High‐Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization

Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 41; pp. e2408101 - n/a
Main Authors Huang, Yanchun, Yan, Kangrong, Wang, Xinjiang, Li, Biao, Niu, Benfang, Yan, Minxing, Shen, Ziqiu, Zhou, Kun, Fang, Yanjun, Yu, Xuegong, Chen, Hongzheng, Zhang, Lijun, Li, Chang‐Zhi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities. An in situ passivation (ISP) method is introduced to adjust the crystal growth kinetics and obtain the (111)‐orientated perovskite films with the passivated boundaries and interfaces, leading to high‐performance inverted perovskite solar cells, with power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 square millimeters active area).
AbstractList Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well-orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high-performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high-quality (111)-orientated perovskite crystallites with superior photovoltaic properties. The ISP-derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities.Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well-orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high-performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high-quality (111)-orientated perovskite crystallites with superior photovoltaic properties. The ISP-derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities.
Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities.
Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well-orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high-performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high-quality (111)-orientated perovskite crystallites with superior photovoltaic properties. The ISP-derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm active area) and 24.5% (certified as 23.53% at a 1.28 cm active area), along with decent operational stabilities.
Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm2 active area) and 24.5% (certified as 23.53% at a 1.28 cm2 active area), along with decent operational stabilities. An in situ passivation (ISP) method is introduced to adjust the crystal growth kinetics and obtain the (111)‐orientated perovskite films with the passivated boundaries and interfaces, leading to high‐performance inverted perovskite solar cells, with power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 square millimeters active area).
Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild processabilities to massive production, inverted PSCs have long suffered from inferior photovoltaic performances due to intractable defective states at boundaries and interfaces. Herein, an in situ passivation (ISP) method is presented to effectively adjust crystal growth kinetics and obtain the well‐orientated perovskite films with the passivated boundaries and interfaces, successfully enabled the new access of high‐performance inverted PSCs. The study unravels that the strong yet anisotropic ISP additive adsorption between different facets and the accompanied additive engineering yield the high‐quality (111)‐orientated perovskite crystallites with superior photovoltaic properties. The ISP‐derived inverted perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies (PCEs) of 26.7% (certified as 26.09% at a 5.97 mm 2 active area) and 24.5% (certified as 23.53% at a 1.28 cm 2 active area), along with decent operational stabilities.
Author Zhou, Kun
Yan, Kangrong
Wang, Xinjiang
Niu, Benfang
Chen, Hongzheng
Fang, Yanjun
Shen, Ziqiu
Yan, Minxing
Zhang, Lijun
Li, Biao
Huang, Yanchun
Li, Chang‐Zhi
Yu, Xuegong
Author_xml – sequence: 1
  givenname: Yanchun
  orcidid: 0009-0005-3225-4691
  surname: Huang
  fullname: Huang, Yanchun
  organization: Zhejiang University
– sequence: 2
  givenname: Kangrong
  surname: Yan
  fullname: Yan, Kangrong
  organization: Zhejiang University
– sequence: 3
  givenname: Xinjiang
  surname: Wang
  fullname: Wang, Xinjiang
  organization: Jilin University
– sequence: 4
  givenname: Biao
  surname: Li
  fullname: Li, Biao
  organization: Zhejiang University
– sequence: 5
  givenname: Benfang
  surname: Niu
  fullname: Niu, Benfang
  organization: Zhejiang University
– sequence: 6
  givenname: Minxing
  surname: Yan
  fullname: Yan, Minxing
  organization: Zhejiang University
– sequence: 7
  givenname: Ziqiu
  surname: Shen
  fullname: Shen, Ziqiu
  organization: Zhejiang University
– sequence: 8
  givenname: Kun
  surname: Zhou
  fullname: Zhou, Kun
  organization: Jilin University
– sequence: 9
  givenname: Yanjun
  surname: Fang
  fullname: Fang, Yanjun
  organization: Zhejiang University
– sequence: 10
  givenname: Xuegong
  surname: Yu
  fullname: Yu, Xuegong
  organization: Zhejiang University
– sequence: 11
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: Zhejiang University
– sequence: 12
  givenname: Lijun
  surname: Zhang
  fullname: Zhang, Lijun
  email: lijun_zhang@jlu.edu.cn
  organization: Jilin University
– sequence: 13
  givenname: Chang‐Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39140642$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq0KVIZptyxRJDbdZDi-xBMvRwMFJCqQoGvLlxMwzSRgJ1NNVzxCn7FP0gxDQUKqWHnh7zvn1_l3yVbTNkjIHoUJBWCHxi_MhAETUFKgH8iIFozmAlSxRUageJErKcodspvSHQAoCfIj2eGKCpCCjYg9DTe3fx5_H1dVcAEbt8rOmiXGDn12ibFdph-hw-yqrU3M5ljXKVsGMzDZVej67NKkFJamC22THYWIbu3N4yp1pq7Dr6ePT2S7MnXCz8_vmHz_enw9P83PL07O5rPz3AnKae546SvAKTpfCEqFqKyx3lhrwTBPbUktFh6nZcEdMCNKqDwXViGilEJKPiZfNnPvY_vQY-r0IiQ3RDYNtn3SHBQrp8AKMaAHb9C7to_NkE7zYbWUSgyZxmT_mertAr2-j2Fh4kr_u94ATDaAi21KEasXhIJe16PX9eiXegZBvBFc6J6O1EUT6v9raqP9DDWu3lmiZ0ffZq_uX8_KpbI
CitedBy_id crossref_primary_10_1002_smll_202501762
crossref_primary_10_1109_LED_2024_3505233
crossref_primary_10_1002_ange_202425605
crossref_primary_10_1016_j_joule_2025_101880
crossref_primary_10_1007_s41939_024_00699_7
crossref_primary_10_1016_j_cej_2024_158870
crossref_primary_10_1039_D4EE04136D
crossref_primary_10_1039_D4EL00034J
crossref_primary_10_1021_acsphotonics_4c02096
crossref_primary_10_1002_adma_202502770
crossref_primary_10_1002_smll_202411623
crossref_primary_10_1002_smll_202410731
crossref_primary_10_1016_j_solener_2025_113409
crossref_primary_10_1016_j_cej_2025_161237
crossref_primary_10_1016_j_mtener_2025_101836
crossref_primary_10_1002_anie_202425605
crossref_primary_10_1021_acsaem_4c02180
crossref_primary_10_1021_jacs_4c15857
crossref_primary_10_1002_adma_202418790
Cites_doi 10.1021/acsenergylett.2c01623
10.1038/nchem.2324
10.1126/science.abo2757
10.1088/1361-6633/ac7c7a
10.1039/C9EE02268F
10.1021/acsami.1c22396
10.1039/C7EE01675A
10.1126/science.adg3755
10.1126/science.abi6323
10.1002/adma.202212258
10.1038/s41586-021-03285-w
10.1002/adma.202008487
10.1126/science.aad4424
10.1126/sciadv.abq4524
10.1038/s41586-021-03964-8
10.1038/s41560-023-01227-6
10.1126/science.ade9637
10.1016/j.joule.2022.09.012
10.1126/science.1254763
10.1126/science.ade9463
10.1126/science.aaa2725
10.1039/C8CP00280K
10.1021/nl502612m
10.1038/nenergy.2016.81
10.1038/s41467-021-21934-6
10.1039/D2EE03355K
10.1038/s41586-023-05825-y
10.1038/s41566-023-01180-6
10.1126/science.aba0893
10.1016/j.joule.2023.10.014
10.1038/s41586-019-1357-2
10.1126/science.aan2301
10.1038/s41586-023-06207-0
10.1126/science.abh1035
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202408101
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39140642
10_1002_adma_202408101
ADMA202408101
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22125901; 62025403; 62125402
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 226‐2023‐00113
– fundername: Scientific Research Project of China Three Gorges Corporation
  funderid: 202303014
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900
– fundername: National Natural Science Foundation of China
  grantid: 62025403
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0705900
– fundername: National Natural Science Foundation of China
  grantid: 62125402
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 226-2023-00113
– fundername: Scientific Research Project of China Three Gorges Corporation
  grantid: 202303014
– fundername: National Natural Science Foundation of China
  grantid: 22125901
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4131-c38df0e7ecd541144fbabdabbb0a2d1b81be5de7853c02a480fd34b9eee664663
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:53:09 EDT 2025
Fri Jul 25 22:20:16 EDT 2025
Wed Feb 19 02:06:57 EST 2025
Tue Jul 01 00:54:54 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Mon Feb 03 09:41:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords interface
crystal engineering
perovskite solar cells
in situ passivation
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4131-c38df0e7ecd541144fbabdabbb0a2d1b81be5de7853c02a480fd34b9eee664663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1968-2032
0009-0005-3225-4691
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202408101
PMID 39140642
PQID 3114669441
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_3092870254
proquest_journals_3114669441
pubmed_primary_39140642
crossref_primary_10_1002_adma_202408101
crossref_citationtrail_10_1002_adma_202408101
wiley_primary_10_1002_adma_202408101_ADMA202408101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 380
2023; 35
2023; 14
2015; 347
2023; 17
2023; 382
2023; 7
2023; 16
2023; 8
2019; 12
2023; 620
2022; 85
2020; 367
2015; 7
2017; 356
2018; 20
2022; 377
2016; 1
2021; 12
2021; 33
2021; 598
2022; 6
2022; 7
2022; 8
2017; 10
2022; 14
2014; 14
2016; 352
2021; 590
2023; 616
2021; 373
2021; 372
2014; 345
2019; 571
e_1_2_8_28_1
Jiao H. (e_1_2_8_35_1) 2022; 8
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Zhao L. (e_1_2_8_9_1) 2022; 8
Wang F. (e_1_2_8_10_1) 2023; 14
e_1_2_8_30_1
References_xml – volume: 380
  start-page: 823
  year: 2023
  publication-title: Science
– volume: 8
  start-page: 462
  year: 2023
  publication-title: Nat. Energy
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 14
  start-page: 6794
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2626
  year: 2022
  publication-title: Joule
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 620
  start-page: 545
  year: 2023
  publication-title: Nature
– volume: 20
  start-page: 6800
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 85
  year: 2022
  publication-title: Rep. Prog. in Phys.
– volume: 8
  start-page: 1
  year: 2022
  publication-title: Sci. Adv.
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 12
  start-page: 1686
  year: 2021
  publication-title: Nat. Commun.
– volume: 377
  start-page: 495
  year: 2022
  publication-title: Science
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1
  year: 2023
  publication-title: Nat. Commun.
– volume: 14
  start-page: 6281
  year: 2014
  publication-title: Nano Lett.
– volume: 373
  start-page: 902
  year: 2021
  publication-title: Science
– volume: 598
  start-page: 444
  year: 2021
  publication-title: Nature
– volume: 380
  start-page: 404
  year: 2023
  publication-title: Science
– volume: 7
  start-page: 3120
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 17
  start-page: 478
  year: 2023
  publication-title: Nat. Photonics
– volume: 7
  start-page: 2894
  year: 2023
  publication-title: Joule
– volume: 10
  start-page: 1942
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  start-page: 38
  year: 2022
  publication-title: Sci. Adv.
– volume: 571
  start-page: 245
  year: 2019
  publication-title: Nature
– volume: 352
  start-page: 6283
  year: 2016
  publication-title: Science
– volume: 372
  start-page: 1327
  year: 2021
  publication-title: Science
– volume: 16
  start-page: 557
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 616
  start-page: 724
  year: 2023
  publication-title: Nature
– volume: 382
  start-page: 284
  year: 2023
  publication-title: Science
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 12
  start-page: 3356
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature
– ident: e_1_2_8_32_1
  doi: 10.1021/acsenergylett.2c01623
– ident: e_1_2_8_18_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_8_7_1
  doi: 10.1126/science.abo2757
– ident: e_1_2_8_16_1
  doi: 10.1088/1361-6633/ac7c7a
– ident: e_1_2_8_25_1
  doi: 10.1039/C9EE02268F
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.1c22396
– ident: e_1_2_8_3_1
– ident: e_1_2_8_27_1
  doi: 10.1039/C7EE01675A
– ident: e_1_2_8_22_1
  doi: 10.1126/science.adg3755
– ident: e_1_2_8_12_1
  doi: 10.1126/science.abi6323
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202212258
– ident: e_1_2_8_29_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202008487
– ident: e_1_2_8_1_1
  doi: 10.1126/science.aad4424
– ident: e_1_2_8_13_1
  doi: 10.1126/sciadv.abq4524
– ident: e_1_2_8_6_1
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_2_8_21_1
  doi: 10.1038/s41560-023-01227-6
– ident: e_1_2_8_23_1
  doi: 10.1126/science.ade9637
– ident: e_1_2_8_31_1
  doi: 10.1016/j.joule.2022.09.012
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1254763
– ident: e_1_2_8_11_1
  doi: 10.1126/science.ade9463
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_8_38_1
  doi: 10.1039/C8CP00280K
– volume: 14
  start-page: 1
  year: 2023
  ident: e_1_2_8_10_1
  publication-title: Nat. Commun.
– ident: e_1_2_8_36_1
  doi: 10.1021/nl502612m
– ident: e_1_2_8_8_1
  doi: 10.1038/nenergy.2016.81
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-021-21934-6
– ident: e_1_2_8_33_1
  doi: 10.1039/D2EE03355K
– ident: e_1_2_8_4_1
  doi: 10.1038/s41586-023-05825-y
– ident: e_1_2_8_19_1
  doi: 10.1038/s41566-023-01180-6
– ident: e_1_2_8_14_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_8_24_1
  doi: 10.1016/j.joule.2023.10.014
– ident: e_1_2_8_5_1
  doi: 10.1038/s41586-019-1357-2
– ident: e_1_2_8_37_1
  doi: 10.1126/science.aan2301
– volume: 8
  start-page: 38
  year: 2022
  ident: e_1_2_8_35_1
  publication-title: Sci. Adv.
– ident: e_1_2_8_20_1
  doi: 10.1038/s41586-023-06207-0
– volume: 8
  start-page: 1
  year: 2022
  ident: e_1_2_8_9_1
  publication-title: Sci. Adv.
– ident: e_1_2_8_17_1
  doi: 10.1126/science.abh1035
SSID ssj0009606
Score 2.6101584
Snippet Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost‐effectiveness. Though with mild...
Lead halide perovskite solar cells (PSCs) have emerged as one of the influential photovoltaic technologies with promising cost-effectiveness. Though with mild...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2408101
SubjectTerms Boundaries
Crystal defects
crystal engineering
Crystal growth
Crystallites
Crystallization
Energy conversion efficiency
in situ passivation
interface
Lead compounds
Metal halides
Passivity
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Title High‐Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202408101
https://www.ncbi.nlm.nih.gov/pubmed/39140642
https://www.proquest.com/docview/3114669441
https://www.proquest.com/docview/3092870254
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnah9pdntcVkUERXyAt5KkUxDLruwL9ORP8Df6S5xpu9VVRNBLaemEpkkm-SYz8wVgL0BSP-s1XB2zm5HEXJMhullkskgqTUsCe3TPL9TprTy7i-4-ZfGX_BD1hhtrRjFfs4Jr0z_8IA3VacEbxBRdfpHAxQFbjIquPvijGJ4XZHth5MZKNsesjV5wOFl8clX6BjUnkWux9JzMgx5Xuow4eTgYDsyBff7C5_ifv1qAuQqXilY5kBZhCjtLMPuJrXAZDMeEvL28HhesE5yyKZilo0eYVVxirzvq806wuGZjWbQxz_tidK9JRlzfD4bikmB6dZSaKCdaKtfuPRE8zfMqG3QFbk-Ob9qnbnVEg2tp9fNdGzbTzMMG2jSSZFrJzGiTamOMp4PUNwSKMUqxQaDAeoGWTS9LQ2liRFRKEtpZhelOt4PrIFSoCU0q30R-Jq1qGrr40lgb6CxAKx1wx12U2Iq_nI_RyJOSeTlIuO2Suu0c2K_lH0vmjh8lt8Y9nlQa3E9CTtdWMaFFB3br16R77FDRHewOScaL2U9MNrYDa-VIqT8VxmS6knHnQFD09y91SFpH5636aeMvhTZhhu_LSMMtmB70hrhNiGlgdgqteAcJeQ5l
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8sLWAkEKe0ieN4NwcOq91WW9qtKtpKvaW2M5Eqol20P0Xl1Efoq_RVeASehJn8lQUhJKQeuERKMkkce8bzzdj-DPBGIpmf89ueiXmYkcQ8myF6WWSzSGlDLoFHdIe7enCoPhxFR0twWa-FKfkhmoQbW0bRX7OBc0J6_Yo11KQFcRBzdJFeVfMqt_HsC0Vt0_dbfWrit1Jubhz0Bl61sYDnqM8OPBd20szHNro0UhQQqMwamxprrW9kGliCchil2CZX5nxpVMfP0lDZGBG1VuSj6b034CZvI850_f2PV4xVHBAU9H5h5MVadWqeSF-uL5Z30Q_-Bm4XsXLh7Dbvwbe6mso5Lp_W5jO75r7-wiD5X9XjfbhbQW_RLW3lASzh6CHc-YmQ8RFYnvby_fxioyDW4FWpgolIJgTLxR5OxqdTTnaLfc4HiB7m-VScnhiSEfsns7nYo0ik2i1OlL6EnutNzgiB53m14PUxHF7LTz6B5dF4hM9A6NAQYNaBjYJMOd2xdAiUdU6aTKJTLfBqnUhcRdHOO4XkSUkuLRNuq6Rpqxa8a-Q_l-Qkf5RcrVUsqTqpaRLyinQdEyBuwevmNnUvPGZkRjiek4wf81C4jKhwT0vVbD4VxhSdU_zaAlko2F_KkHT7w25z9vxfHnoFtwYHw51kZ2t3ewVu8_VyYuUqLM8mc3xBAHFmXxYmKeD4unX3B9ekb0E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64J92oYCRQJzSJo7j3Rw4rHa7aimtVpRKvQXbmUhVo91qf4rKqY_QR-FVeAWehJn8lQUhJKQeuERKMkkce8bzjT3-DPBKIpmf89ueiXmakcQ8myF6WWSzSGlDLoFndPf29fahencUHS3B13otTMkP0Qy4sWUU_TUb-GmabV6Rhpq04A1iii5SqyqtchfPP1PQNn2706cWfi3lYOtjb9ur9hXwHHXZgefCTpr52EaXRoriAZVZY1NjrfWNTANLSA6jFNvkyZwvjer4WRoqGyOi1opcNL33BtxU2o95s4j-hyvCKo4HCna_MPJirTo1TaQvNxfLu-gGf8O2i1C58HWDu_CtrqUyxeVkYz6zG-7LLwSS_1M13oM7FfAW3dJS7sMSjh7Ayk90jA_BctLL94vLrYJWg9ekCqYhmRAoF0OcjM-mPNQtDng0QPQwz6fi7NiQjDg4ns3FkOKQaq84UXoSeq43OSf8nefVctdHcHgtP_kYlkfjEa6B0KEhuKwDGwWZcrpj6RAo65w0mUSnWuDVKpG4iqCd9wnJk5JaWibcVknTVi1408ifltQkf5RcrzUsqbqoaRLyenQdExxuwcvmNnUuPGNkRjiek4wf80S4jKhwq6VmNp8KY4rNKXptgSz06y9lSLr9vW5z9uRfHnoBt4b9QfJ-Z3_3Kdzmy2VW5ToszyZzfEbocGafFwYp4NN1q-4PB8dt8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+Inverted+Perovskite+Solar+Cells+via+In+Situ+Passivation+Directed+Crystallization&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Yanchun&rft.au=Kangrong+Yan&rft.au=Wang%2C+Xinjiang&rft.au=Li%2C+Biao&rft.date=2024-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=41&rft_id=info:doi/10.1002%2Fadma.202408101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon