RlT0KTRgZEmXtwfD6ZhX67aNfzY6X22vwElSFda-GaBIBnLZWVoUORYzYhjcSbUKphKoJUw0MHaQK33IEqkaHlisVxDaUKM8qEGswl45SswFMCi1puYi178uawlx8TQd6iW0YpWq8Al4xXFGSk5mTTY1hlNEw84j6MSr7sQK7ZfxxRuPxasytYvSjfDrfRMJZZcG2yQp8K4Ox_-l0RaVmNKE4UtAxZ4hZrGdSUxYlQtzmYVkV4G7s36hDRHQYpevL_yT6CgtnrXZ0ctz9uQmL5O3uGPMtmEMBMduIpG7jHTdZHgBFCRe2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Structures+of+Layer%E2%80%90by%E2%80%90Layer+Spin%E2%80%90Coated+Zinc+Dicarboxylate%E2%80%90Based+Metal%E2%80%90Organic+Thin+Films&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Fischer%2C+Jan+C.&rft.au=Steentjes%2C+Robbin&rft.au=Chen%2C+Dong%E2%80%90Hui&rft.au=Richards%2C+Bryce+S.&rft.date=2024-07-02&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=37&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202400565&rft.externalDBID=10.1002%252Fchem.202400565&rft.externalDocID=CHEM202400565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |