Unveiling Property of Hydrolysis-Derived DMAPbI3 for Perovskite Devices: Composition Engineering, Defect Mitigation, and Stability Optimization

Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) throu...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 15; pp. 165 - 172
Main Authors Pei, Yunhe, Liu, Yang, Li, Faming, Bai, Sai, Jian, Xian, Liu, Mingzhen
Format Journal Article
LanguageEnglish
Published Elsevier Inc 31.05.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.04.024

Cover

Loading…
Abstract Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. [Display omitted] •Dissolving PbI2 and HI in DMF is confirmed not to produce the “mythical” HPbI3•Detailed composition analyses show that DMAPbI3 is the hydrolysis product instead•Performance of devices can be optimized by tuning the CsI:DMAPbI3 ratio•The CsxDMA1-xPbI3 films remain stable in air for more than 20 days Energy Sustainability; Materials Characterization; Energy Materials
AbstractList Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials.Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials.
Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. : Energy Sustainability; Materials Characterization; Energy Materials Subject Areas: Energy Sustainability, Materials Characterization, Energy Materials
Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. [Display omitted] •Dissolving PbI2 and HI in DMF is confirmed not to produce the “mythical” HPbI3•Detailed composition analyses show that DMAPbI3 is the hydrolysis product instead•Performance of devices can be optimized by tuning the CsI:DMAPbI3 ratio•The CsxDMA1-xPbI3 films remain stable in air for more than 20 days Energy Sustainability; Materials Characterization; Energy Materials
Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH 3 ) 2 NH 2 + , DMA + ) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI 3 ) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI 3 in the precursor, we achieve high-quality Cs x DMA 1-x PbI 3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. • Dissolving PbI 2 and HI in DMF is confirmed not to produce the “mythical” HPbI 3 • Detailed composition analyses show that DMAPbI 3 is the hydrolysis product instead • Performance of devices can be optimized by tuning the CsI:DMAPbI 3 ratio • The Cs x DMA 1-x PbI 3 films remain stable in air for more than 20 days Energy Sustainability; Materials Characterization; Energy Materials
Author Liu, Mingzhen
Liu, Yang
Jian, Xian
Li, Faming
Pei, Yunhe
Bai, Sai
AuthorAffiliation 1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
2 Center for Applied Chemistry, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
AuthorAffiliation_xml – name: 1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
– name: 2 Center for Applied Chemistry, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
– name: 3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
Author_xml – sequence: 1
  givenname: Yunhe
  surname: Pei
  fullname: Pei, Yunhe
  organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
– sequence: 3
  givenname: Faming
  surname: Li
  fullname: Li, Faming
  organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
– sequence: 4
  givenname: Sai
  surname: Bai
  fullname: Bai, Sai
  organization: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
– sequence: 5
  givenname: Xian
  surname: Jian
  fullname: Jian, Xian
  organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
– sequence: 6
  givenname: Mingzhen
  orcidid: 0000-0001-8017-9706
  surname: Liu
  fullname: Liu, Mingzhen
  email: mingzhen.liu@uestc.edu.cn
  organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
BookMark eNp9UsFuEzEQXaEiWkp_gJOPHJowXnsTL0JIVVJopFaNBD1btne8OGzsYG9WCj_BL-MkRaIcalnyyG_em9G8eV2c-OCxKN5SGFOgk_ersUvGjUug9Rj4GEr-ojgrK1GPAHh58k98WlyktAKAMl9eT14Vp4xCVedzVvx-8AO6zvmWLGPYYOx3JFhys2ti6HbJpdEcoxuwIfO7q6VeMGJDJEuMYUg_XI9kjoMzmD6QWVhvQnK9C55c-9Z5zETfXuYMi6Yndxlq1R6-JMo35GuvdC6c691verd2vw7Ym-KlVV3Ci8f3vHj4fP1tdjO6vf-ymF3djgynjI8aAKa0EcoKpi0XUIlGUM1Zbcsp0xwpaJhyUZtJU2sBvK60UnyqbTO1hgE7LxZH3SaoldxEt1ZxJ4Ny8vARYitV7J3pUHKGghooG2CG15aJPESmjQJblVZpm7U-HbU2W73GxqDvo-qeiD5FvPsu2zDISQWMsmkWePcoEMPPLaZerrO52HXKY9gmWZaMiqridN-3OKaaGFKKaKVx_WFyWdl1koLcr4dcyf16yP16SOAyG5-p5X_Uvx0-S_p4JGE2Y3AYZc5Ab7BxMbuap-Weo_8B7bPXWA
CitedBy_id crossref_primary_10_1002_anie_202203778
crossref_primary_10_1007_s11432_023_3856_4
crossref_primary_10_1002_adom_202101869
crossref_primary_10_1002_aenm_202404293
crossref_primary_10_1016_j_joule_2021_11_013
crossref_primary_10_1016_j_nanoen_2024_110633
crossref_primary_10_1002_ange_202315717
crossref_primary_10_1016_j_nanoen_2020_105160
crossref_primary_10_3390_molecules27217566
crossref_primary_10_1021_acs_chemmater_1c00885
crossref_primary_10_1007_s00339_021_04504_x
crossref_primary_10_1038_s41467_020_18938_z
crossref_primary_10_1016_j_nanoen_2020_104634
crossref_primary_10_1021_acs_chemmater_2c02807
crossref_primary_10_1002_sstr_202000089
crossref_primary_10_1002_adma_202001025
crossref_primary_10_1002_aenm_202002754
crossref_primary_10_1002_solr_202300739
crossref_primary_10_1016_j_joule_2020_11_020
crossref_primary_10_1016_j_mtchem_2022_100792
crossref_primary_10_1021_acs_chemmater_4c02255
crossref_primary_10_1002_aenm_202201733
crossref_primary_10_1021_acsami_2c04308
crossref_primary_10_1016_j_cej_2021_133273
crossref_primary_10_1002_solr_202000380
crossref_primary_10_1002_advs_202412666
crossref_primary_10_1016_j_nanoen_2022_106925
crossref_primary_10_1016_j_nanoen_2020_104505
crossref_primary_10_1016_j_jechem_2021_09_047
crossref_primary_10_1088_1361_6528_abde03
crossref_primary_10_1002_solr_202101103
crossref_primary_10_1016_j_molstruc_2021_131660
crossref_primary_10_1002_advs_201902868
crossref_primary_10_1016_j_cej_2022_139047
crossref_primary_10_1002_adma_202301879
crossref_primary_10_1016_j_nanoen_2020_104611
crossref_primary_10_1016_j_mtcomm_2023_107147
crossref_primary_10_1002_anie_202305815
crossref_primary_10_1021_acsaem_3c00039
crossref_primary_10_1016_j_nanoen_2022_107401
crossref_primary_10_1039_D3TA03249C
crossref_primary_10_1021_acs_chemmater_4c01346
crossref_primary_10_1002_ange_202308410
crossref_primary_10_1016_j_jpowsour_2020_228506
crossref_primary_10_1039_D1TC05851G
crossref_primary_10_1002_anie_202315717
crossref_primary_10_1016_j_nanoen_2020_105490
crossref_primary_10_1002_solr_202100923
crossref_primary_10_1002_aenm_201902529
crossref_primary_10_1016_j_fmre_2022_07_005
crossref_primary_10_1016_j_snb_2021_130618
crossref_primary_10_1002_ange_202203778
crossref_primary_10_1021_acs_chemmater_9b02248
crossref_primary_10_1021_acsenergylett_9b02272
crossref_primary_10_1016_j_jpowsour_2021_229580
crossref_primary_10_1016_j_orgel_2020_105800
crossref_primary_10_1002_ange_202305815
crossref_primary_10_1002_adma_202302984
crossref_primary_10_1088_1361_6528_ac76d5
crossref_primary_10_1016_j_xcrp_2024_101825
crossref_primary_10_1016_j_jechem_2020_04_047
crossref_primary_10_1016_j_nanoen_2019_104130
crossref_primary_10_1007_s12274_024_6880_2
crossref_primary_10_1039_D2TC02708A
crossref_primary_10_1002_smtd_202100725
crossref_primary_10_1021_acs_jpclett_1c03399
crossref_primary_10_1016_j_matt_2020_12_007
crossref_primary_10_1002_adfm_202010813
crossref_primary_10_1002_ange_202110603
crossref_primary_10_1016_j_isci_2021_103599
crossref_primary_10_1002_solr_201900485
crossref_primary_10_1016_j_joule_2022_02_004
crossref_primary_10_1002_solr_202300499
crossref_primary_10_1016_j_joule_2023_09_009
crossref_primary_10_1016_j_solener_2021_03_016
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1016_j_jssc_2024_124780
crossref_primary_10_1021_acsomega_0c02238
crossref_primary_10_1088_1674_4926_41_5_051202
crossref_primary_10_1002_adfm_202110788
crossref_primary_10_1016_j_mattod_2021_01_014
crossref_primary_10_1021_acs_nanolett_2c02368
crossref_primary_10_1021_acs_jpclett_2c00361
crossref_primary_10_1039_D2TC00982J
crossref_primary_10_1002_adfm_202416264
crossref_primary_10_1021_acsami_2c23289
crossref_primary_10_1021_acsenergylett_2c01580
crossref_primary_10_1007_s12274_021_3538_1
crossref_primary_10_1016_j_mattod_2022_11_002
crossref_primary_10_1088_1361_6641_acf406
crossref_primary_10_1016_j_snb_2024_137092
crossref_primary_10_3390_coatings13020281
crossref_primary_10_1002_anie_202308410
crossref_primary_10_1016_j_scib_2023_01_016
crossref_primary_10_1002_adma_202001054
crossref_primary_10_1021_acsenergylett_0c00286
crossref_primary_10_1021_acsami_0c15484
crossref_primary_10_1007_s11801_022_1187_6
crossref_primary_10_1038_s41467_020_18380_1
crossref_primary_10_1002_anie_202110603
crossref_primary_10_1002_admi_202102324
crossref_primary_10_1007_s12274_021_3737_9
crossref_primary_10_1021_acsami_4c11177
crossref_primary_10_1088_1674_4926_44_3_030202
crossref_primary_10_1021_acsenergylett_3c01765
crossref_primary_10_1039_D1EE03192A
crossref_primary_10_1002_solr_202300358
crossref_primary_10_1016_j_solener_2021_10_009
crossref_primary_10_1016_j_isci_2021_102235
crossref_primary_10_1002_cey2_586
crossref_primary_10_1002_cssc_202100332
crossref_primary_10_1021_acsaem_2c04178
crossref_primary_10_1021_acsmaterialslett_2c00275
crossref_primary_10_1039_D1TA06514A
crossref_primary_10_1016_j_scib_2020_12_024
Cites_doi 10.1038/s41467-018-06915-6
10.1002/adfm.201404007
10.1021/acs.chemmater.8b01808
10.1016/j.jcrysgro.2008.02.030
10.1021/acs.chemmater.7b02948
10.1021/acs.jpclett.6b01576
10.1038/nmat4014
10.1002/zaac.201800267
10.1021/acsenergylett.7b00508
10.1016/j.jssc.2016.05.015
10.1126/science.aag2700
10.1002/anie.201605909
10.1038/s41467-018-04636-4
10.1039/C8NR00758F
10.1038/s41467-018-03169-0
10.1016/j.joule.2018.06.013
10.1021/jacs.8b07927
10.1016/j.joule.2017.09.016
10.1038/s41467-018-07204-y
10.1039/C6TA09582H
10.1038/ncomms13503
10.1021/jacs.5b11824
10.1016/j.joule.2017.09.009
10.1039/C7TA07413A
10.1126/sciadv.aao4204
10.1002/adma.201701656
10.1021/jacs.8b06050
10.1016/j.joule.2017.07.017
10.1039/C5TA06398A
10.1039/C7TA11154A
10.1126/sciadv.1700841
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.04.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 172
ExternalDocumentID oai_doaj_org_article_43e81c02d03c49f382493bca0f52fabf
PMC6503137
10_1016_j_isci_2019_04_024
S258900421930121X
GroupedDBID 0R~
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4134-d003abc8af83bf48058d81b439f273b4e10b07489c6d9b80495baa47bfd7fc303
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:19:58 EDT 2025
Thu Aug 21 18:45:36 EDT 2025
Thu Jul 10 19:02:32 EDT 2025
Tue Jul 01 01:03:25 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Sun Apr 06 06:54:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Materials Characterization
Energy Materials
Energy Sustainability
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4134-d003abc8af83bf48058d81b439f273b4e10b07489c6d9b80495baa47bfd7fc303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
ORCID 0000-0001-8017-9706
OpenAccessLink https://doaj.org/article/43e81c02d03c49f382493bca0f52fabf
PMID 31059999
PQID 2231855410
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_43e81c02d03c49f382493bca0f52fabf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503137
proquest_miscellaneous_2231855410
crossref_citationtrail_10_1016_j_isci_2019_04_024
crossref_primary_10_1016_j_isci_2019_04_024
elsevier_sciencedirect_doi_10_1016_j_isci_2019_04_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-31
PublicationDateYYYYMMDD 2019-05-31
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-31
  day: 31
PublicationDecade 2010
PublicationTitle iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sutherland (bib21) 2017; 1
Ke, Spanopoulos, Stoumpos, Kanatzidis (bib8) 2018; 9
Daub, Hillebrecht (bib1) 2018; 644
Mancini, Quadrelli, Amoroso, Milanese, Boiocchi, Sironi, Patrini, Guizzetti, Malavasi (bib15) 2016; 240
Pang, Zhou, Wang, Yang, Krause, Zhou, Zhu, Padture, Cui (bib17) 2016; 138
Fu, Rea, Chen, Morrow, Hautzinger, Zhao, Pan, Manger, Wright, Goldsmith (bib3) 2017; 29
Shi, Zhang, Cui, Li, Zhou, Ning, Mi (bib20) 2017; 29
Ju, Zhao, Yangyang, Zhang, Hu, Cui, Tao (bib7) 2017; 5
Zhao, Jin, Huang, Liu, Ma, Xue, Han, Ding, Ge, Feng (bib31) 2018; 140
Sanehira, Marshall, Christians, Harvey, Ciesielski, Wheeler, Schulz, Lin, Beard, Luther (bib18) 2017; 3
Schieber, Zamoshchik, Khakhan, Zuck (bib19) 2008; 310
Long, Zhang, Chai, Ng, Mak, Xu, Yan (bib13) 2016; 7
Wang, Jin, Liang, Bian, Bai, Wang, Zhang, Wang, Liu (bib26) 2018; 9
Wang, Zhang, Zhou, Jiang, Ye, Chu, Li, Yang, Yin, You (bib27) 2018; 9
Wang, Zhang, Kan, Li, Wang, Zhao (bib28) 2018; 2
Eperon, Paterno, Sutton, Zampetti, Haghighirad, Cacialli, Snaith (bib2) 2015; 3
Li, Zhang, Fu, Yu, Zhou, Zhang, Yin (bib10) 2018; 9
Liao, Rao, Chen, Kuang, Su (bib12) 2017; 5
Zhang, Dar, Li, Xu, Guo, Gratzel, Zhao (bib30) 2017; 3
Tong, Bladt, Ayguler, Manzi, Milowska, Hintermayr, Docampo, Bals, Urban, Polavarapu (bib23) 2016; 55
Lau, Deng, Zheng, Kim, Zhang, Zhang, Bing, Wilkinson, Hu, Patterson (bib9) 2018; 6
Jeon, Noh, Kim, Yang, Ryu, Seok (bib6) 2014; 13
Wang, Zhang, Kan, Zhao (bib29) 2018; 140
Hu, Bai, Liu, Ji, Miao, Qiu, Zhang (bib4) 2017; 2
Wang, Zheng, Deng, Zhao, Chen, Huang (bib25) 2017; 1
Jena, Kulkarni, Sanehira, Ikegami, Miyasaka (bib5) 2018; 30
Wang, Yu, Xu, Zhao (bib24) 2015; 25
Noel, Congiu, Ramadan, Fearn, McMeekin, Patel, Johnston, Wenger, Snaith (bib16) 2017; 1
Li, Pei, Xiao, Zeng, Yang, Xu, Sun, Peng, Liu (bib11) 2018; 10
Luo, Xia, Zhou, Sun, Cheng, Xu, Lu (bib14) 2016; 7
Swarnkar, Marshall, Sanehira, Chernomordik, Moore, Christians, Chakrabarti, Luther (bib22) 2016; 354
Tong (10.1016/j.isci.2019.04.024_bib23) 2016; 55
Wang (10.1016/j.isci.2019.04.024_bib27) 2018; 9
Mancini (10.1016/j.isci.2019.04.024_bib15) 2016; 240
Ke (10.1016/j.isci.2019.04.024_bib8) 2018; 9
Sutherland (10.1016/j.isci.2019.04.024_bib21) 2017; 1
Ju (10.1016/j.isci.2019.04.024_bib7) 2017; 5
Luo (10.1016/j.isci.2019.04.024_bib14) 2016; 7
Zhang (10.1016/j.isci.2019.04.024_bib30) 2017; 3
Jena (10.1016/j.isci.2019.04.024_bib5) 2018; 30
Wang (10.1016/j.isci.2019.04.024_bib28) 2018; 2
Wang (10.1016/j.isci.2019.04.024_bib29) 2018; 140
Long (10.1016/j.isci.2019.04.024_bib13) 2016; 7
Swarnkar (10.1016/j.isci.2019.04.024_bib22) 2016; 354
Hu (10.1016/j.isci.2019.04.024_bib4) 2017; 2
Li (10.1016/j.isci.2019.04.024_bib10) 2018; 9
Zhao (10.1016/j.isci.2019.04.024_bib31) 2018; 140
Eperon (10.1016/j.isci.2019.04.024_bib2) 2015; 3
Sanehira (10.1016/j.isci.2019.04.024_bib18) 2017; 3
Jeon (10.1016/j.isci.2019.04.024_bib6) 2014; 13
Schieber (10.1016/j.isci.2019.04.024_bib19) 2008; 310
Shi (10.1016/j.isci.2019.04.024_bib20) 2017; 29
Li (10.1016/j.isci.2019.04.024_bib11) 2018; 10
Noel (10.1016/j.isci.2019.04.024_bib16) 2017; 1
Wang (10.1016/j.isci.2019.04.024_bib24) 2015; 25
Wang (10.1016/j.isci.2019.04.024_bib26) 2018; 9
Lau (10.1016/j.isci.2019.04.024_bib9) 2018; 6
Liao (10.1016/j.isci.2019.04.024_bib12) 2017; 5
Pang (10.1016/j.isci.2019.04.024_bib17) 2016; 138
Daub (10.1016/j.isci.2019.04.024_bib1) 2018; 644
Fu (10.1016/j.isci.2019.04.024_bib3) 2017; 29
Wang (10.1016/j.isci.2019.04.024_bib25) 2017; 1
References_xml – volume: 1
  start-page: 371
  year: 2017
  end-page: 382
  ident: bib25
  article-title: Stabilizing the α-phase of CsPbI
  publication-title: Joule
– volume: 6
  start-page: 5580
  year: 2018
  end-page: 5586
  ident: bib9
  article-title: Enhanced performance via partial lead replacement with calcium for a CsPbI
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1701656
  year: 2017
  ident: bib20
  article-title: Symmetrization of the crystal lattice of MAPbI
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1120
  year: 2015
  end-page: 1126
  ident: bib24
  article-title: HPbI
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2066
  year: 2017
  end-page: 2072
  ident: bib12
  article-title: Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1076
  year: 2018
  ident: bib10
  article-title: Surface passivation engineering strategy to fully-inorganic cubic CsPbI
  publication-title: Nat. Commun.
– volume: 29
  start-page: 8385
  year: 2017
  end-page: 8394
  ident: bib3
  article-title: Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI
  publication-title: Chem. Mater.
– volume: 138
  start-page: 750
  year: 2016
  end-page: 753
  ident: bib17
  article-title: Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI
  publication-title: J. Am. Chem. Soc.
– volume: 644
  start-page: 1393
  year: 2018
  end-page: 1400
  ident: bib1
  article-title: On the demystification of “HPbI
  publication-title: Z. Anorg. Allg. Chem.
– volume: 10
  start-page: 6318
  year: 2018
  end-page: 6322
  ident: bib11
  article-title: Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites
  publication-title: Nanoscale
– volume: 7
  start-page: 3603
  year: 2016
  end-page: 3608
  ident: bib14
  article-title: Solvent engineering for ambient-air-processed, phase-stable CsPbI
  publication-title: J. Phys. Chem. Lett.
– volume: 354
  start-page: 92
  year: 2016
  end-page: 95
  ident: bib22
  article-title: Quantum dot-induced phase stabilization of α-CsPbI
  publication-title: Science
– volume: 3
  start-page: 19688
  year: 2015
  end-page: 19695
  ident: bib2
  article-title: Inorganic caesium lead iodide perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: eaao4204
  year: 2017
  ident: bib18
  article-title: Enhanced mobility CsPbI
  publication-title: Sci. Adv.
– volume: 55
  start-page: 13887
  year: 2016
  end-page: 13892
  ident: bib23
  article-title: Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 12345
  year: 2018
  end-page: 12348
  ident: bib29
  article-title: Bifunctional Stabilization of All-inorganic α-CsPbI
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2219
  year: 2017
  end-page: 2227
  ident: bib4
  article-title: Bismuth incorporation stabilized α-CsPbI
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 4544
  year: 2018
  ident: bib26
  article-title: All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%
  publication-title: Nat. Commun.
– volume: 1
  start-page: 221
  year: 2017
  end-page: 223
  ident: bib21
  article-title: Perovskite precursors get a pH tune-up
  publication-title: Joule
– volume: 140
  start-page: 11716
  year: 2018
  end-page: 11725
  ident: bib31
  article-title: Thermodynamically stable orthorhombic γ-CsPbI
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2065
  year: 2018
  end-page: 2075
  ident: bib28
  article-title: Efficient α-CsPbI
  publication-title: Joule
– volume: 13
  start-page: 897
  year: 2014
  end-page: 903
  ident: bib6
  article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
  publication-title: Nat. Mater.
– volume: 9
  start-page: 4785
  year: 2018
  ident: bib8
  article-title: Myths and reality of HPbI
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2225
  year: 2018
  ident: bib27
  article-title: Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells
  publication-title: Nat. Commun.
– volume: 3
  start-page: e1700841
  year: 2017
  ident: bib30
  article-title: Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI
  publication-title: Sci. Adv.
– volume: 5
  start-page: 21919
  year: 2017
  end-page: 21925
  ident: bib7
  article-title: Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 328
  year: 2017
  end-page: 343
  ident: bib16
  article-title: Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics
  publication-title: Joule
– volume: 240
  start-page: 55
  year: 2016
  end-page: 60
  ident: bib15
  article-title: Synthesis, structural and optical characterization of APbX
  publication-title: J. Solid State Chem.
– volume: 310
  start-page: 3168
  year: 2008
  end-page: 3173
  ident: bib19
  article-title: Structural changes during vapor-phase deposition of polycrystalline-PbI
  publication-title: J. Cryst. Growth
– volume: 30
  start-page: 6668
  year: 2018
  end-page: 6674
  ident: bib5
  article-title: Stabilization of α-CsPbI
  publication-title: Chem. Mater.
– volume: 7
  start-page: 13503
  year: 2016
  ident: bib13
  article-title: Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH
  publication-title: Nat. Commun.
– volume: 9
  start-page: 4544
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib26
  article-title: All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06915-6
– volume: 25
  start-page: 1120
  year: 2015
  ident: 10.1016/j.isci.2019.04.024_bib24
  article-title: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404007
– volume: 30
  start-page: 6668
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib5
  article-title: Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01808
– volume: 310
  start-page: 3168
  year: 2008
  ident: 10.1016/j.isci.2019.04.024_bib19
  article-title: Structural changes during vapor-phase deposition of polycrystalline-PbI2 films
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.02.030
– volume: 29
  start-page: 8385
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib3
  article-title: Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02948
– volume: 7
  start-page: 3603
  year: 2016
  ident: 10.1016/j.isci.2019.04.024_bib14
  article-title: Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01576
– volume: 13
  start-page: 897
  year: 2014
  ident: 10.1016/j.isci.2019.04.024_bib6
  article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 644
  start-page: 1393
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib1
  article-title: On the demystification of “HPbI3” and the peculiarities of the non-innocent solvents H2O and DMF
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.201800267
– volume: 2
  start-page: 2219
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib4
  article-title: Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00508
– volume: 240
  start-page: 55
  year: 2016
  ident: 10.1016/j.isci.2019.04.024_bib15
  article-title: Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium, trimethylammonium, X=I, Br, Cl) hybrid organic-inorganic materials
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2016.05.015
– volume: 354
  start-page: 92
  year: 2016
  ident: 10.1016/j.isci.2019.04.024_bib22
  article-title: Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics
  publication-title: Science
  doi: 10.1126/science.aag2700
– volume: 55
  start-page: 13887
  year: 2016
  ident: 10.1016/j.isci.2019.04.024_bib23
  article-title: Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605909
– volume: 9
  start-page: 2225
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib27
  article-title: Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04636-4
– volume: 10
  start-page: 6318
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib11
  article-title: Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites
  publication-title: Nanoscale
  doi: 10.1039/C8NR00758F
– volume: 9
  start-page: 1076
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib10
  article-title: Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03169-0
– volume: 2
  start-page: 2065
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib28
  article-title: Efficient α-CsPbI3 photovoltaics with surface terminated organic cations
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.013
– volume: 140
  start-page: 12345
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib29
  article-title: Bifunctional Stabilization of All-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07927
– volume: 1
  start-page: 221
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib21
  article-title: Perovskite precursors get a pH tune-up
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.016
– volume: 9
  start-page: 4785
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib8
  article-title: Myths and reality of HPbI3 in halide perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07204-y
– volume: 5
  start-page: 2066
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib12
  article-title: Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09582H
– volume: 7
  start-page: 13503
  year: 2016
  ident: 10.1016/j.isci.2019.04.024_bib13
  article-title: Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13503
– volume: 138
  start-page: 750
  year: 2016
  ident: 10.1016/j.isci.2019.04.024_bib17
  article-title: Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3-CH3NH2 precursor pair
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11824
– volume: 1
  start-page: 328
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib16
  article-title: Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.009
– volume: 5
  start-page: 21919
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib7
  article-title: Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07413A
– volume: 3
  start-page: eaao4204
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib18
  article-title: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao4204
– volume: 29
  start-page: 1701656
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib20
  article-title: Symmetrization of the crystal lattice of MAPbI3 boosts the performance and stability of metal–perovskite photodiodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701656
– volume: 140
  start-page: 11716
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib31
  article-title: Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06050
– volume: 1
  start-page: 371
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib25
  article-title: Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.017
– volume: 3
  start-page: 19688
  year: 2015
  ident: 10.1016/j.isci.2019.04.024_bib2
  article-title: Inorganic caesium lead iodide perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06398A
– volume: 6
  start-page: 5580
  year: 2018
  ident: 10.1016/j.isci.2019.04.024_bib9
  article-title: Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11154A
– volume: 3
  start-page: e1700841
  year: 2017
  ident: 10.1016/j.isci.2019.04.024_bib30
  article-title: Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700841
SSID ssj0002002496
Score 2.441896
Snippet Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 165
SubjectTerms Energy Materials
Energy Sustainability
Materials Characterization
Title Unveiling Property of Hydrolysis-Derived DMAPbI3 for Perovskite Devices: Composition Engineering, Defect Mitigation, and Stability Optimization
URI https://dx.doi.org/10.1016/j.isci.2019.04.024
https://www.proquest.com/docview/2231855410
https://pubmed.ncbi.nlm.nih.gov/PMC6503137
https://doaj.org/article/43e81c02d03c49f382493bca0f52fabf
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmTlymIZhWYMhIu60RceyQeDegoG5Stx5WiZvln1oRJKiUSv0r-Jd5z0mr5MIuXBM3cf2e3_vsfO8zId-MFdwyKRMIi3kimJOJtBY34EuYWgWTIWA18uT3-Xgmft3mt52jvpAT1sgDNwN3JrgvmU0zl3IrZOAlrBe4sToNeRa0CRh9Ied1FlN38fMaSuHFk-Vy5ASBa7YVMw25Cytekdclo85pJnpZKYr395JTB3z2qZOdXHTziXxsQSS9aDq_Rz74ap-8zKqVn2N1OZ3iDvtiuaZ1oOO1W9RRdyQZgbetvKOjycXU_OQU8Cqd-kW9esItXDryMWr8oBgjWi4X7egVDqEFkj_oZN4Ic9TVkOrKUQCskWK7pn8gAD20lZ0HZHZz_fdqnLTHLSQWMplIHExwbWypQ8lNEGWalw5ALSCWABjHCM9Sk6JYjT130pSwtMiN1qIwwRXBQir8THaquvJfCAVDA4zIALlnXHgpsZ3IPbxFaAYPGhC2GW5lWy1yPBLjXm1IZ3cKTaTQRCoVCkw0IN-3v3lslDjebH2JVty2RBXteAF8S7W-pf7nWwOSb3xAtYCkARrwqPmbLz_dOIyC2YqfYHTl6-cnBePBkBjI0gEpep7U62n_TjX_F3W_AUxzxovD9_hrR2QXO9zwII7JznLx7L8CvFqakziTXgEJQCPO
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+Property+of+Hydrolysis-Derived+DMAPbI3+for+Perovskite+Devices%3A+Composition+Engineering%2C+Defect+Mitigation%2C+and+Stability+Optimization&rft.jtitle=iScience&rft.au=Yunhe+Pei&rft.au=Yang+Liu&rft.au=Faming+Li&rft.au=Sai+Bai&rft.date=2019-05-31&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=15&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1016%2Fj.isci.2019.04.024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43e81c02d03c49f382493bca0f52fabf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon