Unveiling Property of Hydrolysis-Derived DMAPbI3 for Perovskite Devices: Composition Engineering, Defect Mitigation, and Stability Optimization
Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) throu...
Saved in:
Published in | iScience Vol. 15; pp. 165 - 172 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
31.05.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2019.04.024 |
Cover
Loading…
Abstract | Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials.
[Display omitted]
•Dissolving PbI2 and HI in DMF is confirmed not to produce the “mythical” HPbI3•Detailed composition analyses show that DMAPbI3 is the hydrolysis product instead•Performance of devices can be optimized by tuning the CsI:DMAPbI3 ratio•The CsxDMA1-xPbI3 films remain stable in air for more than 20 days
Energy Sustainability; Materials Characterization; Energy Materials |
---|---|
AbstractList | Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials.Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. : Energy Sustainability; Materials Characterization; Energy Materials Subject Areas: Energy Sustainability, Materials Characterization, Energy Materials Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH3)2NH2+, DMA+) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI3) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI3 in the precursor, we achieve high-quality CsxDMA1-xPbI3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. [Display omitted] •Dissolving PbI2 and HI in DMF is confirmed not to produce the “mythical” HPbI3•Detailed composition analyses show that DMAPbI3 is the hydrolysis product instead•Performance of devices can be optimized by tuning the CsI:DMAPbI3 ratio•The CsxDMA1-xPbI3 films remain stable in air for more than 20 days Energy Sustainability; Materials Characterization; Energy Materials Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during fabrication of cesium-based perovskites. Lately, it has been suggested that this process would introduce dimethylammonium ((CH 3 ) 2 NH 2 + , DMA + ) through hydrolysis of the organic solvent. However, material composition of the hydrolyzed product and its effect on the device performance remain to be understood. Here, we present an in-depth investigation of the hydrolysis-derived material (i.e., DMAPbI 3 ) and detailed analysis of its role in producing high-quality PSCs. By varying the ratio of CsI/DMAPbI 3 in the precursor, we achieve high-quality Cs x DMA 1-x PbI 3 perovskite films with uniform morphology, low density of trap states, and good stability, leading to optimized power conversion efficiency up to 14.3%, with over 85% of the initial efficiency retained after ∼20 days in air without encapsulation. Our findings offer new insights into producing high-quality Cs-based perovskite materials. • Dissolving PbI 2 and HI in DMF is confirmed not to produce the “mythical” HPbI 3 • Detailed composition analyses show that DMAPbI 3 is the hydrolysis product instead • Performance of devices can be optimized by tuning the CsI:DMAPbI 3 ratio • The Cs x DMA 1-x PbI 3 films remain stable in air for more than 20 days Energy Sustainability; Materials Characterization; Energy Materials |
Author | Liu, Mingzhen Liu, Yang Jian, Xian Li, Faming Pei, Yunhe Bai, Sai |
AuthorAffiliation | 1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China 3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden 2 Center for Applied Chemistry, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China |
AuthorAffiliation_xml | – name: 1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China – name: 2 Center for Applied Chemistry, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China – name: 3 Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden |
Author_xml | – sequence: 1 givenname: Yunhe surname: Pei fullname: Pei, Yunhe organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China – sequence: 2 givenname: Yang surname: Liu fullname: Liu, Yang organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China – sequence: 3 givenname: Faming surname: Li fullname: Li, Faming organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China – sequence: 4 givenname: Sai surname: Bai fullname: Bai, Sai organization: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden – sequence: 5 givenname: Xian surname: Jian fullname: Jian, Xian organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China – sequence: 6 givenname: Mingzhen orcidid: 0000-0001-8017-9706 surname: Liu fullname: Liu, Mingzhen email: mingzhen.liu@uestc.edu.cn organization: School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China |
BookMark | eNp9UsFuEzEQXaEiWkp_gJOPHJowXnsTL0JIVVJopFaNBD1btne8OGzsYG9WCj_BL-MkRaIcalnyyG_em9G8eV2c-OCxKN5SGFOgk_ersUvGjUug9Rj4GEr-ojgrK1GPAHh58k98WlyktAKAMl9eT14Vp4xCVedzVvx-8AO6zvmWLGPYYOx3JFhys2ti6HbJpdEcoxuwIfO7q6VeMGJDJEuMYUg_XI9kjoMzmD6QWVhvQnK9C55c-9Z5zETfXuYMi6Yndxlq1R6-JMo35GuvdC6c691verd2vw7Ym-KlVV3Ci8f3vHj4fP1tdjO6vf-ymF3djgynjI8aAKa0EcoKpi0XUIlGUM1Zbcsp0xwpaJhyUZtJU2sBvK60UnyqbTO1hgE7LxZH3SaoldxEt1ZxJ4Ny8vARYitV7J3pUHKGghooG2CG15aJPESmjQJblVZpm7U-HbU2W73GxqDvo-qeiD5FvPsu2zDISQWMsmkWePcoEMPPLaZerrO52HXKY9gmWZaMiqridN-3OKaaGFKKaKVx_WFyWdl1koLcr4dcyf16yP16SOAyG5-p5X_Uvx0-S_p4JGE2Y3AYZc5Ab7BxMbuap-Weo_8B7bPXWA |
CitedBy_id | crossref_primary_10_1002_anie_202203778 crossref_primary_10_1007_s11432_023_3856_4 crossref_primary_10_1002_adom_202101869 crossref_primary_10_1002_aenm_202404293 crossref_primary_10_1016_j_joule_2021_11_013 crossref_primary_10_1016_j_nanoen_2024_110633 crossref_primary_10_1002_ange_202315717 crossref_primary_10_1016_j_nanoen_2020_105160 crossref_primary_10_3390_molecules27217566 crossref_primary_10_1021_acs_chemmater_1c00885 crossref_primary_10_1007_s00339_021_04504_x crossref_primary_10_1038_s41467_020_18938_z crossref_primary_10_1016_j_nanoen_2020_104634 crossref_primary_10_1021_acs_chemmater_2c02807 crossref_primary_10_1002_sstr_202000089 crossref_primary_10_1002_adma_202001025 crossref_primary_10_1002_aenm_202002754 crossref_primary_10_1002_solr_202300739 crossref_primary_10_1016_j_joule_2020_11_020 crossref_primary_10_1016_j_mtchem_2022_100792 crossref_primary_10_1021_acs_chemmater_4c02255 crossref_primary_10_1002_aenm_202201733 crossref_primary_10_1021_acsami_2c04308 crossref_primary_10_1016_j_cej_2021_133273 crossref_primary_10_1002_solr_202000380 crossref_primary_10_1002_advs_202412666 crossref_primary_10_1016_j_nanoen_2022_106925 crossref_primary_10_1016_j_nanoen_2020_104505 crossref_primary_10_1016_j_jechem_2021_09_047 crossref_primary_10_1088_1361_6528_abde03 crossref_primary_10_1002_solr_202101103 crossref_primary_10_1016_j_molstruc_2021_131660 crossref_primary_10_1002_advs_201902868 crossref_primary_10_1016_j_cej_2022_139047 crossref_primary_10_1002_adma_202301879 crossref_primary_10_1016_j_nanoen_2020_104611 crossref_primary_10_1016_j_mtcomm_2023_107147 crossref_primary_10_1002_anie_202305815 crossref_primary_10_1021_acsaem_3c00039 crossref_primary_10_1016_j_nanoen_2022_107401 crossref_primary_10_1039_D3TA03249C crossref_primary_10_1021_acs_chemmater_4c01346 crossref_primary_10_1002_ange_202308410 crossref_primary_10_1016_j_jpowsour_2020_228506 crossref_primary_10_1039_D1TC05851G crossref_primary_10_1002_anie_202315717 crossref_primary_10_1016_j_nanoen_2020_105490 crossref_primary_10_1002_solr_202100923 crossref_primary_10_1002_aenm_201902529 crossref_primary_10_1016_j_fmre_2022_07_005 crossref_primary_10_1016_j_snb_2021_130618 crossref_primary_10_1002_ange_202203778 crossref_primary_10_1021_acs_chemmater_9b02248 crossref_primary_10_1021_acsenergylett_9b02272 crossref_primary_10_1016_j_jpowsour_2021_229580 crossref_primary_10_1016_j_orgel_2020_105800 crossref_primary_10_1002_ange_202305815 crossref_primary_10_1002_adma_202302984 crossref_primary_10_1088_1361_6528_ac76d5 crossref_primary_10_1016_j_xcrp_2024_101825 crossref_primary_10_1016_j_jechem_2020_04_047 crossref_primary_10_1016_j_nanoen_2019_104130 crossref_primary_10_1007_s12274_024_6880_2 crossref_primary_10_1039_D2TC02708A crossref_primary_10_1002_smtd_202100725 crossref_primary_10_1021_acs_jpclett_1c03399 crossref_primary_10_1016_j_matt_2020_12_007 crossref_primary_10_1002_adfm_202010813 crossref_primary_10_1002_ange_202110603 crossref_primary_10_1016_j_isci_2021_103599 crossref_primary_10_1002_solr_201900485 crossref_primary_10_1016_j_joule_2022_02_004 crossref_primary_10_1002_solr_202300499 crossref_primary_10_1016_j_joule_2023_09_009 crossref_primary_10_1016_j_solener_2021_03_016 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1016_j_jssc_2024_124780 crossref_primary_10_1021_acsomega_0c02238 crossref_primary_10_1088_1674_4926_41_5_051202 crossref_primary_10_1002_adfm_202110788 crossref_primary_10_1016_j_mattod_2021_01_014 crossref_primary_10_1021_acs_nanolett_2c02368 crossref_primary_10_1021_acs_jpclett_2c00361 crossref_primary_10_1039_D2TC00982J crossref_primary_10_1002_adfm_202416264 crossref_primary_10_1021_acsami_2c23289 crossref_primary_10_1021_acsenergylett_2c01580 crossref_primary_10_1007_s12274_021_3538_1 crossref_primary_10_1016_j_mattod_2022_11_002 crossref_primary_10_1088_1361_6641_acf406 crossref_primary_10_1016_j_snb_2024_137092 crossref_primary_10_3390_coatings13020281 crossref_primary_10_1002_anie_202308410 crossref_primary_10_1016_j_scib_2023_01_016 crossref_primary_10_1002_adma_202001054 crossref_primary_10_1021_acsenergylett_0c00286 crossref_primary_10_1021_acsami_0c15484 crossref_primary_10_1007_s11801_022_1187_6 crossref_primary_10_1038_s41467_020_18380_1 crossref_primary_10_1002_anie_202110603 crossref_primary_10_1002_admi_202102324 crossref_primary_10_1007_s12274_021_3737_9 crossref_primary_10_1021_acsami_4c11177 crossref_primary_10_1088_1674_4926_44_3_030202 crossref_primary_10_1021_acsenergylett_3c01765 crossref_primary_10_1039_D1EE03192A crossref_primary_10_1002_solr_202300358 crossref_primary_10_1016_j_solener_2021_10_009 crossref_primary_10_1016_j_isci_2021_102235 crossref_primary_10_1002_cey2_586 crossref_primary_10_1002_cssc_202100332 crossref_primary_10_1021_acsaem_2c04178 crossref_primary_10_1021_acsmaterialslett_2c00275 crossref_primary_10_1039_D1TA06514A crossref_primary_10_1016_j_scib_2020_12_024 |
Cites_doi | 10.1038/s41467-018-06915-6 10.1002/adfm.201404007 10.1021/acs.chemmater.8b01808 10.1016/j.jcrysgro.2008.02.030 10.1021/acs.chemmater.7b02948 10.1021/acs.jpclett.6b01576 10.1038/nmat4014 10.1002/zaac.201800267 10.1021/acsenergylett.7b00508 10.1016/j.jssc.2016.05.015 10.1126/science.aag2700 10.1002/anie.201605909 10.1038/s41467-018-04636-4 10.1039/C8NR00758F 10.1038/s41467-018-03169-0 10.1016/j.joule.2018.06.013 10.1021/jacs.8b07927 10.1016/j.joule.2017.09.016 10.1038/s41467-018-07204-y 10.1039/C6TA09582H 10.1038/ncomms13503 10.1021/jacs.5b11824 10.1016/j.joule.2017.09.009 10.1039/C7TA07413A 10.1126/sciadv.aao4204 10.1002/adma.201701656 10.1021/jacs.8b06050 10.1016/j.joule.2017.07.017 10.1039/C5TA06398A 10.1039/C7TA11154A 10.1126/sciadv.1700841 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.04.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 172 |
ExternalDocumentID | oai_doaj_org_article_43e81c02d03c49f382493bca0f52fabf PMC6503137 10_1016_j_isci_2019_04_024 S258900421930121X |
GroupedDBID | 0R~ 53G 6I. AACTN AAEDW AAFTH AALRI AAMRU AAXUO ABMAC ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4134-d003abc8af83bf48058d81b439f273b4e10b07489c6d9b80495baa47bfd7fc303 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:19:58 EDT 2025 Thu Aug 21 18:45:36 EDT 2025 Thu Jul 10 19:02:32 EDT 2025 Tue Jul 01 01:03:25 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Sun Apr 06 06:54:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Materials Characterization Energy Materials Energy Sustainability |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4134-d003abc8af83bf48058d81b439f273b4e10b07489c6d9b80495baa47bfd7fc303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0001-8017-9706 |
OpenAccessLink | https://doaj.org/article/43e81c02d03c49f382493bca0f52fabf |
PMID | 31059999 |
PQID | 2231855410 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43e81c02d03c49f382493bca0f52fabf pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503137 proquest_miscellaneous_2231855410 crossref_citationtrail_10_1016_j_isci_2019_04_024 crossref_primary_10_1016_j_isci_2019_04_024 elsevier_sciencedirect_doi_10_1016_j_isci_2019_04_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-31 |
PublicationDateYYYYMMDD | 2019-05-31 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-31 day: 31 |
PublicationDecade | 2010 |
PublicationTitle | iScience |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Sutherland (bib21) 2017; 1 Ke, Spanopoulos, Stoumpos, Kanatzidis (bib8) 2018; 9 Daub, Hillebrecht (bib1) 2018; 644 Mancini, Quadrelli, Amoroso, Milanese, Boiocchi, Sironi, Patrini, Guizzetti, Malavasi (bib15) 2016; 240 Pang, Zhou, Wang, Yang, Krause, Zhou, Zhu, Padture, Cui (bib17) 2016; 138 Fu, Rea, Chen, Morrow, Hautzinger, Zhao, Pan, Manger, Wright, Goldsmith (bib3) 2017; 29 Shi, Zhang, Cui, Li, Zhou, Ning, Mi (bib20) 2017; 29 Ju, Zhao, Yangyang, Zhang, Hu, Cui, Tao (bib7) 2017; 5 Zhao, Jin, Huang, Liu, Ma, Xue, Han, Ding, Ge, Feng (bib31) 2018; 140 Sanehira, Marshall, Christians, Harvey, Ciesielski, Wheeler, Schulz, Lin, Beard, Luther (bib18) 2017; 3 Schieber, Zamoshchik, Khakhan, Zuck (bib19) 2008; 310 Long, Zhang, Chai, Ng, Mak, Xu, Yan (bib13) 2016; 7 Wang, Jin, Liang, Bian, Bai, Wang, Zhang, Wang, Liu (bib26) 2018; 9 Wang, Zhang, Zhou, Jiang, Ye, Chu, Li, Yang, Yin, You (bib27) 2018; 9 Wang, Zhang, Kan, Li, Wang, Zhao (bib28) 2018; 2 Eperon, Paterno, Sutton, Zampetti, Haghighirad, Cacialli, Snaith (bib2) 2015; 3 Li, Zhang, Fu, Yu, Zhou, Zhang, Yin (bib10) 2018; 9 Liao, Rao, Chen, Kuang, Su (bib12) 2017; 5 Zhang, Dar, Li, Xu, Guo, Gratzel, Zhao (bib30) 2017; 3 Tong, Bladt, Ayguler, Manzi, Milowska, Hintermayr, Docampo, Bals, Urban, Polavarapu (bib23) 2016; 55 Lau, Deng, Zheng, Kim, Zhang, Zhang, Bing, Wilkinson, Hu, Patterson (bib9) 2018; 6 Jeon, Noh, Kim, Yang, Ryu, Seok (bib6) 2014; 13 Wang, Zhang, Kan, Zhao (bib29) 2018; 140 Hu, Bai, Liu, Ji, Miao, Qiu, Zhang (bib4) 2017; 2 Wang, Zheng, Deng, Zhao, Chen, Huang (bib25) 2017; 1 Jena, Kulkarni, Sanehira, Ikegami, Miyasaka (bib5) 2018; 30 Wang, Yu, Xu, Zhao (bib24) 2015; 25 Noel, Congiu, Ramadan, Fearn, McMeekin, Patel, Johnston, Wenger, Snaith (bib16) 2017; 1 Li, Pei, Xiao, Zeng, Yang, Xu, Sun, Peng, Liu (bib11) 2018; 10 Luo, Xia, Zhou, Sun, Cheng, Xu, Lu (bib14) 2016; 7 Swarnkar, Marshall, Sanehira, Chernomordik, Moore, Christians, Chakrabarti, Luther (bib22) 2016; 354 Tong (10.1016/j.isci.2019.04.024_bib23) 2016; 55 Wang (10.1016/j.isci.2019.04.024_bib27) 2018; 9 Mancini (10.1016/j.isci.2019.04.024_bib15) 2016; 240 Ke (10.1016/j.isci.2019.04.024_bib8) 2018; 9 Sutherland (10.1016/j.isci.2019.04.024_bib21) 2017; 1 Ju (10.1016/j.isci.2019.04.024_bib7) 2017; 5 Luo (10.1016/j.isci.2019.04.024_bib14) 2016; 7 Zhang (10.1016/j.isci.2019.04.024_bib30) 2017; 3 Jena (10.1016/j.isci.2019.04.024_bib5) 2018; 30 Wang (10.1016/j.isci.2019.04.024_bib28) 2018; 2 Wang (10.1016/j.isci.2019.04.024_bib29) 2018; 140 Long (10.1016/j.isci.2019.04.024_bib13) 2016; 7 Swarnkar (10.1016/j.isci.2019.04.024_bib22) 2016; 354 Hu (10.1016/j.isci.2019.04.024_bib4) 2017; 2 Li (10.1016/j.isci.2019.04.024_bib10) 2018; 9 Zhao (10.1016/j.isci.2019.04.024_bib31) 2018; 140 Eperon (10.1016/j.isci.2019.04.024_bib2) 2015; 3 Sanehira (10.1016/j.isci.2019.04.024_bib18) 2017; 3 Jeon (10.1016/j.isci.2019.04.024_bib6) 2014; 13 Schieber (10.1016/j.isci.2019.04.024_bib19) 2008; 310 Shi (10.1016/j.isci.2019.04.024_bib20) 2017; 29 Li (10.1016/j.isci.2019.04.024_bib11) 2018; 10 Noel (10.1016/j.isci.2019.04.024_bib16) 2017; 1 Wang (10.1016/j.isci.2019.04.024_bib24) 2015; 25 Wang (10.1016/j.isci.2019.04.024_bib26) 2018; 9 Lau (10.1016/j.isci.2019.04.024_bib9) 2018; 6 Liao (10.1016/j.isci.2019.04.024_bib12) 2017; 5 Pang (10.1016/j.isci.2019.04.024_bib17) 2016; 138 Daub (10.1016/j.isci.2019.04.024_bib1) 2018; 644 Fu (10.1016/j.isci.2019.04.024_bib3) 2017; 29 Wang (10.1016/j.isci.2019.04.024_bib25) 2017; 1 |
References_xml | – volume: 1 start-page: 371 year: 2017 end-page: 382 ident: bib25 article-title: Stabilizing the α-phase of CsPbI publication-title: Joule – volume: 6 start-page: 5580 year: 2018 end-page: 5586 ident: bib9 article-title: Enhanced performance via partial lead replacement with calcium for a CsPbI publication-title: J. Mater. Chem. A – volume: 29 start-page: 1701656 year: 2017 ident: bib20 article-title: Symmetrization of the crystal lattice of MAPbI publication-title: Adv. Mater. – volume: 25 start-page: 1120 year: 2015 end-page: 1126 ident: bib24 article-title: HPbI publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2066 year: 2017 end-page: 2072 ident: bib12 article-title: Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells publication-title: J. Mater. Chem. A – volume: 9 start-page: 1076 year: 2018 ident: bib10 article-title: Surface passivation engineering strategy to fully-inorganic cubic CsPbI publication-title: Nat. Commun. – volume: 29 start-page: 8385 year: 2017 end-page: 8394 ident: bib3 article-title: Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI publication-title: Chem. Mater. – volume: 138 start-page: 750 year: 2016 end-page: 753 ident: bib17 article-title: Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI publication-title: J. Am. Chem. Soc. – volume: 644 start-page: 1393 year: 2018 end-page: 1400 ident: bib1 article-title: On the demystification of “HPbI publication-title: Z. Anorg. Allg. Chem. – volume: 10 start-page: 6318 year: 2018 end-page: 6322 ident: bib11 article-title: Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites publication-title: Nanoscale – volume: 7 start-page: 3603 year: 2016 end-page: 3608 ident: bib14 article-title: Solvent engineering for ambient-air-processed, phase-stable CsPbI publication-title: J. Phys. Chem. Lett. – volume: 354 start-page: 92 year: 2016 end-page: 95 ident: bib22 article-title: Quantum dot-induced phase stabilization of α-CsPbI publication-title: Science – volume: 3 start-page: 19688 year: 2015 end-page: 19695 ident: bib2 article-title: Inorganic caesium lead iodide perovskite solar cells publication-title: J. Mater. Chem. A – volume: 3 start-page: eaao4204 year: 2017 ident: bib18 article-title: Enhanced mobility CsPbI publication-title: Sci. Adv. – volume: 55 start-page: 13887 year: 2016 end-page: 13892 ident: bib23 article-title: Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 12345 year: 2018 end-page: 12348 ident: bib29 article-title: Bifunctional Stabilization of All-inorganic α-CsPbI publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2219 year: 2017 end-page: 2227 ident: bib4 article-title: Bismuth incorporation stabilized α-CsPbI publication-title: ACS Energy Lett. – volume: 9 start-page: 4544 year: 2018 ident: bib26 article-title: All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15% publication-title: Nat. Commun. – volume: 1 start-page: 221 year: 2017 end-page: 223 ident: bib21 article-title: Perovskite precursors get a pH tune-up publication-title: Joule – volume: 140 start-page: 11716 year: 2018 end-page: 11725 ident: bib31 article-title: Thermodynamically stable orthorhombic γ-CsPbI publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2065 year: 2018 end-page: 2075 ident: bib28 article-title: Efficient α-CsPbI publication-title: Joule – volume: 13 start-page: 897 year: 2014 end-page: 903 ident: bib6 article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells publication-title: Nat. Mater. – volume: 9 start-page: 4785 year: 2018 ident: bib8 article-title: Myths and reality of HPbI publication-title: Nat. Commun. – volume: 9 start-page: 2225 year: 2018 ident: bib27 article-title: Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells publication-title: Nat. Commun. – volume: 3 start-page: e1700841 year: 2017 ident: bib30 article-title: Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI publication-title: Sci. Adv. – volume: 5 start-page: 21919 year: 2017 end-page: 21925 ident: bib7 article-title: Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties publication-title: J. Mater. Chem. A – volume: 1 start-page: 328 year: 2017 end-page: 343 ident: bib16 article-title: Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics publication-title: Joule – volume: 240 start-page: 55 year: 2016 end-page: 60 ident: bib15 article-title: Synthesis, structural and optical characterization of APbX publication-title: J. Solid State Chem. – volume: 310 start-page: 3168 year: 2008 end-page: 3173 ident: bib19 article-title: Structural changes during vapor-phase deposition of polycrystalline-PbI publication-title: J. Cryst. Growth – volume: 30 start-page: 6668 year: 2018 end-page: 6674 ident: bib5 article-title: Stabilization of α-CsPbI publication-title: Chem. Mater. – volume: 7 start-page: 13503 year: 2016 ident: bib13 article-title: Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH publication-title: Nat. Commun. – volume: 9 start-page: 4544 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib26 article-title: All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15% publication-title: Nat. Commun. doi: 10.1038/s41467-018-06915-6 – volume: 25 start-page: 1120 year: 2015 ident: 10.1016/j.isci.2019.04.024_bib24 article-title: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404007 – volume: 30 start-page: 6668 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib5 article-title: Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01808 – volume: 310 start-page: 3168 year: 2008 ident: 10.1016/j.isci.2019.04.024_bib19 article-title: Structural changes during vapor-phase deposition of polycrystalline-PbI2 films publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.02.030 – volume: 29 start-page: 8385 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib3 article-title: Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02948 – volume: 7 start-page: 3603 year: 2016 ident: 10.1016/j.isci.2019.04.024_bib14 article-title: Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01576 – volume: 13 start-page: 897 year: 2014 ident: 10.1016/j.isci.2019.04.024_bib6 article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 644 start-page: 1393 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib1 article-title: On the demystification of “HPbI3” and the peculiarities of the non-innocent solvents H2O and DMF publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201800267 – volume: 2 start-page: 2219 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib4 article-title: Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00508 – volume: 240 start-page: 55 year: 2016 ident: 10.1016/j.isci.2019.04.024_bib15 article-title: Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium, trimethylammonium, X=I, Br, Cl) hybrid organic-inorganic materials publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2016.05.015 – volume: 354 start-page: 92 year: 2016 ident: 10.1016/j.isci.2019.04.024_bib22 article-title: Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics publication-title: Science doi: 10.1126/science.aag2700 – volume: 55 start-page: 13887 year: 2016 ident: 10.1016/j.isci.2019.04.024_bib23 article-title: Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605909 – volume: 9 start-page: 2225 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib27 article-title: Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-04636-4 – volume: 10 start-page: 6318 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib11 article-title: Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites publication-title: Nanoscale doi: 10.1039/C8NR00758F – volume: 9 start-page: 1076 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib10 article-title: Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-03169-0 – volume: 2 start-page: 2065 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib28 article-title: Efficient α-CsPbI3 photovoltaics with surface terminated organic cations publication-title: Joule doi: 10.1016/j.joule.2018.06.013 – volume: 140 start-page: 12345 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib29 article-title: Bifunctional Stabilization of All-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07927 – volume: 1 start-page: 221 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib21 article-title: Perovskite precursors get a pH tune-up publication-title: Joule doi: 10.1016/j.joule.2017.09.016 – volume: 9 start-page: 4785 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib8 article-title: Myths and reality of HPbI3 in halide perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-07204-y – volume: 5 start-page: 2066 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib12 article-title: Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09582H – volume: 7 start-page: 13503 year: 2016 ident: 10.1016/j.isci.2019.04.024_bib13 article-title: Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film publication-title: Nat. Commun. doi: 10.1038/ncomms13503 – volume: 138 start-page: 750 year: 2016 ident: 10.1016/j.isci.2019.04.024_bib17 article-title: Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3-CH3NH2 precursor pair publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11824 – volume: 1 start-page: 328 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib16 article-title: Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics publication-title: Joule doi: 10.1016/j.joule.2017.09.009 – volume: 5 start-page: 21919 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib7 article-title: Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07413A – volume: 3 start-page: eaao4204 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib18 article-title: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells publication-title: Sci. Adv. doi: 10.1126/sciadv.aao4204 – volume: 29 start-page: 1701656 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib20 article-title: Symmetrization of the crystal lattice of MAPbI3 boosts the performance and stability of metal–perovskite photodiodes publication-title: Adv. Mater. doi: 10.1002/adma.201701656 – volume: 140 start-page: 11716 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib31 article-title: Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06050 – volume: 1 start-page: 371 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib25 article-title: Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films publication-title: Joule doi: 10.1016/j.joule.2017.07.017 – volume: 3 start-page: 19688 year: 2015 ident: 10.1016/j.isci.2019.04.024_bib2 article-title: Inorganic caesium lead iodide perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06398A – volume: 6 start-page: 5580 year: 2018 ident: 10.1016/j.isci.2019.04.024_bib9 article-title: Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11154A – volume: 3 start-page: e1700841 year: 2017 ident: 10.1016/j.isci.2019.04.024_bib30 article-title: Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells publication-title: Sci. Adv. doi: 10.1126/sciadv.1700841 |
SSID | ssj0002002496 |
Score | 2.441896 |
Snippet | Additive engineering has become increasingly important for making high-quality perovskite solar cells (PSCs), with a recent example involving acid during... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 165 |
SubjectTerms | Energy Materials Energy Sustainability Materials Characterization |
Title | Unveiling Property of Hydrolysis-Derived DMAPbI3 for Perovskite Devices: Composition Engineering, Defect Mitigation, and Stability Optimization |
URI | https://dx.doi.org/10.1016/j.isci.2019.04.024 https://www.proquest.com/docview/2231855410 https://pubmed.ncbi.nlm.nih.gov/PMC6503137 https://doaj.org/article/43e81c02d03c49f382493bca0f52fabf |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmTlymIZhWYMhIu60RceyQeDegoG5Stx5WiZvln1oRJKiUSv0r-Jd5z0mr5MIuXBM3cf2e3_vsfO8zId-MFdwyKRMIi3kimJOJtBY34EuYWgWTIWA18uT3-Xgmft3mt52jvpAT1sgDNwN3JrgvmU0zl3IrZOAlrBe4sToNeRa0CRh9Ied1FlN38fMaSuHFk-Vy5ASBa7YVMw25Cytekdclo85pJnpZKYr395JTB3z2qZOdXHTziXxsQSS9aDq_Rz74ap-8zKqVn2N1OZ3iDvtiuaZ1oOO1W9RRdyQZgbetvKOjycXU_OQU8Cqd-kW9esItXDryMWr8oBgjWi4X7egVDqEFkj_oZN4Ic9TVkOrKUQCskWK7pn8gAD20lZ0HZHZz_fdqnLTHLSQWMplIHExwbWypQ8lNEGWalw5ALSCWABjHCM9Sk6JYjT130pSwtMiN1qIwwRXBQir8THaquvJfCAVDA4zIALlnXHgpsZ3IPbxFaAYPGhC2GW5lWy1yPBLjXm1IZ3cKTaTQRCoVCkw0IN-3v3lslDjebH2JVty2RBXteAF8S7W-pf7nWwOSb3xAtYCkARrwqPmbLz_dOIyC2YqfYHTl6-cnBePBkBjI0gEpep7U62n_TjX_F3W_AUxzxovD9_hrR2QXO9zwII7JznLx7L8CvFqakziTXgEJQCPO |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+Property+of+Hydrolysis-Derived+DMAPbI3+for+Perovskite+Devices%3A+Composition+Engineering%2C+Defect+Mitigation%2C+and+Stability+Optimization&rft.jtitle=iScience&rft.au=Yunhe+Pei&rft.au=Yang+Liu&rft.au=Faming+Li&rft.au=Sai+Bai&rft.date=2019-05-31&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=15&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1016%2Fj.isci.2019.04.024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43e81c02d03c49f382493bca0f52fabf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |