Determining Structures of Layer‐by‐Layer Spin‐Coated Zinc Dicarboxylate‐Based Metal‐Organic Thin Films

Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 37; pp. e202400565 - n/a
Main Authors Fischer, Jan C., Steentjes, Robbin, Chen, Dong‐Hui, Richards, Bryce S., Zojer, Egbert, Wöll, Christof, Howard, Ian A.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.07.2024
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.202400565

Cover

Loading…
Abstract Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H2BDC) and biphenyl‐4,4’‐dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H2BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained. The structures of metal‐organic thin films obtained from layer‐by‐layer spin‐coating are determined by combining grazing‐incidence wide‐angle X‐ray scattering and ab initio density functional theory simulations. The Zn2+‐to‐dicarboxylic linker molar ratio used for spin‐coating pivotally influences the resulting structure. High excess of Zn2+ generates dicarboxylate‐intercalated layered zinc hydroxides, whereas equimolar ratios or slight excess of the linker yield metal‐(hydroxide‐)organic frameworks.
AbstractList Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H 2 BDC) and biphenyl‐4,4’‐dicarboxylic acid (H 2 BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H 2 BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H 2 BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn 2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g ., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained.
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H2BDC) and biphenyl‐4,4’‐dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H2BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained. The structures of metal‐organic thin films obtained from layer‐by‐layer spin‐coating are determined by combining grazing‐incidence wide‐angle X‐ray scattering and ab initio density functional theory simulations. The Zn2+‐to‐dicarboxylic linker molar ratio used for spin‐coating pivotally influences the resulting structure. High excess of Zn2+ generates dicarboxylate‐intercalated layered zinc hydroxides, whereas equimolar ratios or slight excess of the linker yield metal‐(hydroxide‐)organic frameworks.
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn‐based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer‐by‐layer spin‐coating using Zn acetate dihydrate and benzene‐1,4‐dicarboxylic acid (H2BDC) and biphenyl‐4,4’‐dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal‐to‐linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF‐2, whereas H2BDC generates a different metal‐hydroxide‐organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal‐organic thin films, such that properties can be rationally engineered and explained.
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.
Thin films of crystalline solids with substantial free volume from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers easily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structural determination, e.g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, so properties can be rationally engineered and explained.
Author Richards, Bryce S.
Zojer, Egbert
Steentjes, Robbin
Chen, Dong‐Hui
Fischer, Jan C.
Wöll, Christof
Howard, Ian A.
Author_xml – sequence: 1
  givenname: Jan C.
  surname: Fischer
  fullname: Fischer, Jan C.
  organization: Karlsruhe Institute of Technology
– sequence: 2
  givenname: Robbin
  surname: Steentjes
  fullname: Steentjes, Robbin
  organization: Graz University of Technology
– sequence: 3
  givenname: Dong‐Hui
  orcidid: 0000-0003-2561-2444
  surname: Chen
  fullname: Chen, Dong‐Hui
  email: donghui.chen@kit.edu
  organization: Karlsruhe Institute of Technology
– sequence: 4
  givenname: Bryce S.
  orcidid: 0000-0001-5469-048X
  surname: Richards
  fullname: Richards, Bryce S.
  organization: Karlsruhe Institute of Technology
– sequence: 5
  givenname: Egbert
  orcidid: 0000-0002-6502-1721
  surname: Zojer
  fullname: Zojer, Egbert
  email: egbert.zojer@tugraz.at
  organization: Graz University of Technology
– sequence: 6
  givenname: Christof
  orcidid: 0000-0003-1078-3304
  surname: Wöll
  fullname: Wöll, Christof
  organization: Karlsruhe Institute of Technology
– sequence: 7
  givenname: Ian A.
  orcidid: 0000-0002-7327-7356
  surname: Howard
  fullname: Howard, Ian A.
  email: iahoward@gmail.com
  organization: Karlsruhe Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38642002$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQh62Kqiy01x6rSL30kq0d_4lzbBcoSIs4QC-9WI4zAaPE3tqO2tz6CDwjT1LDQpGQUC-2xvN9o5F_e2jHeQcIvSd4STCuPpsrGJcVrhjGXPBXaEF4RUpaC76DFrhhdSk4bXbRXozXGONGUPoG7VIpWJX1BdocQIIwWmfdZXGewmTSFCAWvi_WeoZw--emnfNxXxTnG-tysfI6QVf8sM4UB9bo0Prf85Dfcu-rjrl1CkkPuToLl9pZU1xcWVcc2WGMb9HrXg8R3j3c--j70eHF6rhcn307WX1Zl4YRyktCaCM56fqeYdpJ2komqsZ0IJmmmlDANTDBOBV9hSWGTvaV1nXbSwa60zXdR5-2czfB_5wgJjXaaGAYtAM_RUUxo7gWWPKMfnyGXvspuLxdpmom6rwIy9SHB2pqR-jUJthRh1k9_mUG2BYwwccYoFfGJp2sdyloOyiC1V1k6i4y9S-yrC2faY-TXxSarfDLDjD_h1ar48PTJ_cvC3StWw
CitedBy_id crossref_primary_10_1515_znb_2024_0088
Cites_doi 10.1103/PhysRevLett.77.3865
10.1016/j.cpc.2009.06.022
10.1016/j.ssi.2007.04.016
10.1021/am2002789
10.1021/acs.jpcb.2c02193
10.1016/j.solidstatesciences.2009.09.001
10.1002/anie.201904475
10.1016/j.cpc.2015.01.003
10.1021/jacs.7b02184
10.1021/jp106116n
10.1021/ic034787g
10.1002/sstr.202100210
10.1038/srep00786
10.1021/ic1025729
10.1038/nmat4815
10.1038/s41467-018-06829-3
10.1021/la0117000
10.1007/BFb0036826
10.1016/j.jcis.2003.10.005
10.1016/j.materresbull.2015.04.055
10.1103/PhysRevB.28.5480
10.1016/j.solidstatesciences.2008.06.018
10.1039/C4CS00096J
10.1021/am3027986
10.2147/IJN.S38858
10.1002/admi.202202259
10.1039/C6CS00930A
10.1038/s41563-022-01199-0
10.1021/acs.cgd.6b00528
10.1021/ja304361v
10.1021/acs.chemmater.1c00743
10.1021/la8008943
10.1039/C7SC04256F
10.1021/jacs.6b10913
10.1557/JMR.1998.0112
10.1021/acsomega.0c02075
10.1016/j.ccr.2018.08.024
10.1002/chem.201702037
10.1002/adma.202103287
10.1021/ja2037996
10.1107/S1600576715004434
10.1016/j.electacta.2013.04.175
10.1007/978-3-030-18252-6
10.1006/jssc.1998.7962
10.1021/acsami.0c19621
10.1002/adma.201601718
10.1016/j.tsf.2013.02.060
10.1002/adom.202200213
10.1002/chem.201002381
10.1021/acs.chemmater.2c01753
10.1039/C7CS00315C
10.1021/acsami.5b01068
10.1016/j.cpc.2017.09.007
10.1021/cm301427w
10.1039/C8CP05254A
10.1016/j.matchemphys.2008.07.127
10.1016/j.micromeso.2015.02.048
10.1055/b-0035-108183
10.3390/ma3021302
10.1002/anie.202212797
10.1039/C9TA03595H
10.1039/b101531l
10.1186/1752-153X-7-119
10.1002/anie.201606016
10.1021/acsami.6b04701
10.1039/C8AN00816G
10.1038/s41467-018-08285-5
10.1021/jacs.5b03948
10.1016/j.jcp.2009.08.008
10.1063/1.466059
10.1149/1.1838359
10.1021/jacs.7b08174
10.1002/chem.202000594
10.1021/acs.jpcc.0c02255
10.1002/adfm.202102631
10.1016/j.progsolidstchem.2021.100335
10.1002/ejic.201300650
10.1016/j.solidstatesciences.2004.10.020
10.1021/jacs.1c11150
10.1021/acsami.8b17807
10.3762/bjoc.15.132
10.1006/jssc.1999.8330
10.1021/acs.cgd.7b00396
10.1039/C9CC05161A
10.1016/j.tsf.2010.06.032
10.1103/PhysRev.131.2010
10.1039/D0SC07073D
10.1016/j.jcis.2010.03.007
10.1103/PhysRevB.107.054433
10.1039/D0NR00240B
10.1021/acsami.9b12407
10.1039/C4CC09982F
10.1021/cm991179j
10.1021/jp910363w
10.1103/PhysRevLett.124.146401
ContentType Journal Article
Copyright 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Copyright_xml – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202400565
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 38642002
10_1002_chem_202400565
CHEM202400565
Genre article
Journal Article
GrantInformation_xml – fundername: Helmholtz-Gemeinschaft
  funderid: HEMF, recruiting initiative; MTET 38.01.05
– fundername: Deutsche Forschungsgesellschaft (DFG)
  funderid: SPP 1928 COORNETS
– fundername: TU Graz Lead Project
  funderid: Porous Materials @ Work for Sustainability
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
ACUHS
EBD
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4135-1139851dff403d83b84629cde84a3a13e07e464536f2080ed8f2aa7bf84eada73
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 14:42:00 EDT 2025
Fri Jul 25 12:05:47 EDT 2025
Mon Jul 21 06:03:41 EDT 2025
Tue Jul 01 05:23:46 EDT 2025
Thu Apr 24 22:56:29 EDT 2025
Wed Jan 22 17:18:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords ab initio
GIWAXS
DFT
Metal-Organic Framework
Layer-by-layer
Language English
License Attribution
2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4135-1139851dff403d83b84629cde84a3a13e07e464536f2080ed8f2aa7bf84eada73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5469-048X
0000-0002-7327-7356
0000-0003-2561-2444
0000-0002-6502-1721
0000-0003-1078-3304
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400565
PMID 38642002
PQID 3074678514
PQPubID 986340
PageCount 15
ParticipantIDs proquest_miscellaneous_3043076085
proquest_journals_3074678514
pubmed_primary_38642002
crossref_citationtrail_10_1002_chem_202400565
crossref_primary_10_1002_chem_202400565
wiley_primary_10_1002_chem_202400565_CHEM202400565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2, 2024
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: July 2, 2024
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 64
2002; 18
1963; 131
2023; 4
2015; 70
2019; 11
2019; 55
2010; 347
2019; 10
2017; 46
2019; 15
2019; 58
2009; 113
2020; 12
2020; 124
2022; 21
2023; 107
2013; 7
2011; 17
2013; 8
2013; 5
1996; 77
2020; 8
2009; 11
2018; 9
2007; 178
2015; 48
2020; 5
2010; 518
2021; 31
2012; 134
2021; 33
2015; 137
2013; 2013
2000; 12
2018; 377
2015; 211
2010; 114
2022; 34
2008; 24
2010; 3
2001; 11
1983; 28
2012; 24
2003; 42
2022; 126
1998; 13
2019; 7
2023; 10
2018; 143
2018; 140
2023; 2301535
2009; 180
2015; 51
2013; 105
2018; 222
2017; 23
2020; 32
2011; 3
2016; 16
1999; 148
2018; 20
2015; 7
2011; 133
2014; 43
2017; 139
2016; 55
2022; 144
2021; 13
2012; 2
2021; 12
2015; 190
2022; 3
2022; 61
2017; 17
2017; 16
1991; 22
2013; 534
1993; 99
2004; 272
2011; 50
2020; 26
2005; 7
2016; 138
2022; 10
2009; 228
2016; 28
1998; 145
2016; 8
1998; 141
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
Chen D.-H. (e_1_2_9_19_1) 2023; 4
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
Arora H. (e_1_2_9_11_1) 2020; 32
Zheng Y. (e_1_2_9_5_1) 2020; 8
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
Thissen P. (e_1_2_9_29_1) 2023; 2301535
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
Kawai A. (e_1_2_9_90_1) 1991; 22
e_1_2_9_25_1
e_1_2_9_48_1
References_xml – volume: 46
  start-page: 5730
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 8477
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3196
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  start-page: 1
  year: 2021
  publication-title: Adv. Mater.
– volume: 99
  start-page: 4597
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 330
  year: 2009
  publication-title: Solid State Sci.
– volume: 145
  start-page: 864
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 70
  start-page: 336
  year: 2015
  publication-title: Mater. Res. Bull.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2022
  publication-title: Small Structures
– volume: 2301535
  start-page: 1
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 272
  start-page: 391
  year: 2004
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 2147
  year: 2001
  publication-title: J. Mater. Chem.
– volume: 107
  start-page: 54433
  year: 2023
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 342
  year: 2017
  publication-title: Nat. Mater.
– volume: 33
  start-page: 5896
  year: 2021
  publication-title: Chem. Mater.
– volume: 21
  start-page: 673
  year: 2022
  publication-title: Nat. Mater.
– volume: 7
  start-page: 227
  year: 2005
  publication-title: Solid State Sci.
– volume: 5
  start-page: 17617
  year: 2020
  publication-title: ACS Omega
– volume: 4
  year: 2023
  publication-title: Chemical Physics Reviews
– volume: 28
  start-page: 5480
  year: 1983
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 1113
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 3242
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 8237
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5994
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 148
  start-page: 26
  year: 1999
  publication-title: J. Solid State Chem.
– volume: 20
  start-page: 29142
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  year: 2019
  publication-title: Nat. Commun.
– volume: 190
  start-page: 33
  year: 2015
  publication-title: Comput. Phys. Commun.
– volume: 133
  start-page: 8158
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 4221
  year: 2018
  publication-title: Analyst
– volume: 7
  start-page: 11180
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 105
  start-page: 289
  year: 2013
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 5185
  year: 2020
  publication-title: Chem. Eur. J.
– volume: 126
  start-page: 4999
  year: 2022
  publication-title: J. Phys. Chem. B
– volume: 144
  start-page: 2189
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 297
  year: 2013
  publication-title: Int. J. Nanomed.
– volume: 131
  start-page: 2010
  year: 1963
  publication-title: Phys. Rev.
– volume: 55
  start-page: 12683
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 4812
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1
  year: 2018
  publication-title: Nat. Commun.
– volume: 141
  start-page: 229
  year: 1998
  publication-title: J. Solid State Chem.
– volume: 534
  start-page: 205
  year: 2013
  publication-title: Thin Solid Films
– volume: 17
  start-page: 1448
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 6983
  year: 2020
  publication-title: Nanoscale
– volume: 518
  start-page: 6792
  year: 2010
  publication-title: Thin Solid Films
– volume: 13
  start-page: 848
  year: 1998
  publication-title: J. Mater. Res.
– volume: 113
  start-page: 491
  year: 2009
  publication-title: Mater. Chem. Phys.
– volume: 24
  start-page: 3153
  year: 2012
  publication-title: Chem. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Mater. Interfaces
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 134
  start-page: 9605
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 1
  year: 2013
  publication-title: Chemistry Central Journal
– volume: 18
  start-page: 3980
  year: 2002
  publication-title: Langmuir
– volume: 124
  start-page: 13187
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 16321
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 138
  start-page: 16787
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 9590
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 17079
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 3605
  year: 2011
  publication-title: Inorg. Chem.
– volume: 15
  start-page: 1331
  year: 2019
  publication-title: Beilstein J. Org. Chem.
– volume: 211
  start-page: 82
  year: 2015
  publication-title: Microporous Mesoporous Mater.
– volume: 16
  start-page: 3969
  year: 2016
  publication-title: Crystal Growth and Design
– volume: 64
  year: 2021
  publication-title: Prog. Solid State Chem.
– volume: 222
  start-page: 267
  year: 2018
  publication-title: Comput. Phys. Commun.
– volume: 228
  start-page: 8367
  year: 2009
  publication-title: J. Comput. Phys.
– volume: 178
  start-page: 1143
  year: 2007
  publication-title: Solid State Ionics
– volume: 34
  start-page: 9446
  year: 2022
  end-page: 9454
  publication-title: Chem. Mater.
– volume: 55
  start-page: 10056
  year: 2019
  publication-title: Chem. Commun.
– volume: 12
  start-page: 3123
  year: 2000
  publication-title: Chem. Mater.
– volume: 11
  start-page: 38294
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 3367
  year: 2015
  publication-title: Chem. Commun.
– volume: 24
  start-page: 9707
  year: 2008
  publication-title: Langmuir
– volume: 3
  start-page: 2358
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1
  year: 2012
  publication-title: Sci. Rep.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 917
  year: 2015
  publication-title: J. Appl. Crystallogr.
– volume: 377
  start-page: 259
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 2135
  year: 2018
  publication-title: Chem. Sci.
– volume: 3
  start-page: 1302
  year: 2010
  publication-title: Materials
– volume: 42
  start-page: 6709
  year: 2003
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 2080
  year: 2009
  publication-title: Solid State Sci.
– volume: 347
  start-page: 49
  year: 2010
  publication-title: J. Colloid Interface Sci.
– volume: 2013
  start-page: 5133
  year: 2013
  publication-title: Eur. J. Inorg. Chem.
– volume: 23
  start-page: 8390
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 1
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 20459
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 4477
  year: 2021
  publication-title: Chem. Sci.
– volume: 22
  start-page: 75
  year: 1991
  publication-title: Ceram. Trans.
– volume: 13
  start-page: 2062
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 114
  start-page: 2776
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 139
  start-page: 6253
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 3826
  year: 2017
  publication-title: Cryst. Growth Des.
– volume: 180
  start-page: 2175
  year: 2009
  publication-title: Comput. Phys. Commun.
– ident: e_1_2_9_97_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_9_93_1
  doi: 10.1016/j.cpc.2009.06.022
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ssi.2007.04.016
– ident: e_1_2_9_54_1
  doi: 10.1021/am2002789
– ident: e_1_2_9_82_1
  doi: 10.1021/acs.jpcb.2c02193
– volume: 32
  year: 2020
  ident: e_1_2_9_11_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_76_1
  doi: 10.1016/j.solidstatesciences.2009.09.001
– ident: e_1_2_9_69_1
  doi: 10.1002/anie.201904475
– ident: e_1_2_9_94_1
  doi: 10.1016/j.cpc.2015.01.003
– ident: e_1_2_9_86_1
  doi: 10.1021/jacs.7b02184
– ident: e_1_2_9_48_1
  doi: 10.1021/jp106116n
– ident: e_1_2_9_77_1
  doi: 10.1021/ic034787g
– ident: e_1_2_9_9_1
  doi: 10.1002/sstr.202100210
– ident: e_1_2_9_23_1
  doi: 10.1038/srep00786
– volume: 2301535
  start-page: 1
  year: 2023
  ident: e_1_2_9_29_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_60_1
  doi: 10.1021/ic1025729
– ident: e_1_2_9_16_1
  doi: 10.1038/nmat4815
– ident: e_1_2_9_32_1
  doi: 10.1038/s41467-018-06829-3
– ident: e_1_2_9_92_1
  doi: 10.1021/la0117000
– ident: e_1_2_9_78_1
  doi: 10.1007/BFb0036826
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jcis.2003.10.005
– ident: e_1_2_9_50_1
  doi: 10.1016/j.materresbull.2015.04.055
– ident: e_1_2_9_99_1
  doi: 10.1103/PhysRevB.28.5480
– ident: e_1_2_9_41_1
  doi: 10.1016/j.solidstatesciences.2008.06.018
– ident: e_1_2_9_37_1
  doi: 10.1039/C4CS00096J
– ident: e_1_2_9_56_1
  doi: 10.1021/am3027986
– ident: e_1_2_9_45_1
  doi: 10.2147/IJN.S38858
– ident: e_1_2_9_31_1
  doi: 10.1002/admi.202202259
– ident: e_1_2_9_1_1
  doi: 10.1039/C6CS00930A
– ident: e_1_2_9_71_1
  doi: 10.1038/s41563-022-01199-0
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.cgd.6b00528
– ident: e_1_2_9_26_1
  doi: 10.1021/ja304361v
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.chemmater.1c00743
– ident: e_1_2_9_52_1
  doi: 10.1021/la8008943
– ident: e_1_2_9_73_1
  doi: 10.1039/C7SC04256F
– ident: e_1_2_9_27_1
  doi: 10.1021/jacs.6b10913
– ident: e_1_2_9_43_1
  doi: 10.1557/JMR.1998.0112
– ident: e_1_2_9_80_1
  doi: 10.1021/acsomega.0c02075
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ccr.2018.08.024
– ident: e_1_2_9_6_1
  doi: 10.1002/chem.201702037
– ident: e_1_2_9_66_1
  doi: 10.1002/adma.202103287
– ident: e_1_2_9_64_1
  doi: 10.1021/ja2037996
– ident: e_1_2_9_70_1
  doi: 10.1107/S1600576715004434
– ident: e_1_2_9_58_1
  doi: 10.1016/j.electacta.2013.04.175
– ident: e_1_2_9_81_1
  doi: 10.1007/978-3-030-18252-6
– ident: e_1_2_9_59_1
  doi: 10.1006/jssc.1998.7962
– ident: e_1_2_9_91_1
  doi: 10.1021/acsami.0c19621
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201601718
– ident: e_1_2_9_55_1
  doi: 10.1016/j.tsf.2013.02.060
– volume: 8
  start-page: 1
  year: 2020
  ident: e_1_2_9_5_1
  publication-title: Adv. Opt. Mater.
– volume: 22
  start-page: 75
  year: 1991
  ident: e_1_2_9_90_1
  publication-title: Ceram. Trans.
– ident: e_1_2_9_7_1
  doi: 10.1002/adom.202200213
– ident: e_1_2_9_65_1
  doi: 10.1002/chem.201002381
– ident: e_1_2_9_67_1
  doi: 10.1021/acs.chemmater.2c01753
– ident: e_1_2_9_15_1
  doi: 10.1039/C7CS00315C
– ident: e_1_2_9_47_1
  doi: 10.1021/acsami.5b01068
– ident: e_1_2_9_101_1
– ident: e_1_2_9_95_1
  doi: 10.1016/j.cpc.2017.09.007
– ident: e_1_2_9_89_1
  doi: 10.1021/cm301427w
– ident: e_1_2_9_33_1
  doi: 10.1039/C8CP05254A
– ident: e_1_2_9_79_1
  doi: 10.1016/j.matchemphys.2008.07.127
– ident: e_1_2_9_22_1
  doi: 10.1016/j.micromeso.2015.02.048
– ident: e_1_2_9_83_1
  doi: 10.1055/b-0035-108183
– volume: 4
  year: 2023
  ident: e_1_2_9_19_1
  publication-title: Chemical Physics Reviews
– ident: e_1_2_9_63_1
  doi: 10.3390/ma3021302
– ident: e_1_2_9_10_1
  doi: 10.1002/anie.202212797
– ident: e_1_2_9_13_1
  doi: 10.1039/C9TA03595H
– ident: e_1_2_9_84_1
  doi: 10.1039/b101531l
– ident: e_1_2_9_46_1
  doi: 10.1186/1752-153X-7-119
– ident: e_1_2_9_34_1
  doi: 10.1002/anie.201606016
– ident: e_1_2_9_68_1
  doi: 10.1021/acsami.6b04701
– ident: e_1_2_9_2_1
  doi: 10.1039/C8AN00816G
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-018-08285-5
– ident: e_1_2_9_20_1
  doi: 10.1021/jacs.5b03948
– ident: e_1_2_9_96_1
  doi: 10.1016/j.jcp.2009.08.008
– ident: e_1_2_9_100_1
  doi: 10.1063/1.466059
– ident: e_1_2_9_51_1
  doi: 10.1149/1.1838359
– ident: e_1_2_9_17_1
  doi: 10.1021/jacs.7b08174
– ident: e_1_2_9_62_1
  doi: 10.1002/chem.202000594
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.jpcc.0c02255
– ident: e_1_2_9_74_1
  doi: 10.1002/adfm.202102631
– ident: e_1_2_9_39_1
  doi: 10.1016/j.progsolidstchem.2021.100335
– ident: e_1_2_9_72_1
  doi: 10.1002/ejic.201300650
– ident: e_1_2_9_87_1
  doi: 10.1016/j.solidstatesciences.2004.10.020
– ident: e_1_2_9_8_1
  doi: 10.1021/jacs.1c11150
– ident: e_1_2_9_14_1
  doi: 10.1021/acsami.8b17807
– ident: e_1_2_9_85_1
  doi: 10.3762/bjoc.15.132
– ident: e_1_2_9_44_1
  doi: 10.1006/jssc.1999.8330
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.cgd.7b00396
– ident: e_1_2_9_18_1
  doi: 10.1039/C9CC05161A
– ident: e_1_2_9_61_1
  doi: 10.1016/j.tsf.2010.06.032
– ident: e_1_2_9_88_1
  doi: 10.1103/PhysRev.131.2010
– ident: e_1_2_9_25_1
  doi: 10.1039/D0SC07073D
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jcis.2010.03.007
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevB.107.054433
– ident: e_1_2_9_12_1
  doi: 10.1039/D0NR00240B
– ident: e_1_2_9_21_1
  doi: 10.1021/acsami.9b12407
– ident: e_1_2_9_42_1
  doi: 10.1039/C4CC09982F
– ident: e_1_2_9_75_1
  doi: 10.1021/cm991179j
– ident: e_1_2_9_53_1
  doi: 10.1021/jp910363w
– ident: e_1_2_9_98_1
  doi: 10.1103/PhysRevLett.124.146401
SSID ssj0009633
Score 2.4665432
Snippet Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for...
Thin films of crystalline solids with substantial free volume from organic chromophores and metal secondary building units (SBUs) are promising for engineering...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400565
SubjectTerms ab initio
Acetic acid
Benzene
Chromophores
Density functional theory
DFT
Dicarboxylic acids
Fabrication
GIWAXS
Hydroxides
layer-by-layer
Metal hydroxides
metal-organic framework
Metals
Optoelectronics
Structural models
Structure-function relationships
Thin films
Zinc
Zinc coatings
Title Determining Structures of Layer‐by‐Layer Spin‐Coated Zinc Dicarboxylate‐Based Metal‐Organic Thin Films
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400565
https://www.ncbi.nlm.nih.gov/pubmed/38642002
https://www.proquest.com/docview/3074678514
https://www.proquest.com/docview/3043076085
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4BF7jwhi0vGQlpT4HWdpP0CIUKIUBoWSTEJbJjW6q2pBWlBzjxE_iN_BJmnAd0EUKCSxQnjhPbY8_nzPgbgB0VWtTaqQ4iqUwgWzYKlPOyzGWz6VrShbTf-ew8PL6SJ9fN63e7-HN-iOqHG40MP1_TAFd6uPdGGop1op3k5AOJoAQnYXLYIlT0540_CqUrjyUvo4A4WEvWxjrfG398XCt9gJrjyNWrns4cqPKjc4-Tf7uje72bPv7H5_iTWs3DbIFL2X4uSAswYbNFmG6X4eCWYHBYOM6grmOXnnV2hEt11nfsVCFuf3l61g948Al2OehmmGj3EcoadtPNUnaI4nCnsQo9vIb3DlB_GnZmEf1jKt8TmjKKI8o63d7tcBmuOkd_28dBEa4hSFETNoMGgknEb8Y5WRcmFhqhDW-lxsZSCdUQth5ZsqOK0HHEqdbEjisVaRdLFGcViRWYyvqZ_QVMCiNpttAmDGVDYSmhIXte6lpWqQavQVB2V5IWXOYUUqOX5CzMPKF2TKp2rMHvKv8gZ_H4NOdG2ftJMZqHifBBWbBusgbb1W1sfzKuqMz2R5RHCrJyxljEai411atEjKs8fFcNuO_7L74hITaMKrX2nYfWYYbOvV8x34AplAq7iejpXm_BJJcXW36cvALHtBW6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4VeoALtOXRUB6uhMRpIbGd3c2xDUQBEg48JMRlZa9tKSLdRIQc4NSf0N_YX9IZ7wMFhCrBZaXZ9dpre-z5vB5_A7CrQotWO9VBJJUJZMtGgXJel7lsNl1LupDOO_fPwu6VPLlult6EdBYm54eofrjRyPDzNQ1w-iF98MQaipWio-TkBImoZA4-Ulhvv6o6f2KQQv3Ko8nLKCAW1pK3sc4PZt-ftUsvwOYsdvXGp7MMuvzs3Ofkdn96r_fTx2eMju-q1ydYKqAp-5Hr0mf4YLMvsNAuI8KtwPiw8J1Bc8cuPPHsFFfrbORYTyF0__v7j37AixfYxXiQodAeIZo17GaQpewQNeJOYx2GeA-f_UQTaljf4gIApfxYaMoolCjrDIa_Jqtw1Tm6bHeDImJDkKIxbAYNxJMI4Yxzsi5MLDSiG95KjY2lEqohbD2ytJUqQscRqloTO65UpF0sUaNVJNZgPhtl9iswKYykCUObMJQNhbmEhrb0UteySjV4DYKyv5K0oDOnqBrDJCdi5gm1Y1K1Yw32qvTjnMjj1ZSbZfcnxYCeJMLHZcG6yRp8rx5j-9P-isrsaEpppKCNzhizWM_VpipKxLjQw7JqwH3n_-cbEiLEqKSNt7y0Awvdy34v6R2fnX6DRbrv3Yz5JsyjhtgtBFP3etsPl3-CpRj-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTxsxFH5ikSiXQsuWstSVKnEaSGxnZnKEhCi0ECHSSIjLyDO2pYgwiQo5tKf-BH4jv4T3PAsEhJDKZSTv27Pf57H9PYDvyjeotZPYC6TSnmyYwFPWyTKX9bptSOvTe-fTrt_pyx8X9Ysnr_gzfojyhxvNDLde0wQfa7v_SBqKbaKX5HQHEkHJLMxLvxqSXLfOHwmkULwyY_Iy8IiEtaBtrPL96fTTaukF1pyGrk73tJdAFbXOrpxc7U1u473k7zNCx_c0axk-5sCUHWSS9AlmTPoZPjQLe3ArMG7lN2dQ2bGeo52d4F6djSw7UQjc7__dxX_w4xysNx6k6GiOEMtqdjlIE9ZCefgdYxOG6Idhh6hANTs1CP_RlT0KTRgZEmXtwfD6ZhX67aNfzY6X22vwElSFda-GaBIBnLZWVoUORYzYhjcSbUKphKoJUw0MHaQK33IEqkaHlisVxDaUKM8qEGswl45SswFMCi1puYi178uawlx8TQd6iW0YpWq8Al4xXFGSk5mTTY1hlNEw84j6MSr7sQK7ZfxxRuPxasytYvSjfDrfRMJZZcG2yQp8K4Ox_-l0RaVmNKE4UtAxZ4hZrGdSUxYlQtzmYVkV4G7s36hDRHQYpevL_yT6CgtnrXZ0ctz9uQmL5O3uGPMtmEMBMduIpG7jHTdZHgBFCRe2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Structures+of+Layer%E2%80%90by%E2%80%90Layer+Spin%E2%80%90Coated+Zinc+Dicarboxylate%E2%80%90Based+Metal%E2%80%90Organic+Thin+Films&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Fischer%2C+Jan+C.&rft.au=Steentjes%2C+Robbin&rft.au=Chen%2C+Dong%E2%80%90Hui&rft.au=Richards%2C+Bryce+S.&rft.date=2024-07-02&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=37&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202400565&rft.externalDBID=10.1002%252Fchem.202400565&rft.externalDocID=CHEM202400565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon