Mechanism of Alkaline Earth Metal Amide Catalyzed Hydrogenation of Challenging Alkenes and Arenes
Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“2 (N”=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N“AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that th...
Saved in:
Published in | ChemSusChem Vol. 17; no. 22; pp. e202400754 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
25.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“2 (N”=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N“AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae−H−Ae bridged dimer (N”AeH)2 is kinetically more favorable in catalytic hydrogenation with H2, although rate‐limited by the initial hydrogenolysis of AeN“2 to form the monomer N”AeH.
Extensive DFT calculations disclose that upon moderate heating alkaline earth metal amide AeN“2 reacts with H2 to form monomeric HAeN”, which can further dimerize into dimeric (HAeN“)2 as reactive catalyst for the hydrogenation of challenging alkene/arene C=C bonds with H2, thus providing deep mechanistic insights for metal amide based hydrogenation catalysis. |
---|---|
AbstractList | Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“2 (N”=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N“AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae−H−Ae bridged dimer (N”AeH)2 is kinetically more favorable in catalytic hydrogenation with H2, although rate‐limited by the initial hydrogenolysis of AeN“2 to form the monomer N”AeH. Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN"2 (N"=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N"AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae-H-Ae bridged dimer (N"AeH)2 is kinetically more favorable in catalytic hydrogenation with H2, although rate-limited by the initial hydrogenolysis of AeN"2 to form the monomer N"AeH.Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN"2 (N"=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N"AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae-H-Ae bridged dimer (N"AeH)2 is kinetically more favorable in catalytic hydrogenation with H2, although rate-limited by the initial hydrogenolysis of AeN"2 to form the monomer N"AeH. Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN" (N"=N[Si(iPr) ] ) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N"AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae-H-Ae bridged dimer (N"AeH) is kinetically more favorable in catalytic hydrogenation with H , although rate-limited by the initial hydrogenolysis of AeN" to form the monomer N"AeH. Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“2 (N”=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N“AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae−H−Ae bridged dimer (N”AeH)2 is kinetically more favorable in catalytic hydrogenation with H2, although rate‐limited by the initial hydrogenolysis of AeN“2 to form the monomer N”AeH. Extensive DFT calculations disclose that upon moderate heating alkaline earth metal amide AeN“2 reacts with H2 to form monomeric HAeN”, which can further dimerize into dimeric (HAeN“)2 as reactive catalyst for the hydrogenation of challenging alkene/arene C=C bonds with H2, thus providing deep mechanistic insights for metal amide based hydrogenation catalysis. Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“ 2 (N”=N[Si( i Pr) 3 ] 2 ) are shown to be active for catalyzing the hydrogenation of unactivated alkenes and arenes, presumably via the monomer N“AeH as catalyst. In sharp contrast, our extensive DFT calculations disclose that the double Ae−H−Ae bridged dimer (N”AeH) 2 is kinetically more favorable in catalytic hydrogenation with H 2 , although rate‐limited by the initial hydrogenolysis of AeN“ 2 to form the monomer N”AeH. |
Author | Qu, Zheng‐Wang Zhu, Hui Grimme, Stefan |
Author_xml | – sequence: 1 givenname: Zheng‐Wang orcidid: 0000-0001-6631-3681 surname: Qu fullname: Qu, Zheng‐Wang email: qu@thch.uni-bonn.de organization: University of Bonn – sequence: 2 givenname: Hui orcidid: 0009-0001-2477-900X surname: Zhu fullname: Zhu, Hui organization: University of Bonn – sequence: 3 givenname: Stefan orcidid: 0000-0002-5844-4371 surname: Grimme fullname: Grimme, Stefan organization: University of Bonn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38819082$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaB7ttssi6KabmeplyV4OJk0KCV0kge6ELF3NKJXlVPJQpr8-didJIVCy0ll830Hcc4IO0pAAoQ-ULCkh7IstxS4ZYYIQVYk36JjWUiwqKX4cPGdOj9BJKXeESNJI-RYd8bqmDanZMTJXYDcmhdLjweNV_GliSIDPTB43-ApGE_GqDw5wa6a8-wMOX-xcHtaQzBiGNFvtxsQIaR3Sem6ABAWb5PAqz_EdOvQmFnj_-J6i269nN-3F4vL7-bd2dbmwgnKxMIqCAqpqcI3inWkYUQa6rvK2M4556azvbK0898p3nBIQxDHbNdJbYKrmp-jzvvc-D7-2UEbdh2IhRpNg2BbNieRCVrQSE_rpBXo3bHOafqc55azilNVkoj4-UtuuB6fvc-hN3umn402A2AM2D6Vk8NqG8e9VxmxC1JToeSM9b6SfN5q05Qvtqfm_QrMXfocIu1do3V5ft__cBxbMpKo |
CitedBy_id | crossref_primary_10_1021_jacs_4c16041 |
Cites_doi | 10.1039/b515623h 10.1002/chem.201900379 10.1002/anie.201809833 10.1002/cctc.202000981 10.1021/acscatal.2c05755 10.1002/anie.201303500 10.1002/aic.690480220 10.1002/chem.201200497 10.1002/cctc.202001392 10.1002/open.202000110 10.1002/anie.201810026 10.1002/anie.202001160 10.1002/cctc.202001755 10.1021/ar500375j 10.1002/cctc.202000604 10.1039/P29930000799 10.1103/PhysRevLett.91.146401 10.1021/jp050536c 10.1039/b508541a 10.1002/ejoc.201900827 10.1002/anie.201303968 10.1002/jcc.21759 10.1002/cctc.202100674 10.1002/cctc.202100086 10.1002/anie.201409800 10.1063/1.3382344 10.1002/cctc.202001396 10.1039/C7CP04913G 10.1002/anie.201706848 10.1002/anie.200804657 |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH – notice: 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202400754 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 38819082 10_1002_cssc_202400754 CSSC202400754 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forshungsgemeinschaft – fundername: DFG funderid: 490737079 – fundername: DFG grantid: 490737079 |
GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4134-a71e7e178ed973ba9207aebb5fcbad2f6dcfbc87f3f7fb310e40d2cb96fce2783 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 07:24:54 EDT 2025 Fri Jul 25 12:21:26 EDT 2025 Mon Jul 21 05:59:07 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Tue Jul 01 00:36:26 EDT 2025 Wed Aug 20 07:27:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | homogenous catalysis metal hydride complex hydrogenation alkene DFT calculations arene |
Language | English |
License | Attribution 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4134-a71e7e178ed973ba9207aebb5fcbad2f6dcfbc87f3f7fb310e40d2cb96fce2783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5844-4371 0009-0001-2477-900X 0000-0001-6631-3681 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202400754 |
PMID | 38819082 |
PQID | 3132531280 |
PQPubID | 986333 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_3063465154 proquest_journals_3132531280 pubmed_primary_38819082 crossref_citationtrail_10_1002_cssc_202400754 crossref_primary_10_1002_cssc_202400754 wiley_primary_10_1002_cssc_202400754_CSSC202400754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 25, 2024 |
PublicationDateYYYYMMDD | 2024-11-25 |
PublicationDate_xml | – month: 11 year: 2024 text: November 25, 2024 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2021; 13 2015; 48 2002; 48 2003; 91 2023 2015; 54 2013; 52 2017; 56 2020; 9 2019; 25 2008; 47 2010; 132 2019 2006; 8 2020; 59 2005; 7 2005; 109 2011; 32 2012; 18 2017; 19 2020; 12 1993 2018; 57 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 Qu Z.-W. (e_1_2_8_22_2) 2019; 8 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 32184 year: 2017 end-page: 32215 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 2132 year: 2021 end-page: 2137 publication-title: ChemCatChem – volume: 18 start-page: 9955 year: 2012 end-page: 9964 publication-title: Chem. Eur. J. – volume: 48 start-page: 306 year: 2015 end-page: 316 publication-title: Acc. Chem. Res. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 369 year: 2002 end-page: 385 publication-title: AIChE J. – volume: 32 start-page: 1456 year: 2011 end-page: 1465 publication-title: J. Comput. Chem. – volume: 52 start-page: 9831 year: 2013 end-page: 9835 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 6400 year: 2015 end-page: 6441 publication-title: Angew. Chem. Int. Ed. – volume: 132 start-page: 154104 year: 2010 end-page: 154119 publication-title: J. Chem. Phys. – volume: 12 start-page: 5369 year: 2020 end-page: 5373 publication-title: ChemCatChem – volume: 8 start-page: 807 year: 2019 end-page: 810 publication-title: Chem. Open – start-page: 1686 year: 2023 end-page: 1692 publication-title: ACS Catal. – volume: 13 start-page: 207 year: 2021 end-page: 211 publication-title: ChemCatChem – volume: 59 start-page: 9102 year: 2020 end-page: 9112 publication-title: Angew. Chem. Int. Ed. – start-page: 799 year: 1993 end-page: 805 publication-title: J. Chem. Soc. Perkin Trans. 2 – volume: 57 start-page: 15177 year: 2018 end-page: 15182 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1057 year: 2006 end-page: 1065 publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 9434 year: 2008 end-page: 9438 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 6186 year: 2020 end-page: 6190 publication-title: ChemCatChem – volume: 109 start-page: 5656 year: 2005 end-page: 5667 publication-title: J. Phys. Chem. A – volume: 57 start-page: 15500 year: 2018 end-page: 15504 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 743 year: 2020 end-page: 747 publication-title: ChemistryOpen – start-page: 4609 year: 2019 end-page: 4612 publication-title: Eur. J. Org. Chem. – volume: 13 start-page: 3401 year: 2021 end-page: 3404 publication-title: ChemCatChem – volume: 25 start-page: 4670 year: 2019 end-page: 4672 publication-title: Chem. Eur. J. – volume: 52 start-page: 7496 year: 2013 end-page: 7499 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 3656 year: 2020 end-page: 3660 publication-title: ChemCatChem – volume: 13 start-page: 1503 year: 2021 end-page: 1508 publication-title: ChemCatChem – volume: 56 start-page: 12367 year: 2017 end-page: 12371 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_31_1 doi: 10.1039/b515623h – ident: e_1_2_8_20_2 doi: 10.1002/chem.201900379 – ident: e_1_2_8_9_1 doi: 10.1002/anie.201809833 – ident: e_1_2_8_11_1 – ident: e_1_2_8_18_2 doi: 10.1002/cctc.202000981 – ident: e_1_2_8_23_1 doi: 10.1021/acscatal.2c05755 – ident: e_1_2_8_6_1 doi: 10.1002/anie.201303500 – ident: e_1_2_8_33_1 doi: 10.1002/aic.690480220 – ident: e_1_2_8_32_1 doi: 10.1002/chem.201200497 – ident: e_1_2_8_19_2 doi: 10.1002/cctc.202001392 – ident: e_1_2_8_17_2 doi: 10.1002/open.202000110 – ident: e_1_2_8_10_1 doi: 10.1002/anie.201810026 – ident: e_1_2_8_1_1 doi: 10.1002/anie.202001160 – ident: e_1_2_8_12_2 doi: 10.1002/cctc.202001755 – ident: e_1_2_8_4_2 doi: 10.1021/ar500375j – ident: e_1_2_8_16_2 doi: 10.1002/cctc.202000604 – ident: e_1_2_8_30_1 doi: 10.1039/P29930000799 – ident: e_1_2_8_2_1 – ident: e_1_2_8_24_1 – volume: 8 start-page: 807 year: 2019 ident: e_1_2_8_22_2 publication-title: Chem. Open – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevLett.91.146401 – ident: e_1_2_8_35_1 doi: 10.1021/jp050536c – ident: e_1_2_8_29_1 doi: 10.1039/b508541a – ident: e_1_2_8_21_2 doi: 10.1002/ejoc.201900827 – ident: e_1_2_8_5_2 doi: 10.1002/anie.201303968 – ident: e_1_2_8_28_2 doi: 10.1002/jcc.21759 – ident: e_1_2_8_13_2 doi: 10.1002/cctc.202100674 – ident: e_1_2_8_14_2 doi: 10.1002/cctc.202100086 – ident: e_1_2_8_3_2 doi: 10.1002/anie.201409800 – ident: e_1_2_8_27_2 doi: 10.1063/1.3382344 – ident: e_1_2_8_15_2 doi: 10.1002/cctc.202001396 – ident: e_1_2_8_36_1 doi: 10.1039/C7CP04913G – ident: e_1_2_8_8_1 doi: 10.1002/anie.201706848 – ident: e_1_2_8_7_1 doi: 10.1002/anie.200804657 – ident: e_1_2_8_26_1 – ident: e_1_2_8_34_1 |
SSID | ssj0060966 |
Score | 2.4397604 |
Snippet | Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“2 (N”=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of... Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN“ 2 (N”=N[Si( i Pr) 3 ] 2 ) are shown to be active for catalyzing the hydrogenation... Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN" (N"=N[Si(iPr) ] ) are shown to be active for catalyzing the hydrogenation of... Recently, bulky alkaline earth (Ae=Mg, Ca, Sr, Ba) metal amide complexes AeN"2 (N"=N[Si(iPr)3]2) are shown to be active for catalyzing the hydrogenation of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202400754 |
SubjectTerms | Alkaline earth metals alkene Alkenes arene Aromatic compounds Calcium DFT calculations homogenous catalysis Hydrogenation Hydrogenolysis metal hydride complex Monomers |
Title | Mechanism of Alkaline Earth Metal Amide Catalyzed Hydrogenation of Challenging Alkenes and Arenes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202400754 https://www.ncbi.nlm.nih.gov/pubmed/38819082 https://www.proquest.com/docview/3132531280 https://www.proquest.com/docview/3063465154 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaLvTS8uhjW0CuVKknQ9ZJbO8RRaAV0qKqFIlb5MdYRUC2IrsH-PWdyQsWVFVqb3n4FY9n5pPj-YaxLyqaiY8yFV6PvaA9BuGMtwKfJRG0UQlQcPLsVE3Ps5OL_OJRFH_LDzFsuJFmNPaaFNy6-uCBNNTXNVEQ0hlInRMhKB3YIlT0feCPUojPm_AiozKRq3TcszYm8mC1-qpXegY1V5Fr43qO3zDbD7o9cXK1v1y4fX__hM_xf75qg73ucCk_bBfSJnsB1RZbL_p0cNvMzoCChC_rGz6P_PD6ylJn_AiX3k8-gwVVvrkMwAvaELq7h8Cnd-F2jgu0ET7VKrrMLeguqQUys9xWAXuly7fs_PjoRzEVXX4G4dH1ZcLqMWgYawNholNnJzLRFpzLo3c2yKiCj84bHdOoo0McCVkSpHcTFT1Qho93bK2aV_CBcS0hUVFRgiyEdBZRZeLQXBitISinzYiJXj6l78jLKYfGddnSLsuSJq4cJm7Evg7lf7W0HX8sudOLu-zUty6JzxKNkzTJiH0eXuOE098UW8F8iWUQ3DWJ5LGJ9-0yGbpKDQEtI0dMNsL-yxjK4uysGO4-_kulT-wVXVOUpMx32Nridgm7CJcWbo-9lNm3vUYxfgN3Ygy2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ReqCX0iddSqkrteopkHUS23vggAJoKSyHAhK31HbGKgKyFdlVtfyr_pX-Ijx5oW1VVarEobc8_Io9M_7seL4BeC-cGljHo8DKvg1ojyEwyurAPwsdSiVCJOfk0ZEYnsafzpKzBfjR-sLU_BDdhhtpRmWvScFpQ3rzjjXUliVxENIhSJnEzbnKA5x996u2cmt_xw_xB873dk_SYdAEFgist9lxoGUfJfalwnwgI6MHPJQajUmcNTrnTuTWGauki5x0xgMgjMOcWzMQziKFpvDlPoCHFEac6Pp3PneMVcKvCCqHJiXiIBFRv-WJDPnmfHvn58HfwO08Vq4mu71l-Nl2U33G5WJjOjEb9uYXBsn_qh-fwOMGerPtWleewgIWz2ApbSPePQc9QvKDPi-v2Nix7csLTV_Hdr12fWUjnFDmq_McWUp7XrMbzNlwll-PvQ5W8k250iY4jUcEVALNJEwXua-VLl_A6b184UtYLMYFvgImOYbCCYoB5lGr9sA5NN4iKikxF0aqHgStQGS24WenMCGXWc0szTMaqKwbqB587NJ_q5lJ_phyrZWvrLFQZUaUnd7-chX24F332nc4_TDSBY6nPo3HryTkVMRKLZddVZEiLKl4D3glXX9pQ5YeH6fd3eq_ZHoLS8OT0WF2uH908Boe0XNyCuXJGixOrqf4xqPDiVmv9JHBl_sW3FuiI244 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBM2LxCtZTbQFxachsz0z3b0PeQiTLBvjhkAM5G3sE4PJbMhskPVX-RNTNZcsIoKQtzn6oq7--qgqgPciqJENPImsHNqI9hgio6yO8FscvFQi9uScPD0Wk7P003l2vgK_Ol-YJj5Ev-FGmlHba1Lwaxd2fgcNtVVFIQjpDqTM0vZa5ZFf_MBFW7V7uI8c_sD5-OBLPonavAKRRZOdRloOvfRDqbwbycToEY-l9sZkwRrteBDOBmOVDEmQwSD-8WnsuDUjEaynzBTY7gN4SCeMdImMpyed7Re4IKj9mZRIo0wkwy5MZMx3lse7PA3-gW2XoXI9143X4UkLUtleI1VPYcWXz-Bx3uWGew566slj-KK6YrPA9i6_a6InO0A5_Mamfk6Vry6cZzntDi1-escmC3czQ2mtJYFq5W0aF5w7qQWyuUyXDnulxxdwdi9EfQmr5az0m8Ak97EIgrJlIb7TCDFjg7ZDSemdMFINIOpoV9g2kjkl1LgsmhjMvCBaFz2tB_CxL3_dxPD4a8mtjhVFq8tVQcEt0VJxFQ_gXf8bCU5HK7r0s1ssg0ivziqPTWw0LOy7ShShLsUHwGue_mMMRX56mvdvr_6n0lt4dLI_Lj4fHh-9hjX6TN6TPNuC1fnNrd9GGDU3b2rJZfD1vlXlDr67KgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Alkaline+Earth+Metal+Amide+Catalyzed+Hydrogenation+of+Challenging+Alkenes+and+Arenes&rft.jtitle=ChemSusChem&rft.au=Qu%2C+Zheng%E2%80%90Wang&rft.au=Zhu%2C+Hui&rft.au=Grimme%2C+Stefan&rft.date=2024-11-25&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=22&rft_id=info:doi/10.1002%2Fcssc.202400754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_202400754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |