PEG‐Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response
Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo—a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic prom...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 10; pp. e2107852 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo—a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer‐PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre‐existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody‐reactivity of this RNA aptamer is eliminated by conjugating it to a next‐generation PEG‐like brush polymer—poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre‐existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side‐effects of PEG.
Herein, a path is offered to rescuing RNA therapeutics from the deleterious immune side effects of PEG that induces life‐threatening hypersensitivity reactions upon reactivity toward PEG antibodies using a next‐generation PEG‐like stealth polymer conjugate technology. These results breathe new life into an established and valuable drug delivery technology facing an impasse. |
---|---|
AbstractList | Abstract
Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo—a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer‐PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre‐existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody‐reactivity of this RNA aptamer is eliminated by conjugating it to a next‐generation PEG‐like brush polymer—poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre‐existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side‐effects of PEG. Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo—a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer‐PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre‐existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody‐reactivity of this RNA aptamer is eliminated by conjugating it to a next‐generation PEG‐like brush polymer—poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre‐existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side‐effects of PEG. Herein, a path is offered to rescuing RNA therapeutics from the deleterious immune side effects of PEG that induces life‐threatening hypersensitivity reactions upon reactivity toward PEG antibodies using a next‐generation PEG‐like stealth polymer conjugate technology. These results breathe new life into an established and valuable drug delivery technology facing an impasse. Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo—a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer‐PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre‐existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody‐reactivity of this RNA aptamer is eliminated by conjugating it to a next‐generation PEG‐like brush polymer—poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre‐existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side‐effects of PEG. |
Author | Ozer, Imran Pitoc, George A. Moreno, Angelo Hucknall, Angus M. Layzer, Kyle D. Sullenger, Bruce A. Layzer, Juliana M. Olson, Lyra B. Chilkoti, Ashutosh |
Author_xml | – sequence: 1 givenname: Imran orcidid: 0000-0003-4663-5215 surname: Ozer fullname: Ozer, Imran organization: Duke University – sequence: 2 givenname: George A. surname: Pitoc fullname: Pitoc, George A. organization: Duke University Medical Center – sequence: 3 givenname: Juliana M. surname: Layzer fullname: Layzer, Juliana M. organization: Duke Clinical and Translational Science Institute – sequence: 4 givenname: Angelo surname: Moreno fullname: Moreno, Angelo organization: Duke University Medical Center – sequence: 5 givenname: Lyra B. surname: Olson fullname: Olson, Lyra B. organization: Duke University Medical Center – sequence: 6 givenname: Kyle D. surname: Layzer fullname: Layzer, Kyle D. organization: Duke University Medical Center – sequence: 7 givenname: Angus M. surname: Hucknall fullname: Hucknall, Angus M. organization: Duke University – sequence: 8 givenname: Bruce A. surname: Sullenger fullname: Sullenger, Bruce A. organization: Duke University Medical Center – sequence: 9 givenname: Ashutosh surname: Chilkoti fullname: Chilkoti, Ashutosh email: chilkoti@duke.edu organization: Duke University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34994037$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUtkiQ2bDP6J7XgZhtJWmv6olHXkcW46GRJ7aiethlUfoc_YJ8GjKUViw-ouzneOztU5QHvOO0DoPSVTSgj7bOreTBlhlKhCsFdoQgWjWU602EMTornItMyLfXQQ44oQoiWRb9A-z7XOCVcT9Ovy6Pjp4XHe_gT8JYxxiS99t-kh4Jl3q_HGDIB9g6_OS1yuB7MVrpdmwN-X_j7iK7iDENtFB7h0Q2u9uRk74wZc2qG9a4cNNq7GZ61re9Ph074fHSRTXHsX4S163Zguwrvne4h-fDu6np1k84vj01k5z2xOOcuA17JgulGCWSVzC0qapKha6oWUtGGgFbB8YVTNaiV0QwGEZZTbBlTDKT9En3a56-BvR4hD1bfRQpeKgh9jxSQtGJdUqYR-_Add-TG41C5RXAlSMJEnarqjbPAxBmiqdUgPhk1FSbVdpdquUr2skgwfnmPHRQ_1C_5nhgToHXDfdrD5T1xVfj0r_4b_Bow3m30 |
CitedBy_id | crossref_primary_10_1021_jacs_3c10704 crossref_primary_10_1021_acs_chemrev_3c00611 crossref_primary_10_1016_j_nantod_2024_102163 crossref_primary_10_1016_j_ccr_2023_215567 crossref_primary_10_2217_nnm_2023_0316 crossref_primary_10_1016_j_omtn_2023_102073 crossref_primary_10_1021_jacs_3c03757 crossref_primary_10_1039_D2TB02579E crossref_primary_10_1261_rna_079503_122 crossref_primary_10_3390_polym15092219 crossref_primary_10_1002_adma_202404608 crossref_primary_10_1016_j_biomaterials_2022_121985 crossref_primary_10_1007_s00432_023_04698_y crossref_primary_10_1007_s12274_022_5310_6 crossref_primary_10_1016_j_bioactmat_2023_10_011 crossref_primary_10_1016_j_nantod_2023_102010 crossref_primary_10_1016_j_jconrel_2022_03_056 crossref_primary_10_3390_polym16081163 |
Cites_doi | 10.1016/S0140-6736(15)00515-2 10.1146/annurev-pharmtox-010716-104558 10.1016/j.tips.2020.08.004 10.1038/nbt1023 10.1208/s12248-013-9510-6 10.1038/s41573-021-00219-z 10.1038/s41573-020-0075-7 10.1161/CIRCULATIONAHA.106.668434 10.1161/ATVBAHA.115.300131 10.1021/acsnano.9b03942 10.1309/G98J-ANA9-RMNC-XLYU 10.1016/j.bja.2020.12.020 10.1038/nature00963 10.1038/mtm.2016.14 10.1161/CIRCULATIONAHA.109.927756 10.1038/nsb0897-597 10.1002/adhm.201801177 10.1016/j.jaci.2016.04.058 10.1038/s41565-021-00898-0 10.1186/s13073-017-0450-0 10.1016/j.drudis.2014.08.015 10.1159/000233309 10.1161/CIRCULATIONAHA.107.745687 10.1038/nrd.2016.199 10.7150/thno.22164 10.1016/S0169-409X(03)00108-X 10.1056/NEJMra2035343 10.1038/ki.1979.139 10.1002/wnan.1339 10.1093/eurheartj/ehs232 10.1038/s41573-020-0061-0 10.1111/j.1538-7836.2008.02932.x 10.1002/jps.22054 10.1021/acsnano.1c05922 10.1038/s41573-020-0090-8 10.1517/17425247.2012.720969 10.1016/j.addr.2020.07.024 10.1080/14686996.2019.1627174 10.1038/s41467-017-01082-6 10.1016/j.jaci.2015.10.034 10.1038/nrg908 10.3390/life11030193 10.1021/ma301303b 10.1002/advs.202103672 10.1021/acs.biomac.7b00443 10.1002/jps.2600830432 10.1038/s41551-016-0002 10.1038/d41573-020-00078-0 10.1101/cshperspect.a003582 10.1038/nrneurol.2017.148 10.1208/s12248-012-9367-0 10.1021/acs.bioconjchem.6b00652 10.1016/j.chembiol.2019.02.001 10.1038/nchembio.1737 10.1038/nrd3141 10.1161/JAHA.119.012774 10.1093/nar/gku751 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202107852 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202107852 34994037 ADMA202107852 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R41HL139234‐01 – fundername: NIH HHS grantid: R41HL139234-01 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CGR CUY CVF ECM EIF EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4132-e3d6829f752c764ce76ac417d69b661f2e97e24ba7d2d759f1ee5c213cfe7f313 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 23:40:51 EDT 2024 Thu Oct 10 18:51:38 EDT 2024 Thu Sep 26 16:08:57 EDT 2024 Sat Sep 28 08:22:20 EDT 2024 Sat Aug 24 00:56:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | RNA aptamers antigenicity PEG RNA therapeutics immunogenicity |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4132-e3d6829f752c764ce76ac417d69b661f2e97e24ba7d2d759f1ee5c213cfe7f313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4663-5215 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107852 |
PMID | 34994037 |
PQID | 2637508254 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2618236177 proquest_journals_2637508254 crossref_primary_10_1002_adma_202107852 pubmed_primary_34994037 wiley_primary_10_1002_adma_202107852_ADMA202107852 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2004; 22 2010; 99 2017; 8 2021; 20 2021; 126 2019; 13 2016; 387 2008; 6 2012; 14 1997; 4 2017; 9 2020; 19 2003; 55 2018; 8 2013; 15 2019; 20 2019; 26 2020; 9 2008; 117 2014; 19 2016; 115 2010; 9 2019; 8 1979; 16 2000; 113 2017; 26 2020; 41 2017; 28 2020; 384 2015; 11 2009 2010; 122 2002; 3 2002; 419 1983; 70 1994; 83 2015; 7 2006; 114 2014; 42 2021; 16 2021; 15 2016; 1 2016; 3 2021; 11 2021 2017; 16 2013; 34 2020 2017; 57 2016; 138 2017; 18 2016; 137 2012; 4 2012; 45 2018; 14 2012; 9 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 Ozer I. (e_1_2_9_25_1) 2021 e_1_2_9_37_1 e_1_2_9_58_1 Li W. (e_1_2_9_36_1) 2016; 115 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 (e_1_2_9_46_1) 2017; 26 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Armstrong J. K. (e_1_2_9_45_1) 2009 |
References_xml | – volume: 137 start-page: 1610 year: 2016 publication-title: J. Allergy Clin. Immunol. – year: 2009 – volume: 19 start-page: 673 year: 2020 publication-title: Nat. Rev. Drug Discovery – volume: 26 start-page: 634 year: 2019 publication-title: Cell Chem. Biol. – volume: 35 start-page: 2083 year: 2015 publication-title: Arterioscler., Thromb., Vasc. Biol. – volume: 16 start-page: 181 year: 2017 publication-title: Nat. Rev. Drug Discovery – volume: 14 start-page: 9 year: 2018 publication-title: Nat. Rev. Neurol. – volume: 9 start-page: 1319 year: 2012 publication-title: Expert Opin. Drug Delivery – volume: 15 start-page: 897 year: 2013 publication-title: AAPS J. – volume: 117 start-page: 2865 year: 2008 publication-title: Circulation – volume: 26 start-page: 71 year: 2017 publication-title: Prescrire Int. – volume: 20 start-page: 710 year: 2019 publication-title: Sci. Technol. Adv. Mater. – volume: 1 start-page: 0002 year: 2016 publication-title: Nat. Biomed. Eng. – volume: 4 start-page: 597 year: 1997 publication-title: Nat. Struct. Biol. – volume: 138 start-page: 1712 year: 2016 publication-title: J. Allergy Clin. Immunol. – volume: 16 start-page: 366 year: 1979 publication-title: Kidney Int. – volume: 113 start-page: 123 year: 2000 publication-title: Am. J. Clin. Pathol. – volume: 19 start-page: 441 year: 2020 publication-title: Nat. Rev. Drug Discovery – volume: 387 start-page: 349 year: 2016 publication-title: Lancet – volume: 28 start-page: 713 year: 2017 publication-title: Bioconjugate Chem. – volume: 55 start-page: 1261 year: 2003 publication-title: Adv. Drug Delivery Rev. – volume: 11 start-page: 214 year: 2015 publication-title: Nat. Chem. Biol. – volume: 8 start-page: 1051 year: 2017 publication-title: Nat. Commun. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 8 start-page: 3164 year: 2018 publication-title: Theranostics – volume: 45 start-page: 6371 year: 2012 publication-title: Macromolecules – volume: 126 year: 2021 publication-title: Br. J. Anaesth. – volume: 19 start-page: 1945 year: 2014 publication-title: Drug Discovery Today – volume: 19 start-page: 333 year: 2020 publication-title: Nat. Rev. Drug Discovery – volume: 42 year: 2014 publication-title: Nucleic Acids Res. – year: 2021 publication-title: Research Square – volume: 9 start-page: 60 year: 2017 publication-title: Genome Med. – volume: 4 year: 2012 publication-title: Cold Spring Harbor Perspect. Biol. – volume: 18 start-page: 2699 year: 2017 publication-title: Biomacromolecules – volume: 20 start-page: 629 year: 2021 publication-title: Nat. Rev. Drug Discovery – volume: 34 start-page: 2481 year: 2013 publication-title: Eur. Heart J. – volume: 6 start-page: 789 year: 2008 publication-title: J. Thromb. Haemostasis – volume: 41 start-page: 755 year: 2020 publication-title: Trends Pharmacol. Sci. – volume: 99 start-page: 2557 year: 2010 publication-title: J. Pharm. Sci. – volume: 13 start-page: 9315 year: 2019 publication-title: ACS Nano – volume: 16 start-page: 630 year: 2021 publication-title: Nat. Nanotechnol. – volume: 114 start-page: 2490 year: 2006 publication-title: Circulation – volume: 20 start-page: 101 year: 2021 publication-title: Nat. Rev. Drug Discovery – volume: 22 start-page: 1423 year: 2004 publication-title: Nat. Biotechnol. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 115 year: 2016 publication-title: J. Visualized Exp. – volume: 9 year: 2020 publication-title: J. Am. Heart Assoc. – start-page: 163 year: 2020 publication-title: Adv. Drug Delivery Rev. – volume: 11 start-page: 193 year: 2021 publication-title: Life – volume: 3 start-page: 737 year: 2002 publication-title: Nat. Rev. Genet. – volume: 384 start-page: 643 year: 2020 publication-title: N. Engl. J. Med. – volume: 14 start-page: 559 year: 2012 publication-title: AAPS J. – volume: 57 start-page: 61 year: 2017 publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 419 start-page: 90 year: 2002 publication-title: Nature – volume: 9 start-page: 537 year: 2010 publication-title: Nat. Rev. Drug Discovery – volume: 122 start-page: 614 year: 2010 publication-title: Circulation – volume: 3 year: 2016 publication-title: Mol. Ther.– Methods Clin. Dev. – volume: 7 start-page: 655 year: 2015 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – year: 2021 publication-title: Adv. Sci. – volume: 83 start-page: 601 year: 1994 publication-title: J. Pharm. Sci. – volume: 70 start-page: 124 year: 1983 publication-title: Int. Arch. Allergy Appl. Immunol. – ident: e_1_2_9_21_1 doi: 10.1016/S0140-6736(15)00515-2 – ident: e_1_2_9_9_1 doi: 10.1146/annurev-pharmtox-010716-104558 – ident: e_1_2_9_5_1 doi: 10.1016/j.tips.2020.08.004 – ident: e_1_2_9_12_1 doi: 10.1038/nbt1023 – ident: e_1_2_9_37_1 doi: 10.1208/s12248-013-9510-6 – ident: e_1_2_9_3_1 doi: 10.1038/s41573-021-00219-z – ident: e_1_2_9_1_1 doi: 10.1038/s41573-020-0075-7 – ident: e_1_2_9_13_1 doi: 10.1161/CIRCULATIONAHA.106.668434 – ident: e_1_2_9_35_1 doi: 10.1161/ATVBAHA.115.300131 – ident: e_1_2_9_60_1 doi: 10.1021/acsnano.9b03942 – ident: e_1_2_9_34_1 doi: 10.1309/G98J-ANA9-RMNC-XLYU – ident: e_1_2_9_47_1 doi: 10.1016/j.bja.2020.12.020 – ident: e_1_2_9_11_1 doi: 10.1038/nature00963 – ident: e_1_2_9_14_1 doi: 10.1038/mtm.2016.14 – ident: e_1_2_9_44_1 doi: 10.1161/CIRCULATIONAHA.109.927756 – volume-title: PEGylated Protein Drugs: Basic Science and Clinical Applications year: 2009 ident: e_1_2_9_45_1 contributor: fullname: Armstrong J. K. – ident: e_1_2_9_10_1 doi: 10.1038/nsb0897-597 – ident: e_1_2_9_24_1 doi: 10.1002/adhm.201801177 – ident: e_1_2_9_18_1 doi: 10.1016/j.jaci.2016.04.058 – year: 2021 ident: e_1_2_9_25_1 publication-title: Research Square contributor: fullname: Ozer I. – volume: 26 start-page: 71 year: 2017 ident: e_1_2_9_46_1 publication-title: Prescrire Int. – volume: 115 year: 2016 ident: e_1_2_9_36_1 publication-title: J. Visualized Exp. contributor: fullname: Li W. – ident: e_1_2_9_2_1 doi: 10.1038/s41565-021-00898-0 – ident: e_1_2_9_56_1 doi: 10.1186/s13073-017-0450-0 – ident: e_1_2_9_17_1 doi: 10.1016/j.drudis.2014.08.015 – ident: e_1_2_9_16_1 doi: 10.1159/000233309 – ident: e_1_2_9_42_1 doi: 10.1161/CIRCULATIONAHA.107.745687 – ident: e_1_2_9_6_1 doi: 10.1038/nrd.2016.199 – ident: e_1_2_9_59_1 doi: 10.7150/thno.22164 – ident: e_1_2_9_32_1 doi: 10.1016/S0169-409X(03)00108-X – ident: e_1_2_9_48_1 doi: 10.1056/NEJMra2035343 – ident: e_1_2_9_30_1 doi: 10.1038/ki.1979.139 – ident: e_1_2_9_19_1 doi: 10.1002/wnan.1339 – ident: e_1_2_9_20_1 doi: 10.1093/eurheartj/ehs232 – ident: e_1_2_9_40_1 doi: 10.1038/s41573-020-0061-0 – ident: e_1_2_9_43_1 doi: 10.1111/j.1538-7836.2008.02932.x – ident: e_1_2_9_31_1 doi: 10.1002/jps.22054 – ident: e_1_2_9_49_1 doi: 10.1021/acsnano.1c05922 – ident: e_1_2_9_57_1 doi: 10.1038/s41573-020-0090-8 – ident: e_1_2_9_15_1 doi: 10.1517/17425247.2012.720969 – ident: e_1_2_9_39_1 doi: 10.1016/j.addr.2020.07.024 – ident: e_1_2_9_58_1 doi: 10.1080/14686996.2019.1627174 – ident: e_1_2_9_55_1 doi: 10.1038/s41467-017-01082-6 – ident: e_1_2_9_22_1 doi: 10.1016/j.jaci.2015.10.034 – ident: e_1_2_9_53_1 doi: 10.1038/nrg908 – ident: e_1_2_9_51_1 doi: 10.3390/life11030193 – ident: e_1_2_9_27_1 doi: 10.1021/ma301303b – ident: e_1_2_9_50_1 doi: 10.1002/advs.202103672 – ident: e_1_2_9_29_1 doi: 10.1021/acs.biomac.7b00443 – ident: e_1_2_9_33_1 doi: 10.1002/jps.2600830432 – ident: e_1_2_9_23_1 doi: 10.1038/s41551-016-0002 – ident: e_1_2_9_4_1 doi: 10.1038/d41573-020-00078-0 – ident: e_1_2_9_7_1 doi: 10.1101/cshperspect.a003582 – ident: e_1_2_9_52_1 doi: 10.1038/nrneurol.2017.148 – ident: e_1_2_9_38_1 doi: 10.1208/s12248-012-9367-0 – ident: e_1_2_9_28_1 doi: 10.1021/acs.bioconjchem.6b00652 – ident: e_1_2_9_26_1 doi: 10.1016/j.chembiol.2019.02.001 – ident: e_1_2_9_54_1 doi: 10.1038/nchembio.1737 – ident: e_1_2_9_8_1 doi: 10.1038/nrd3141 – ident: e_1_2_9_41_1 doi: 10.1161/JAHA.119.012774 – ident: e_1_2_9_61_1 doi: 10.1093/nar/gku751 |
SSID | ssj0009606 |
Score | 2.5291836 |
Snippet | Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity... Abstract Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2107852 |
SubjectTerms | Animals Antibodies Anticoagulants Anticoagulants - pharmacology antigenicity Aptamers, Nucleotide Blood circulation Conjugates Immune system Immunity immunogenicity Mice PEG Polyethylene glycol Polyethylene Glycols Polymers Ribonucleic acid RNA RNA aptamers RNA therapeutics |
Title | PEG‐Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107852 https://www.ncbi.nlm.nih.gov/pubmed/34994037 https://www.proquest.com/docview/2637508254 https://search.proquest.com/docview/2618236177 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaTu2h78dSilypEqfAxo7t-BjxKEWAVgtI3CLbGXe3LAliEyE48RP4jfyS2s5uYNtDpfYYTUaeeDyez874M0JfmekTpYSKqEP7UWI1jVLFIQJppC04Zy6kfLXFId89SfZO2emjU_wtP0S34eYjI8zXPsCVnm48kIaqIvAGuSWLSJmfhGMqfE3X1vCBP8rD80C2R1kkeZLOWRv7ZGNRfTEr_QE1F5FrSD07L5GaG91WnJytN7VeNze_8Tn-z1e9Qi9muBRn7UB6jZ5A-QY9f8RW-BbdDLa_3d_e7Y_PALshMR3hQTW5PodLvFmVPxu_H4cri4eHGc4uauUFxyNV46NRdTXFQwgFIHoCOCtdI5X60UycW3Fm2gsssCoLfDAux-fOju_-2Ao4pVDBC-_Qyc728eZuNLu6ITIuK5IIaMFTIq1gxAieGBBcOYkouNQOEVgCUgBJtBIFKQSTNgZghsTUWBCWxvQ9WiqrEj4iTLS0hiptOaUOPelUJnHaF8IQwxgo3kNrc9flFy1DR95yMZPc92be9WYPrcw9m88idZoTTh1o8uvkHvrSiV2M-R8nqoSq8e_E_l74WIge-tCOiK4p6paMSZ86CQl-_YsNebZ1kHVPy_-i9Ak9I_4MRiiEW0FL9WUDnx0yqvUqekqSwWqIgV_ByQbD |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLXQsAAWvB-FAYyExCozjR3byTKaBx1oq1HpSOwi27mmZTrJaJoIMSs-gW_kS7hO2gyFBRIsoxvLjq-Pfexcn0vIa2H7TGulA45sP4ic4UGsJQSQ2MTlUgqElI-2GMvBSfTuo1hHE_q7MK0-RHfg5pHRzNce4P5AevdKNVTnjXAQ7llULHAWvo6Y5z6Jwf7kSkHKE_RGbo-LIJFRvNZt7LPdzfKb69IfZHOTuzaLz-EdYtbNbmNOTnfqyuzYy98UHf_ru-6S2ytqStN2LN0j16C4T279Ilj4gFweH7z98e37cH4KFEfFckaPy8XXM7ige2XxufZHcrR0dDJOaXpeaW-YznRFP8zKL0s6gSYGxCyApgVWUupP9QI9S1Pb5rCgusjpaF7Mz7AdR_7mCmChJogXHpKTw4Pp3iBYZW8ILC6MLACey5glTglmlYwsKKnRonKZGCQFjkGigEVGq5zlSiQuBBCWhdw6UI6H_BHZKsoCnhDKTOIs18ZJzpFAmTiJwrivlGVWCNCyR96sfZedtyIdWSvHzDLfm1nXmz2yvXZttgLrMmOSI2_yW-UeedWZEWb-34kuoKz9O6FPDR8q1SOP2yHRVcVx1xj1OVpY49i_tCFL90dp9_T0Xwq9JDcG09EwGx6N3z8jN5m_ktHExW2TreqihudIlCrzooHCT_a0CgY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfQkBA8jP_QMcBISDxlS-zYTh6jdWWDrarKJu0tsp0zLeuSak2E2BMfgc_IJ8F22myFByR4jC4nX3w-38_O-WeE3jIdEimFDKhF-0FsFA0SySGAVKem4JzZkHLVFkN-cBp_OGNnN07xt_wQ3Yabiww_X7sAnxdm95o0VBaeN8guWUTC7CR8O-Y0dEVd_fE1gZTD555tj7Ig5XGyom0Mye66_npa-gNrrkNXn3sG95FcWd2WnJzvNLXa0Ve_ETr-z2c9QJtLYIqzdiQ9RLegfITu3aArfIyuRvvvf37_cTQ9B2zHxGKCR9Xs2wVc4r2q_NK4DTlcGTweZjib19IJTiayxp8m1dcFHoOvAFEzwFlpG6nk52Zm_Yoz3d5ggWVZ4ONpOb2wdhy6cytglXwJLzxBp4P9k72DYHl3Q6BtWiQB0IInJDWCES14rEFwaSWi4KmykMAQSAWQWElRkEKw1EQATJOIagPC0Ig-RRtlVcJzhIlKjaZSGU6phU8qSeMoCYXQRDMGkvfQu5Xr8nlL0ZG3ZMwkd72Zd73ZQ9srz-bLUF3khFOLmtxCuYfedGIbZO7PiSyhatw7kbsYPhKih561I6Jrito1YxxSKyHer3-xIc_6x1n3tPUvSq_RnVF_kB8dDj--QHeJO4_hi-K20UZ92cBLi5Jq9coHwi_Mqwi1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEG-Like+Brush+Polymer+Conjugate+of+RNA+Aptamer+That+Shows+Reversible+Anticoagulant+Activity+and+Minimal+Immune+Response&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ozer%2C+Imran&rft.au=Pitoc%2C+George+A&rft.au=Layzer%2C+Juliana+M&rft.au=Moreno%2C+Angelo&rft.date=2022-03-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=10&rft.spage=e2107852&rft_id=info:doi/10.1002%2Fadma.202107852&rft_id=info%3Apmid%2F34994037&rft.externalDocID=34994037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |