Synergistic Approaches in the Design and Applications of UCST Polymers

This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a s...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 44; no. 23; pp. e2300261 - n/a
Main Authors Nan, Yi, Zhao, Chuanzhuang, Beaudoin, Guillaume, Zhu, X. X.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli‐responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications. This review highlights the synergistic design strategy for upper critical solution temperature (UCST) polymers by the combination of hydrogen bonding with other molecular interactions in their structures. Potential applications are summarized for the new functional materials made by combining their UCST and other types of stimuli‐responsiveness.
AbstractList This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli‐responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications. This review highlights the synergistic design strategy for upper critical solution temperature (UCST) polymers by the combination of hydrogen bonding with other molecular interactions in their structures. Potential applications are summarized for the new functional materials made by combining their UCST and other types of stimuli‐responsiveness.
Author Zhao, Chuanzhuang
Nan, Yi
Beaudoin, Guillaume
Zhu, X. X.
Author_xml – sequence: 1
  givenname: Yi
  surname: Nan
  fullname: Nan, Yi
  organization: Ningbo University
– sequence: 2
  givenname: Chuanzhuang
  surname: Zhao
  fullname: Zhao, Chuanzhuang
  email: zhaochuanzhuang@nbu.edu.cn
  organization: Ningbo University
– sequence: 3
  givenname: Guillaume
  orcidid: 0000-0002-8092-4101
  surname: Beaudoin
  fullname: Beaudoin, Guillaume
  organization: Université de Montréal
– sequence: 4
  givenname: X. X.
  orcidid: 0000-0003-0828-299X
  surname: Zhu
  fullname: Zhu, X. X.
  email: julian.zhu@umontreal.ca
  organization: Université de Montréal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37477638$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMovrcuZcCNm9a8ZpIsS7UqVBQf65DJ3NHINFOTKdJ_b8ZWBUFcJSHfOdx7zh7a9K0HhI4IHhKM6dnMBDukmLL0KMgG2iU5JQOmqNhMd0zpgDBW7KC9GF8xxpJjuo12mOBCFEzuosnD0kN4drFzNhvN56E19gVi5nzWvUB2DtE9-8z4qv9snDWda33M2jp7Gj88Zndts5xBiAdoqzZNhMP1uY-eJheP46vB9PbyejyaDiwnLM3F8poBr4AUpoRaCUsV5EBqqCFXhbGSsLKUCkQtKi54bnhJhLFEVbmUhrB9dLryTYO-LSB2euaihaYxHtpF1FTyfmlVqISe_EJf20XwabpEKSmwlKQ3PF5Ti3IGlZ4HlyJd6q-EEsBXgA1tjAFqbV33mUIXjGs0wbovQvdF6O8ikmz4S_bl_KdArQTvroHlP7S-Gd2Pf7QfLNWZng
CitedBy_id crossref_primary_10_1016_j_cej_2023_147544
crossref_primary_10_1002_adom_202402627
crossref_primary_10_1016_j_eurpolymj_2024_113454
crossref_primary_10_1002_cctc_202400699
crossref_primary_10_1039_D5LP00038F
crossref_primary_10_1039_D4MH00903G
crossref_primary_10_1021_acs_iecr_3c04123
crossref_primary_10_1002_macp_202400460
crossref_primary_10_1039_D3PY01101A
crossref_primary_10_1039_D4PY00430B
crossref_primary_10_1021_acs_biomac_4c00751
crossref_primary_10_1021_acs_macromol_4c02080
crossref_primary_10_1002_adfm_202404341
crossref_primary_10_1002_marc_202400286
crossref_primary_10_1002_marc_202401077
crossref_primary_10_1021_jacs_4c14708
crossref_primary_10_1016_j_colsurfa_2024_134934
Cites_doi 10.1016/j.ajps.2014.08.010
10.1021/ma300355k
10.1021/acs.chemmater.8b05262
10.1016/j.colsurfb.2022.112694
10.1016/j.mattod.2015.06.013
10.1039/C8BM01672K
10.3390/polym13203601
10.1016/j.eurpolymj.2022.111561
10.1039/C9TB01071H
10.1039/C6PY01612J
10.1021/acs.macromol.2c01953
10.1016/j.cej.2022.140437
10.1039/D1PY01578H
10.1038/s41428-020-0330-0
10.1080/10601326808051910
10.1002/jbm.a.30638
10.1016/j.msec.2019.04.069
10.1039/c3cs35499g
10.1021/acs.langmuir.9b01444
10.1021/acs.biomac.3c00322
10.1021/acs.biomac.9b00963
10.1021/acs.macromol.2c00829
10.1039/C7PY01351E
10.1039/D1QM00808K
10.1021/acs.biomac.8b00240
10.1016/j.progpolymsci.2014.02.005
10.1039/C8CC04614J
10.1021/bm400120y
10.1021/acsami.9b17159
10.1002/marc.202100556
10.1021/jp711581h
10.1039/D2PY01044E
10.1021/acssuschemeng.8b00769
10.1016/j.cej.2021.134354
10.1002/smll.201802420
10.1002/cbic.202100427
10.1021/acs.accounts.0c00514
10.1039/D2PY00626J
10.1021/acsapm.1c00735
10.1002/app.53594
10.1021/acs.chemmater.1c02639
10.1038/pj.2016.1
10.1039/C7TC04879C
10.1021/acs.langmuir.5b02006
10.1039/C8BM01541D
10.1021/mz400227y
10.1039/D0MH01762K
10.1002/marc.201800640
10.1016/j.jcis.2020.12.018
10.1002/smll.202107374
10.1021/acsapm.2c00448
10.1016/j.solmat.2021.111202
10.1126/sciadv.aaw4252
10.1002/marc.201500247
10.1021/acsapm.0c00414
10.1021/acs.macromol.2c01531
10.1016/j.progpolymsci.2019.101176
10.1039/D0PY00567C
10.1021/acs.biomac.9b00321
10.1021/acs.langmuir.0c03128
10.1021/acsami.1c00676
10.1002/jbm.a.30375
10.3389/fphar.2021.738630
10.1021/acsami.0c17085
10.1021/acs.jctc.1c00140
10.1002/macp.202000330
10.1039/C9BM00255C
10.1002/marc.202000203
10.1021/acsami.1c00022
10.1021/jacs.8b10168
10.1021/acs.macromol.2c00291
10.1016/j.reactfunctpolym.2019.02.002
10.1016/j.jcis.2023.02.049
10.1039/D0PY00917B
10.1021/acs.macromol.3c00185
10.1007/s11426-020-9893-6
10.1021/acsapm.9b00779
10.1039/C5PY00160A
10.1021/acs.biomac.1c01356
10.1007/s10118-019-2287-z
10.1002/marc.202100208
10.1016/j.bioactmat.2023.01.005
10.1021/acs.biomac.2c01226
10.1016/j.mattod.2019.08.010
10.3144/expresspolymlett.2019.85
10.1016/j.addr.2006.09.020
10.1016/j.polymer.2017.08.016
10.1002/marc.201200433
10.1021/acs.macromol.3c00751
10.1021/acs.biomac.1c01520
10.1021/acs.macromol.1c00952
10.1021/acsami.2c22267
10.1002/marc.202000661
10.1016/j.actbio.2022.06.007
10.1021/acsapm.2c00836
10.1007/s10853-020-05710-3
10.1039/C6CP01244B
10.1021/acsami.9b12889
10.1002/pol.20210161
10.1021/acsaelm.2c01579
10.1021/acs.macromol.9b00880
10.1002/adfm.201907851
10.1002/anie.202117066
10.1039/C8PY01211C
10.1021/acs.macromol.7b00020
10.1016/j.bioactmat.2023.03.016
10.1007/12_2010_57
10.1002/macp.201900549
10.1002/macp.201000147
10.1002/marc.202000648
10.1002/anie.201900224
10.1016/j.biomaterials.2019.119680
10.1002/smll.202101220
10.1039/D2PY00032F
10.1002/cctc.201701512
10.1021/acs.biomac.1c01198
10.1002/marc.202000058
10.1021/acsnano.0c07721
10.1016/j.progpolymsci.2015.02.003
10.1002/asia.202200386
10.1021/bm200083n
10.1002/mabi.202000345
10.1016/j.matt.2020.12.005
10.1039/C9SC04338A
10.1021/acsomega.8b01308
10.1039/D3QM00019B
10.1039/D1TC01189H
10.1002/chem.202101283
10.1016/j.progpolymsci.2019.01.001
10.1021/acs.macromol.9b00794
ContentType Journal Article
Copyright 2023 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
2023 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202300261
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 37477638
10_1002_marc_202300261
MARC202300261
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075154; 21604044
– fundername: Canada Research Chairs program
– fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada
– fundername: FRQNT of Quebec
– fundername: National Natural Science Foundation of China
  grantid: 21604044
– fundername: National Natural Science Foundation of China
  grantid: 22075154
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4131-335f3e4de16abef97c29e5e1fefe596ac813bb89e7f7d4745a4b17ac19d588a13
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 11:12:29 EDT 2025
Fri Jul 25 10:46:09 EDT 2025
Mon Jul 21 06:01:03 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Tue Jul 01 03:31:49 EDT 2025
Wed Jan 22 16:18:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords thermoresponsive polymers
upper critical solution temperature polymers
hydrogen bonds
synergistic effect
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4131-335f3e4de16abef97c29e5e1fefe596ac813bb89e7f7d4745a4b17ac19d588a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8092-4101
0000-0003-0828-299X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202300261
PMID 37477638
PQID 2898708811
PQPubID 1016394
PageCount 16
ParticipantIDs proquest_miscellaneous_2841022969
proquest_journals_2898708811
pubmed_primary_37477638
crossref_citationtrail_10_1002_marc_202300261
crossref_primary_10_1002_marc_202300261
wiley_primary_10_1002_marc_202300261_MARC202300261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 90
2021; 64
2013; 2
2019; 11
1968; 2
2019; 13
2022; 23
2020; 14
2020; 12
2020; 11
2022; 217
2022; 179
2018; 6
2018; 9
2018; 39
2018; 3
2019; 20
2023; 454
2008; 112
2016; 48
2011; 242
2019; 7
2021; 42
2023; 56
2019; 5
2016; 19
2019; 31
2020; 41
2019; 35
2006; 58
2019; 37
2019; 102
2020; 32
2016; 18
2005; 75A
2012; 33
2017; 50
2018; 19
2021; 59
2021; 54
2021; 56
2022; 4
2020; 30
2010; 211
2022; 13
2008; 46
2014; 39
2012; 45
2018; 10
2022; 17
2018; 14
2022; 18
2021; 27
2015; 36
2017; 8
2021; 21
2021; 22
2019; 52
2023; 5
2023; 140
2023; 7
2019; 57
2015; 31
2006; 77A
2019; 58
2011; 12
2015; 48
2021; 37
2023; 24
2013; 14
2020; 2
2021; 33
2020; 53
2020; 52
2023; 27
2021; 230
2017; 126
2021; 9
2021; 8
2015; 6
2021; 5
2021; 4
2021; 3
2021; 222
2023; 15
2023; 640
2021; 589
2013; 42
2015; 10
2020; 100
2020; 221
2019; 141
2022; 432
2021; 13
2021; 12
2022; 61
2020; 231
2021; 17
2019; 137
2022; 55
2018; 54
2022; 148
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
Asadujjaman A. (e_1_2_7_32_1) 2019; 57
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
Lutz J. F. (e_1_2_7_56_1) 2008; 46
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
Xu M. (e_1_2_7_120_1) 2021; 64
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
Badreldin M. (e_1_2_7_62_1) 2022; 61
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_134_1
References_xml – volume: 3
  year: 2018
  publication-title: ACS Omega
– volume: 14
  start-page: 1452
  year: 2013
  publication-title: Biomacromolecules
– volume: 12
  year: 2021
  publication-title: Front. Pharmacol.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 4
  start-page: 338
  year: 2021
  publication-title: Matter
– volume: 432
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 100
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 7214
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 8599
  year: 2022
  publication-title: Macromolecules
– volume: 13
  start-page: 3601
  year: 2021
  publication-title: Polymers
– volume: 4
  start-page: 5395
  year: 2022
  publication-title: ACS Appl. Polym. Mater.
– volume: 23
  start-page: 174
  year: 2022
  publication-title: Biomacromolecules
– volume: 14
  year: 2018
  publication-title: Small
– volume: 211
  start-page: 2109
  year: 2010
  publication-title: Macromol. Chem. Phys.
– volume: 56
  start-page: 5162
  year: 2023
  publication-title: Macromolecules
– volume: 217
  year: 2022
  publication-title: Colloids Surf., B
– volume: 10
  start-page: 1166
  year: 2018
  publication-title: ChemCatChem
– volume: 13
  start-page: 1075
  year: 2022
  publication-title: Polym. Chem.
– volume: 42
  year: 2021
  publication-title: Macromol. Rapid Commun.
– volume: 54
  start-page: 7963
  year: 2021
  publication-title: Macromolecules
– volume: 4
  start-page: 5996
  year: 2022
  publication-title: ACS Appl. Polym. Mater.
– volume: 50
  start-page: 2175
  year: 2017
  publication-title: Macromolecules
– volume: 48
  start-page: 122
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 148
  start-page: 142
  year: 2022
  publication-title: Acta Biomater.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 112
  start-page: 8447
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 5870
  year: 2020
  publication-title: Polym. Chem.
– volume: 37
  start-page: 1113
  year: 2019
  publication-title: Chin. J. Polym. Sci.
– volume: 13
  start-page: 5700
  year: 2022
  publication-title: Polym. Chem.
– volume: 2
  start-page: 3259
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 31
  start-page: 1430
  year: 2019
  publication-title: Chem. Mater.
– volume: 140
  year: 2023
  publication-title: J. Appl. Polym. Sci.
– volume: 5
  start-page: 6693
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 20
  start-page: 2338
  year: 2019
  publication-title: Biomacromolecules
– volume: 58
  start-page: 1655
  year: 2006
  publication-title: Adv. Drug Delivery Rev.
– volume: 57
  start-page: 2064
  year: 2019
  publication-title: J. Macromol. Sci. A
– volume: 20
  start-page: 3873
  year: 2019
  publication-title: Biomacromolecules
– volume: 53
  start-page: 2879
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 137
  start-page: 88
  year: 2019
  publication-title: React. Funct. Polym.
– volume: 90
  start-page: 269
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 17
  start-page: 4499
  year: 2021
  publication-title: J. Chem. Theory Comput.
– volume: 231
  year: 2020
  publication-title: Biomaterials
– volume: 17
  year: 2021
  publication-title: Small
– volume: 23
  start-page: 1291
  year: 2022
  publication-title: Biomacromolecules
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 4278
  year: 2023
  publication-title: Macromolecules
– volume: 55
  year: 2022
  publication-title: Macromolecules
– volume: 5
  start-page: 1097
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 36
  start-page: 1761
  year: 2015
  publication-title: Macromol. Rapid Commun.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 11
  start-page: 3863
  year: 2020
  publication-title: Polym. Chem.
– volume: 64
  start-page: 1770
  year: 2021
  publication-title: Chem
– volume: 589
  start-page: 110
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 24
  start-page: 524
  year: 2023
  publication-title: Bioact. Mater.
– volume: 56
  start-page: 6955
  year: 2021
  publication-title: J. Mater. Sci.
– volume: 13
  start-page: 3865
  year: 2022
  publication-title: Polym. Chem.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 55
  start-page: 3801
  year: 2022
  publication-title: Macromolecules
– volume: 45
  start-page: 3910
  year: 2012
  publication-title: Macromolecules
– volume: 48
  start-page: 359
  year: 2016
  publication-title: Polym. J.
– volume: 221
  year: 2020
  publication-title: Macromol. Chem. Phys.
– volume: 102
  start-page: 589
  year: 2019
  publication-title: Mater. Sci. Eng., C
– volume: 15
  start-page: 7867
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 44
  year: 2016
  publication-title: Mater. Today
– volume: 52
  start-page: 7646
  year: 2019
  publication-title: Macromolecules
– volume: 8
  start-page: 5749
  year: 2017
  publication-title: Polym. Chem.
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 55
  start-page: 7512
  year: 2022
  publication-title: Macromolecules
– volume: 31
  start-page: 8940
  year: 2015
  publication-title: Langmuir
– volume: 6
  start-page: 5705
  year: 2015
  publication-title: Polym. Chem.
– volume: 6
  start-page: 7779
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 41
  year: 2020
  publication-title: Macromol. Rapid Commun.
– volume: 13
  start-page: 2674
  year: 2022
  publication-title: Polym. Chem.
– volume: 9
  start-page: 5257
  year: 2018
  publication-title: Polym. Chem.
– volume: 3
  start-page: 4992
  year: 2021
  publication-title: ACS Appl. Polym. Mater.
– volume: 24
  start-page: 3283
  year: 2023
  publication-title: Biomacromolecules
– volume: 7
  start-page: 1875
  year: 2023
  publication-title: Mater. Chem. Front.
– volume: 179
  year: 2022
  publication-title: Eur. Polym. J.
– volume: 8
  start-page: 1189
  year: 2021
  publication-title: Mater. Horiz.
– volume: 19
  start-page: 2109
  year: 2018
  publication-title: Biomacromolecules
– volume: 75A
  start-page: 73
  year: 2005
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 7
  start-page: 2134
  year: 2019
  publication-title: Biomater. Sci.
– volume: 2
  start-page: 597
  year: 2013
  publication-title: ACS Macro Lett.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J
– volume: 7
  start-page: 1705
  year: 2019
  publication-title: Biomater. Sci.
– volume: 32
  start-page: 275
  year: 2020
  publication-title: Mater. Today
– volume: 35
  start-page: 9660
  year: 2019
  publication-title: Langmuir
– volume: 242
  start-page: 29
  year: 2011
  publication-title: Adv. Polym. Sci.
– volume: 33
  start-page: 1898
  year: 2012
  publication-title: Macromol. Rapid Commun.
– volume: 17
  year: 2022
  publication-title: Chem. Asian J.
– volume: 8
  start-page: 220
  year: 2017
  publication-title: Polym. Chem.
– volume: 22
  start-page: 3452
  year: 2021
  publication-title: ChemBioChem
– volume: 7
  start-page: 5789
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 37
  start-page: 3261
  year: 2021
  publication-title: Langmuir
– volume: 640
  start-page: 41
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 7174
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 52
  start-page: 4441
  year: 2019
  publication-title: Macromolecules
– volume: 13
  start-page: 974
  year: 2019
  publication-title: Express Polym. Lett.
– volume: 77A
  start-page: 718
  year: 2006
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 58
  start-page: 7866
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 23
  start-page: 937
  year: 2022
  publication-title: Biomacromolecules
– volume: 126
  start-page: 1
  year: 2017
  publication-title: Polymer
– volume: 27
  start-page: 58
  year: 2023
  publication-title: Bioact. Mater
– volume: 23
  start-page: 5361
  year: 2022
  publication-title: Biomacromolecules
– volume: 33
  start-page: 8351
  year: 2021
  publication-title: Chem. Mater.
– volume: 230
  year: 2021
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 46
  start-page: 3459
  year: 2008
  publication-title: J. Macromol. Sci. A.
– volume: 2
  start-page: 1441
  year: 1968
  publication-title: J. Macromol. Sci. A
– volume: 21
  year: 2021
  publication-title: Macromol. Biosci.
– volume: 2
  start-page: 256
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 39
  start-page: 1074
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 10
  start-page: 99
  year: 2015
  publication-title: Asian J. Pharm. Sci.
– volume: 27
  year: 2021
  publication-title: Chem. ‐ Eur. J.
– volume: 12
  start-page: 1387
  year: 2011
  publication-title: Biomacromolecules
– volume: 64
  start-page: 403
  year: 2021
  publication-title: Sci. China Chem.
– volume: 11
  start-page: 141
  year: 2020
  publication-title: Chem. Sci.
– volume: 59
  start-page: 1701
  year: 2021
  publication-title: J. Polym. Sci.
– volume: 141
  start-page: 1261
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 222
  year: 2021
  publication-title: Macromol. Chem. Phys.
– volume: 6
  start-page: 1320
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 2421
  year: 2019
  publication-title: Biomater. Sci.
– volume: 52
  start-page: 681
  year: 2020
  publication-title: Polym. J.
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ajps.2014.08.010
– ident: e_1_2_7_23_1
  doi: 10.1021/ma300355k
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.chemmater.8b05262
– ident: e_1_2_7_42_1
  doi: 10.1016/j.colsurfb.2022.112694
– ident: e_1_2_7_134_1
  doi: 10.1016/j.mattod.2015.06.013
– ident: e_1_2_7_98_1
  doi: 10.1039/C8BM01672K
– ident: e_1_2_7_49_1
  doi: 10.3390/polym13203601
– ident: e_1_2_7_115_1
  doi: 10.1016/j.eurpolymj.2022.111561
– ident: e_1_2_7_105_1
  doi: 10.1039/C9TB01071H
– ident: e_1_2_7_17_1
  doi: 10.1039/C6PY01612J
– ident: e_1_2_7_81_1
  doi: 10.1021/acs.macromol.2c01953
– ident: e_1_2_7_108_1
  doi: 10.1016/j.cej.2022.140437
– ident: e_1_2_7_45_1
  doi: 10.1039/D1PY01578H
– ident: e_1_2_7_14_1
  doi: 10.1038/s41428-020-0330-0
– ident: e_1_2_7_3_1
  doi: 10.1080/10601326808051910
– ident: e_1_2_7_6_1
  doi: 10.1002/jbm.a.30638
– ident: e_1_2_7_4_1
  doi: 10.1016/j.msec.2019.04.069
– volume: 46
  start-page: 3459
  year: 2008
  ident: e_1_2_7_56_1
  publication-title: J. Macromol. Sci. A.
– ident: e_1_2_7_13_1
  doi: 10.1039/c3cs35499g
– ident: e_1_2_7_75_1
  doi: 10.1021/acs.langmuir.9b01444
– ident: e_1_2_7_63_1
  doi: 10.1021/acs.biomac.3c00322
– ident: e_1_2_7_101_1
  doi: 10.1021/acs.biomac.9b00963
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.macromol.2c00829
– ident: e_1_2_7_77_1
  doi: 10.1039/C7PY01351E
– ident: e_1_2_7_68_1
  doi: 10.1039/D1QM00808K
– ident: e_1_2_7_86_1
  doi: 10.1021/acs.biomac.8b00240
– ident: e_1_2_7_57_1
  doi: 10.1016/j.progpolymsci.2014.02.005
– ident: e_1_2_7_18_1
  doi: 10.1039/C8CC04614J
– ident: e_1_2_7_89_1
  doi: 10.1021/bm400120y
– ident: e_1_2_7_122_1
  doi: 10.1021/acsami.9b17159
– ident: e_1_2_7_30_1
  doi: 10.1002/marc.202100556
– ident: e_1_2_7_59_1
  doi: 10.1021/jp711581h
– ident: e_1_2_7_25_1
  doi: 10.1039/D2PY01044E
– volume: 57
  start-page: 2064
  year: 2019
  ident: e_1_2_7_32_1
  publication-title: J. Macromol. Sci. A
– ident: e_1_2_7_95_1
  doi: 10.1021/acssuschemeng.8b00769
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cej.2021.134354
– ident: e_1_2_7_97_1
  doi: 10.1002/smll.201802420
– ident: e_1_2_7_47_1
  doi: 10.1002/cbic.202100427
– volume: 61
  year: 2022
  ident: e_1_2_7_62_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.accounts.0c00514
– ident: e_1_2_7_38_1
  doi: 10.1039/D2PY00626J
– ident: e_1_2_7_121_1
  doi: 10.1021/acsapm.1c00735
– ident: e_1_2_7_129_1
  doi: 10.1002/app.53594
– ident: e_1_2_7_123_1
  doi: 10.1021/acs.chemmater.1c02639
– ident: e_1_2_7_64_1
  doi: 10.1038/pj.2016.1
– ident: e_1_2_7_126_1
  doi: 10.1039/C7TC04879C
– ident: e_1_2_7_71_1
  doi: 10.1021/acs.langmuir.5b02006
– ident: e_1_2_7_107_1
  doi: 10.1039/C8BM01541D
– ident: e_1_2_7_16_1
  doi: 10.1021/mz400227y
– ident: e_1_2_7_46_1
  doi: 10.1039/D0MH01762K
– ident: e_1_2_7_79_1
  doi: 10.1002/marc.201800640
– ident: e_1_2_7_114_1
  doi: 10.1016/j.jcis.2020.12.018
– ident: e_1_2_7_118_1
  doi: 10.1002/smll.202107374
– ident: e_1_2_7_41_1
  doi: 10.1021/acsapm.2c00448
– ident: e_1_2_7_130_1
  doi: 10.1016/j.solmat.2021.111202
– ident: e_1_2_7_93_1
  doi: 10.1126/sciadv.aaw4252
– ident: e_1_2_7_9_1
  doi: 10.1002/marc.201500247
– ident: e_1_2_7_124_1
  doi: 10.1021/acsapm.0c00414
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.macromol.2c01531
– ident: e_1_2_7_65_1
  doi: 10.1016/j.progpolymsci.2019.101176
– ident: e_1_2_7_106_1
  doi: 10.1039/D0PY00567C
– ident: e_1_2_7_103_1
  doi: 10.1021/acs.biomac.9b00321
– ident: e_1_2_7_72_1
  doi: 10.1021/acs.langmuir.0c03128
– ident: e_1_2_7_73_1
  doi: 10.1021/acsami.1c00676
– ident: e_1_2_7_7_1
  doi: 10.1002/jbm.a.30375
– ident: e_1_2_7_99_1
  doi: 10.3389/fphar.2021.738630
– ident: e_1_2_7_125_1
  doi: 10.1021/acsami.0c17085
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.jctc.1c00140
– ident: e_1_2_7_84_1
  doi: 10.1002/macp.202000330
– ident: e_1_2_7_113_1
  doi: 10.1039/C9BM00255C
– ident: e_1_2_7_50_1
  doi: 10.1002/marc.202000203
– ident: e_1_2_7_100_1
  doi: 10.1021/acsami.1c00022
– volume: 64
  start-page: 1770
  year: 2021
  ident: e_1_2_7_120_1
  publication-title: Chem
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.8b10168
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.macromol.2c00291
– ident: e_1_2_7_117_1
  doi: 10.1016/j.reactfunctpolym.2019.02.002
– ident: e_1_2_7_104_1
  doi: 10.1016/j.jcis.2023.02.049
– ident: e_1_2_7_88_1
  doi: 10.1039/D0PY00917B
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.macromol.3c00185
– ident: e_1_2_7_67_1
  doi: 10.1007/s11426-020-9893-6
– ident: e_1_2_7_27_1
  doi: 10.1021/acsapm.9b00779
– ident: e_1_2_7_21_1
  doi: 10.1039/C5PY00160A
– ident: e_1_2_7_96_1
  doi: 10.1021/acs.biomac.1c01356
– ident: e_1_2_7_66_1
  doi: 10.1007/s10118-019-2287-z
– ident: e_1_2_7_80_1
  doi: 10.1002/marc.202100208
– ident: e_1_2_7_60_1
  doi: 10.1016/j.bioactmat.2023.01.005
– ident: e_1_2_7_128_1
  doi: 10.1021/acs.biomac.2c01226
– ident: e_1_2_7_69_1
  doi: 10.1016/j.mattod.2019.08.010
– ident: e_1_2_7_1_1
  doi: 10.3144/expresspolymlett.2019.85
– ident: e_1_2_7_8_1
  doi: 10.1016/j.addr.2006.09.020
– ident: e_1_2_7_31_1
  doi: 10.1016/j.polymer.2017.08.016
– ident: e_1_2_7_15_1
  doi: 10.1002/marc.201200433
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.macromol.3c00751
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.biomac.1c01520
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.macromol.1c00952
– ident: e_1_2_7_51_1
  doi: 10.1021/acsami.2c22267
– ident: e_1_2_7_24_1
  doi: 10.1002/marc.202000661
– ident: e_1_2_7_83_1
  doi: 10.1016/j.actbio.2022.06.007
– ident: e_1_2_7_52_1
  doi: 10.1021/acsapm.2c00836
– ident: e_1_2_7_131_1
  doi: 10.1007/s10853-020-05710-3
– ident: e_1_2_7_58_1
  doi: 10.1039/C6CP01244B
– ident: e_1_2_7_102_1
  doi: 10.1021/acsami.9b12889
– ident: e_1_2_7_34_1
  doi: 10.1002/pol.20210161
– ident: e_1_2_7_48_1
  doi: 10.1021/acsaelm.2c01579
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.macromol.9b00880
– ident: e_1_2_7_132_1
  doi: 10.1002/adfm.201907851
– ident: e_1_2_7_127_1
  doi: 10.1002/anie.202117066
– ident: e_1_2_7_87_1
  doi: 10.1039/C8PY01211C
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.macromol.7b00020
– ident: e_1_2_7_119_1
  doi: 10.1016/j.bioactmat.2023.03.016
– ident: e_1_2_7_12_1
  doi: 10.1007/12_2010_57
– ident: e_1_2_7_39_1
  doi: 10.1002/macp.201900549
– ident: e_1_2_7_22_1
  doi: 10.1002/macp.201000147
– ident: e_1_2_7_74_1
  doi: 10.1002/marc.202000648
– ident: e_1_2_7_91_1
  doi: 10.1002/anie.201900224
– ident: e_1_2_7_90_1
  doi: 10.1016/j.biomaterials.2019.119680
– ident: e_1_2_7_133_1
  doi: 10.1002/smll.202101220
– ident: e_1_2_7_76_1
  doi: 10.1039/D2PY00032F
– ident: e_1_2_7_94_1
  doi: 10.1002/cctc.201701512
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.biomac.1c01198
– ident: e_1_2_7_43_1
  doi: 10.1002/marc.202000058
– ident: e_1_2_7_109_1
  doi: 10.1021/acsnano.0c07721
– ident: e_1_2_7_2_1
  doi: 10.1016/j.progpolymsci.2015.02.003
– ident: e_1_2_7_110_1
  doi: 10.1002/asia.202200386
– ident: e_1_2_7_5_1
  doi: 10.1021/bm200083n
– ident: e_1_2_7_92_1
  doi: 10.1002/mabi.202000345
– ident: e_1_2_7_20_1
  doi: 10.1016/j.matt.2020.12.005
– ident: e_1_2_7_112_1
  doi: 10.1039/C9SC04338A
– ident: e_1_2_7_82_1
  doi: 10.1021/acsomega.8b01308
– ident: e_1_2_7_111_1
  doi: 10.1039/D3QM00019B
– ident: e_1_2_7_116_1
  doi: 10.1039/D1TC01189H
– ident: e_1_2_7_54_1
  doi: 10.1002/chem.202101283
– ident: e_1_2_7_19_1
  doi: 10.1016/j.progpolymsci.2019.01.001
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.macromol.9b00794
SSID ssj0008402
Score 2.5411215
SecondaryResourceType review_article
Snippet This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300261
SubjectTerms Actuators
Controlled release
Design
Functional materials
Hydrogen Bonding
hydrogen bonds
Polymers
Polymers - chemistry
Synergistic effect
Temperature
thermoresponsive polymers
upper critical solution temperature polymers
Water - chemistry
Title Synergistic Approaches in the Design and Applications of UCST Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202300261
https://www.ncbi.nlm.nih.gov/pubmed/37477638
https://www.proquest.com/docview/2898708811
https://www.proquest.com/docview/2841022969
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66F33xfpnOEUHwqVvTpm3yOKZDBGXsAnsrSZuAOFpx28P89Z70tk0RQd9ackLTnJPkO8nJdxC6UYGmrjTkg4rFFtW2toQQ3BIAFsDCpK1lFuX77D-M6ePEm6zd4s_5IaoNNzMysvnaDHAhZ-0VaaihemiZ5N-ZGwGTsAnYMqhosOKPAu8lP-4EjwucMb9kbbSd9mb1zVXpG9TcRK7Z0tPbR6JsdB5x8tpazGUr-vjC5_ifvzpAewUuxZ3ckA7RlkqO0E63TAd3jHrDpbkmmPE6407BRK5m-CXBgCHxXRYJgkUS487amThONR53hyPcT6dLs0V-gsa9-1H3wSqSMFgRrG_Ecl1Pu4rGivhCKs2DyOHKU0QrrTzui4gRV0rGQelBTAPqCSpJICLCY48xQdxTVEvSRJ0jzF2lATBEtgBJSWzJqIoYp57JbOhrVkdWqYQwKhjKTaKMaZhzKzuh6Z2w6p06uq3k33Jujh8lG6VOw2KMzkJwNWGyYoxA8XVVDL1qjkxEotKFkaHGeLjP6-gst4XqUy54YjA7Q7OdTKO_tCF86gy61dvFXypdol3znEfTNFBt_r5QV4CJ5rKJth3ab2bW_wl2dwIK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xeGAvsA_GCmwYadKeUuLGSezHqltVPoWglXiL7MSW0KoUQfsAfz13zgfrpglpPCY-K47vzr47n38H8M2mTkSGwAetLALhQhdorVWg0VhACTOhMz7L9zwZTcTxddxkE9JdmAofog24kWb49ZoUnALSh8-ooYT10KXq396PeANrVNbbe1WXzwhS6L9UB57oc6E7ljS4jWHvcLn_8r70l7G5bLv6zWe4CaYZdpVz8qu7mJtu_vgHouOr_usdbNSmKetXsvQeVmz5AdYHTUW4jzC8eqCbgh7amfVrMHJ7z25KhmYk--GTQZguC9b_7ViczRybDK7G7GI2faAo-RZMhj_Hg1FQ12EIctzieBBFsYusKCxPtLFOpXlP2dhyZ52NVaJzySNjpEK-p4VIRayF4anOuSpiKTWPPsFqOSvtZ2Aqsg5thjzUSGl4aKSwuVQipuKGiZMdCBouZHkNUk61MqZZBa_cy2h2snZ2OvC9pb-t4Dn-SbnXMDWr1fQ-Q28T1yspOTYftM04q3Rqoks7WxCNIOlRierAdiUM7acidMZwgcZh9zxLXxhDdta_HLRPO__TaR_WR-Oz0-z06PxkF97S-yq5Zg9W53cL-wVNpLn56pXgCYoUBU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLY4JOCF-xhnkJB46tasaZs8ThsTtxAwibcqaRMJgTrEtofx63F6wUAICR7bOGoa24kdO58BjnRomKcs-KDmicOMaxwppXAkGgsoYco1KsvyvQ5Oe-z8wX_4dIs_x4eoDtysZmTrtVXwl8Q0PkBDLdRD3Rb_ztyIaZhlgcutXHduPwCk0H3J453ocqE3FpSwjW6zMdl_clv6ZmtOmq7Z3tNdAlmOOk85eaqPhqoev30BdPzPby3DYmGYklYuSSswpdNVmG-X9eDWoHs3tvcEM2Bn0iqgyPWAPKYEjUjSyVJBiEwT0voUFCd9Q3rtu3ty038e2zPydeh1T-7bp05RhcGJcYOjjuf5xtMs0TSQShsRxk2hfU2NNtoXgYw59ZTiArkeJixkvmSKhjKmIvE5l9TbgJm0n-otIMLTBi2G2JVIqairONMxF8y3pQ0Dw2vglEyI4gKi3FbKeI5ycOVmZGcnqmanBscV_UsOzvEj5W7J06hQ0kGEviauVpxTbD6smnFWbcxEpro_sjTMCo8IRA02c1moPuWhK4bLMw67mXH0lzFEV63bdvW0_ZdOBzB30-lGl2fXFzuwYF_nmTW7MDN8Hek9tI-Gaj9TgXeGfAQG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Approaches+in+the+Design+and+Applications+of+UCST+Polymers&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Nan%2C+Yi&rft.au=Zhao%2C+Chuanzhuang&rft.au=Beaudoin%2C+Guillaume&rft.au=Zhu%2C+X.+X.&rft.date=2023-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=44&rft.issue=23&rft_id=info:doi/10.1002%2Fmarc.202300261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202300261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon