High‐Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization
Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 41; pp. e2408101 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities.
An in situ passivation (ISP) method is introduced to adjust the crystal growth kinetics and obtain the (111)‐orientated perovskite films with the passivated boundaries and interfaces, leading to high‐performance inverted perovskite solar cells, with power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 square millimeters active area). |
---|---|
AbstractList | Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well-orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high-performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high-quality (111)-orientated perovskite crystallites with superior photovoltaic properties. The ISP-derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities.Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well-orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high-performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high-quality (111)-orientated perovskite crystallites with superior photovoltaic properties. The ISP-derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities. Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities. Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well-orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high-performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high-quality (111)-orientated perovskite crystallites with superior photovoltaic properties. The ISP-derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm active area) and 24.5% (certified as 23.53% at a 1.28 cm active area), along with decent operational stabilities. Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities. An in situ passivation (ISP) method is introduced to adjust the crystal growth kinetics and obtain the (111)‐orientated perovskite films with the passivated boundaries and interfaces, leading to high‐performance inverted perovskite solar cells, with power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 square millimeters active area). Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm 2 active area) and 24.5% (certified as 23.53% at a 1.28 cm 2 active area), along with decent operational stabilities. |
Author | Zhou, Kun Yan, Kangrong Wang, Xinjiang Niu, Benfang Chen, Hongzheng Fang, Yanjun Shen, Ziqiu Yan, Minxing Zhang, Lijun Li, Biao Huang, Yanchun Li, Chang‐Zhi Yu, Xuegong |
Author_xml | – sequence: 1 givenname: Yanchun orcidid: 0009-0005-3225-4691 surname: Huang fullname: Huang, Yanchun organization: Zhejiang University – sequence: 2 givenname: Kangrong surname: Yan fullname: Yan, Kangrong organization: Zhejiang University – sequence: 3 givenname: Xinjiang surname: Wang fullname: Wang, Xinjiang organization: Jilin University – sequence: 4 givenname: Biao surname: Li fullname: Li, Biao organization: Zhejiang University – sequence: 5 givenname: Benfang surname: Niu fullname: Niu, Benfang organization: Zhejiang University – sequence: 6 givenname: Minxing surname: Yan fullname: Yan, Minxing organization: Zhejiang University – sequence: 7 givenname: Ziqiu surname: Shen fullname: Shen, Ziqiu organization: Zhejiang University – sequence: 8 givenname: Kun surname: Zhou fullname: Zhou, Kun organization: Jilin University – sequence: 9 givenname: Yanjun surname: Fang fullname: Fang, Yanjun organization: Zhejiang University – sequence: 10 givenname: Xuegong surname: Yu fullname: Yu, Xuegong organization: Zhejiang University – sequence: 11 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: Zhejiang University – sequence: 12 givenname: Lijun surname: Zhang fullname: Zhang, Lijun email: lijun_zhang@jlu.edu.cn organization: Jilin University – sequence: 13 givenname: Chang‐Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39140642$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq0KVIZptyxRJDbdZDi-xBMvRwMFJCqQoGvLlxMwzSRgJ1NNVzxCn7FP0gxDQUKqWHnh7zvn1_l3yVbTNkjIHoUJBWCHxi_MhAETUFKgH8iIFozmAlSxRUageJErKcodspvSHQAoCfIj2eGKCpCCjYg9DTe3fx5_H1dVcAEbt8rOmiXGDn12ibFdph-hw-yqrU3M5ljXKVsGMzDZVej67NKkFJamC22THYWIbu3N4yp1pq7Dr6ePT2S7MnXCz8_vmHz_enw9P83PL07O5rPz3AnKae546SvAKTpfCEqFqKyx3lhrwTBPbUktFh6nZcEdMCNKqDwXViGilEJKPiZfNnPvY_vQY-r0IiQ3RDYNtn3SHBQrp8AKMaAHb9C7to_NkE7zYbWUSgyZxmT_mertAr2-j2Fh4kr_u94ATDaAi21KEasXhIJe16PX9eiXegZBvBFc6J6O1EUT6v9raqP9DDWu3lmiZ0ffZq_uX8_KpbI |
CitedBy_id | crossref_primary_10_1002_smll_202501762 crossref_primary_10_1109_LED_2024_3505233 crossref_primary_10_1002_ange_202425605 crossref_primary_10_1016_j_joule_2025_101880 crossref_primary_10_1007_s41939_024_00699_7 crossref_primary_10_1016_j_cej_2024_158870 crossref_primary_10_1039_D4EE04136D crossref_primary_10_1039_D4EL00034J crossref_primary_10_1021_acsphotonics_4c02096 crossref_primary_10_1002_adma_202502770 crossref_primary_10_1002_smll_202411623 crossref_primary_10_1002_smll_202410731 crossref_primary_10_1016_j_solener_2025_113409 crossref_primary_10_1016_j_cej_2025_161237 crossref_primary_10_1016_j_mtener_2025_101836 crossref_primary_10_1002_anie_202425605 crossref_primary_10_1021_acsaem_4c02180 crossref_primary_10_1021_jacs_4c15857 crossref_primary_10_1002_adma_202418790 |
Cites_doi | 10.1021/acsenergylett.2c01623 10.1038/nchem.2324 10.1126/science.abo2757 10.1088/1361-6633/ac7c7a 10.1039/C9EE02268F 10.1021/acsami.1c22396 10.1039/C7EE01675A 10.1126/science.adg3755 10.1126/science.abi6323 10.1002/adma.202212258 10.1038/s41586-021-03285-w 10.1002/adma.202008487 10.1126/science.aad4424 10.1126/sciadv.abq4524 10.1038/s41586-021-03964-8 10.1038/s41560-023-01227-6 10.1126/science.ade9637 10.1016/j.joule.2022.09.012 10.1126/science.1254763 10.1126/science.ade9463 10.1126/science.aaa2725 10.1039/C8CP00280K 10.1021/nl502612m 10.1038/nenergy.2016.81 10.1038/s41467-021-21934-6 10.1039/D2EE03355K 10.1038/s41586-023-05825-y 10.1038/s41566-023-01180-6 10.1126/science.aba0893 10.1016/j.joule.2023.10.014 10.1038/s41586-019-1357-2 10.1126/science.aan2301 10.1038/s41586-023-06207-0 10.1126/science.abh1035 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202408101 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39140642 10_1002_adma_202408101 ADMA202408101 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22125901; 62025403; 62125402 – fundername: Fundamental Research Funds for the Central Universities funderid: 226‐2023‐00113 – fundername: Scientific Research Project of China Three Gorges Corporation funderid: 202303014 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900 – fundername: National Natural Science Foundation of China grantid: 62025403 – fundername: National Key Research and Development Program of China grantid: 2019YFA0705900 – fundername: National Natural Science Foundation of China grantid: 62125402 – fundername: Fundamental Research Funds for the Central Universities grantid: 226-2023-00113 – fundername: Scientific Research Project of China Three Gorges Corporation grantid: 202303014 – fundername: National Natural Science Foundation of China grantid: 22125901 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4131-c38df0e7ecd541144fbabdabbb0a2d1b81be5de7853c02a480fd34b9eee664663 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:53:09 EDT 2025 Fri Jul 25 22:20:16 EDT 2025 Wed Feb 19 02:06:57 EST 2025 Tue Jul 01 00:54:54 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Mon Feb 03 09:41:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | interface crystal engineering perovskite solar cells in situ passivation |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4131-c38df0e7ecd541144fbabdabbb0a2d1b81be5de7853c02a480fd34b9eee664663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1968-2032 0009-0005-3225-4691 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202408101 |
PMID | 39140642 |
PQID | 3114669441 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3092870254 proquest_journals_3114669441 pubmed_primary_39140642 crossref_primary_10_1002_adma_202408101 crossref_citationtrail_10_1002_adma_202408101 wiley_primary_10_1002_adma_202408101_ADMA202408101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 380 2023; 35 2023; 14 2015; 347 2023; 17 2023; 382 2023; 7 2023; 16 2023; 8 2019; 12 2023; 620 2022; 85 2020; 367 2015; 7 2017; 356 2018; 20 2022; 377 2016; 1 2021; 12 2021; 33 2021; 598 2022; 6 2022; 7 2022; 8 2017; 10 2022; 14 2014; 14 2016; 352 2021; 590 2023; 616 2021; 373 2021; 372 2014; 345 2019; 571 e_1_2_8_28_1 Jiao H. (e_1_2_8_35_1) 2022; 8 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Zhao L. (e_1_2_8_9_1) 2022; 8 Wang F. (e_1_2_8_10_1) 2023; 14 e_1_2_8_30_1 |
References_xml | – volume: 380 start-page: 823 year: 2023 publication-title: Science – volume: 8 start-page: 462 year: 2023 publication-title: Nat. Energy – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 14 start-page: 6794 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2626 year: 2022 publication-title: Joule – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 620 start-page: 545 year: 2023 publication-title: Nature – volume: 20 start-page: 6800 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 85 year: 2022 publication-title: Rep. Prog. in Phys. – volume: 8 start-page: 1 year: 2022 publication-title: Sci. Adv. – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 12 start-page: 1686 year: 2021 publication-title: Nat. Commun. – volume: 377 start-page: 495 year: 2022 publication-title: Science – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 14 start-page: 1 year: 2023 publication-title: Nat. Commun. – volume: 14 start-page: 6281 year: 2014 publication-title: Nano Lett. – volume: 373 start-page: 902 year: 2021 publication-title: Science – volume: 598 start-page: 444 year: 2021 publication-title: Nature – volume: 380 start-page: 404 year: 2023 publication-title: Science – volume: 7 start-page: 3120 year: 2022 publication-title: ACS Energy Lett. – volume: 17 start-page: 478 year: 2023 publication-title: Nat. Photonics – volume: 7 start-page: 2894 year: 2023 publication-title: Joule – volume: 10 start-page: 1942 year: 2017 publication-title: Energy Environ. Sci. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 start-page: 38 year: 2022 publication-title: Sci. Adv. – volume: 571 start-page: 245 year: 2019 publication-title: Nature – volume: 352 start-page: 6283 year: 2016 publication-title: Science – volume: 372 start-page: 1327 year: 2021 publication-title: Science – volume: 16 start-page: 557 year: 2023 publication-title: Energy Environ. Sci. – volume: 616 start-page: 724 year: 2023 publication-title: Nature – volume: 382 start-page: 284 year: 2023 publication-title: Science – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 12 start-page: 3356 year: 2019 publication-title: Energy Environ. Sci. – volume: 590 start-page: 587 year: 2021 publication-title: Nature – ident: e_1_2_8_32_1 doi: 10.1021/acsenergylett.2c01623 – ident: e_1_2_8_18_1 doi: 10.1038/nchem.2324 – ident: e_1_2_8_7_1 doi: 10.1126/science.abo2757 – ident: e_1_2_8_16_1 doi: 10.1088/1361-6633/ac7c7a – ident: e_1_2_8_25_1 doi: 10.1039/C9EE02268F – ident: e_1_2_8_34_1 doi: 10.1021/acsami.1c22396 – ident: e_1_2_8_3_1 – ident: e_1_2_8_27_1 doi: 10.1039/C7EE01675A – ident: e_1_2_8_22_1 doi: 10.1126/science.adg3755 – ident: e_1_2_8_12_1 doi: 10.1126/science.abi6323 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202212258 – ident: e_1_2_8_29_1 doi: 10.1038/s41586-021-03285-w – ident: e_1_2_8_28_1 doi: 10.1002/adma.202008487 – ident: e_1_2_8_1_1 doi: 10.1126/science.aad4424 – ident: e_1_2_8_13_1 doi: 10.1126/sciadv.abq4524 – ident: e_1_2_8_6_1 doi: 10.1038/s41586-021-03964-8 – ident: e_1_2_8_21_1 doi: 10.1038/s41560-023-01227-6 – ident: e_1_2_8_23_1 doi: 10.1126/science.ade9637 – ident: e_1_2_8_31_1 doi: 10.1016/j.joule.2022.09.012 – ident: e_1_2_8_30_1 doi: 10.1126/science.1254763 – ident: e_1_2_8_11_1 doi: 10.1126/science.ade9463 – ident: e_1_2_8_2_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_8_38_1 doi: 10.1039/C8CP00280K – volume: 14 start-page: 1 year: 2023 ident: e_1_2_8_10_1 publication-title: Nat. Commun. – ident: e_1_2_8_36_1 doi: 10.1021/nl502612m – ident: e_1_2_8_8_1 doi: 10.1038/nenergy.2016.81 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-021-21934-6 – ident: e_1_2_8_33_1 doi: 10.1039/D2EE03355K – ident: e_1_2_8_4_1 doi: 10.1038/s41586-023-05825-y – ident: e_1_2_8_19_1 doi: 10.1038/s41566-023-01180-6 – ident: e_1_2_8_14_1 doi: 10.1126/science.aba0893 – ident: e_1_2_8_24_1 doi: 10.1016/j.joule.2023.10.014 – ident: e_1_2_8_5_1 doi: 10.1038/s41586-019-1357-2 – ident: e_1_2_8_37_1 doi: 10.1126/science.aan2301 – volume: 8 start-page: 38 year: 2022 ident: e_1_2_8_35_1 publication-title: Sci. Adv. – ident: e_1_2_8_20_1 doi: 10.1038/s41586-023-06207-0 – volume: 8 start-page: 1 year: 2022 ident: e_1_2_8_9_1 publication-title: Sci. Adv. – ident: e_1_2_8_17_1 doi: 10.1126/science.abh1035 |
SSID | ssj0009606 |
Score | 2.6101584 |
Snippet | Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild... Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2408101 |
SubjectTerms | Boundaries Crystal defects crystal engineering Crystal growth Crystallites Crystallization Energy conversion efficiency in situ passivation interface Lead compounds Metal halides Passivity perovskite solar cells Perovskites Photovoltaic cells Solar cells |
Title | High‐Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202408101 https://www.ncbi.nlm.nih.gov/pubmed/39140642 https://www.proquest.com/docview/3114669441 https://www.proquest.com/docview/3092870254 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnah9pdntcVkUERXyAt5KkUxDLruwL9ORP8Df6S5xpu9VVRNBLaemEpkkm-SYz8wVgL0BSP-s1XB2zm5HEXJMhullkskgqTUsCe3TPL9TprTy7i-4-ZfGX_BD1hhtrRjFfs4Jr0z_8IA3VacEbxBRdfpHAxQFbjIquPvijGJ4XZHth5MZKNsesjV5wOFl8clX6BjUnkWux9JzMgx5Xuow4eTgYDsyBff7C5_ifv1qAuQqXilY5kBZhCjtLMPuJrXAZDMeEvL28HhesE5yyKZilo0eYVVxirzvq806wuGZjWbQxz_tidK9JRlzfD4bikmB6dZSaKCdaKtfuPRE8zfMqG3QFbk-Ob9qnbnVEg2tp9fNdGzbTzMMG2jSSZFrJzGiTamOMp4PUNwSKMUqxQaDAeoGWTS9LQ2liRFRKEtpZhelOt4PrIFSoCU0q30R-Jq1qGrr40lgb6CxAKx1wx12U2Iq_nI_RyJOSeTlIuO2Suu0c2K_lH0vmjh8lt8Y9nlQa3E9CTtdWMaFFB3br16R77FDRHewOScaL2U9MNrYDa-VIqT8VxmS6knHnQFD09y91SFpH5636aeMvhTZhhu_LSMMtmB70hrhNiGlgdgqteAcJeQ5l |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8sLWAkEKe0ieN4NwcOq91WW9qtKtpKvaW2M5Eqol20P0Xl1Efoq_RVeASehJn8lQUhJKQeuERKMkkce8bzzdj-DPBGIpmf89ueiXmYkcQ8myF6WWSzSGlDLoFHdIe7enCoPhxFR0twWa-FKfkhmoQbW0bRX7OBc0J6_Yo11KQFcRBzdJFeVfMqt_HsC0Vt0_dbfWrit1Jubhz0Bl61sYDnqM8OPBd20szHNro0UhQQqMwamxprrW9kGliCchil2CZX5nxpVMfP0lDZGBG1VuSj6b034CZvI850_f2PV4xVHBAU9H5h5MVadWqeSF-uL5Z30Q_-Bm4XsXLh7Dbvwbe6mso5Lp_W5jO75r7-wiD5X9XjfbhbQW_RLW3lASzh6CHc-YmQ8RFYnvby_fxioyDW4FWpgolIJgTLxR5OxqdTTnaLfc4HiB7m-VScnhiSEfsns7nYo0ik2i1OlL6EnutNzgiB53m14PUxHF7LTz6B5dF4hM9A6NAQYNaBjYJMOd2xdAiUdU6aTKJTLfBqnUhcRdHOO4XkSUkuLRNuq6Rpqxa8a-Q_l-Qkf5RcrVUsqTqpaRLyinQdEyBuwevmNnUvPGZkRjiek4wf81C4jKhwT0vVbD4VxhSdU_zaAlko2F_KkHT7w25z9vxfHnoFtwYHw51kZ2t3ewVu8_VyYuUqLM8mc3xBAHFmXxYmKeD4unX3B9ekb0E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64J92oYCRQJzSJo7j3Rw4rHa7aimtVpRKvQXbmUhVo91qf4rKqY_QR-FVeAWehJn8lQUhJKQeuERKMkkce8bzjT3-DPBKIpmf89ueiXmakcQ8myF6WWSzSGlDLoFndPf29fahencUHS3B13otTMkP0Qy4sWUU_TUb-GmabV6Rhpq04A1iii5SqyqtchfPP1PQNn2706cWfi3lYOtjb9ur9hXwHHXZgefCTpr52EaXRoriAZVZY1NjrfWNTANLSA6jFNvkyZwvjer4WRoqGyOi1opcNL33BtxU2o95s4j-hyvCKo4HCna_MPJirTo1TaQvNxfLu-gGf8O2i1C58HWDu_CtrqUyxeVkYz6zG-7LLwSS_1M13oM7FfAW3dJS7sMSjh7Ayk90jA_BctLL94vLrYJWg9ekCqYhmRAoF0OcjM-mPNQtDng0QPQwz6fi7NiQjDg4ns3FkOKQaq84UXoSeq43OSf8nefVctdHcHgtP_kYlkfjEa6B0KEhuKwDGwWZcrpj6RAo65w0mUSnWuDVKpG4iqCd9wnJk5JaWibcVknTVi1408ifltQkf5RcrzUsqbqoaRLyenQdExxuwcvmNnUuPGNkRjiek4wf80S4jKhwq6VmNp8KY4rNKXptgSz06y9lSLr9vW5z9uRfHnoBt4b9QfJ-Z3_3Kdzmy2VW5ToszyZzfEbocGafFwYp4NN1q-4PB8dt8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+Inverted+Perovskite+Solar+Cells+via+In+Situ+Passivation+Directed+Crystallization&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Yanchun&rft.au=Kangrong+Yan&rft.au=Wang%2C+Xinjiang&rft.au=Li%2C+Biao&rft.date=2024-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=41&rft_id=info:doi/10.1002%2Fadma.202408101&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |