Synergistic Approaches in the Design and Applications of UCST Polymers
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a s...
Saved in:
Published in | Macromolecular rapid communications. Vol. 44; no. 23; pp. e2300261 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli‐responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
This review highlights the synergistic design strategy for upper critical solution temperature (UCST) polymers by the combination of hydrogen bonding with other molecular interactions in their structures. Potential applications are summarized for the new functional materials made by combining their UCST and other types of stimuli‐responsiveness. |
---|---|
AbstractList | This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications. This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications. This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli‐responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications. This review highlights the synergistic design strategy for upper critical solution temperature (UCST) polymers by the combination of hydrogen bonding with other molecular interactions in their structures. Potential applications are summarized for the new functional materials made by combining their UCST and other types of stimuli‐responsiveness. |
Author | Zhao, Chuanzhuang Nan, Yi Beaudoin, Guillaume Zhu, X. X. |
Author_xml | – sequence: 1 givenname: Yi surname: Nan fullname: Nan, Yi organization: Ningbo University – sequence: 2 givenname: Chuanzhuang surname: Zhao fullname: Zhao, Chuanzhuang email: zhaochuanzhuang@nbu.edu.cn organization: Ningbo University – sequence: 3 givenname: Guillaume orcidid: 0000-0002-8092-4101 surname: Beaudoin fullname: Beaudoin, Guillaume organization: Université de Montréal – sequence: 4 givenname: X. X. orcidid: 0000-0003-0828-299X surname: Zhu fullname: Zhu, X. X. email: julian.zhu@umontreal.ca organization: Université de Montréal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37477638$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMovrcuZcCNm9a8ZpIsS7UqVBQf65DJ3NHINFOTKdJ_b8ZWBUFcJSHfOdx7zh7a9K0HhI4IHhKM6dnMBDukmLL0KMgG2iU5JQOmqNhMd0zpgDBW7KC9GF8xxpJjuo12mOBCFEzuosnD0kN4drFzNhvN56E19gVi5nzWvUB2DtE9-8z4qv9snDWda33M2jp7Gj88Zndts5xBiAdoqzZNhMP1uY-eJheP46vB9PbyejyaDiwnLM3F8poBr4AUpoRaCUsV5EBqqCFXhbGSsLKUCkQtKi54bnhJhLFEVbmUhrB9dLryTYO-LSB2euaihaYxHtpF1FTyfmlVqISe_EJf20XwabpEKSmwlKQ3PF5Ti3IGlZ4HlyJd6q-EEsBXgA1tjAFqbV33mUIXjGs0wbovQvdF6O8ikmz4S_bl_KdArQTvroHlP7S-Gd2Pf7QfLNWZng |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_147544 crossref_primary_10_1002_adom_202402627 crossref_primary_10_1016_j_eurpolymj_2024_113454 crossref_primary_10_1002_cctc_202400699 crossref_primary_10_1039_D5LP00038F crossref_primary_10_1039_D4MH00903G crossref_primary_10_1021_acs_iecr_3c04123 crossref_primary_10_1002_macp_202400460 crossref_primary_10_1039_D3PY01101A crossref_primary_10_1039_D4PY00430B crossref_primary_10_1021_acs_biomac_4c00751 crossref_primary_10_1021_acs_macromol_4c02080 crossref_primary_10_1002_adfm_202404341 crossref_primary_10_1002_marc_202400286 crossref_primary_10_1002_marc_202401077 crossref_primary_10_1021_jacs_4c14708 crossref_primary_10_1016_j_colsurfa_2024_134934 |
Cites_doi | 10.1016/j.ajps.2014.08.010 10.1021/ma300355k 10.1021/acs.chemmater.8b05262 10.1016/j.colsurfb.2022.112694 10.1016/j.mattod.2015.06.013 10.1039/C8BM01672K 10.3390/polym13203601 10.1016/j.eurpolymj.2022.111561 10.1039/C9TB01071H 10.1039/C6PY01612J 10.1021/acs.macromol.2c01953 10.1016/j.cej.2022.140437 10.1039/D1PY01578H 10.1038/s41428-020-0330-0 10.1080/10601326808051910 10.1002/jbm.a.30638 10.1016/j.msec.2019.04.069 10.1039/c3cs35499g 10.1021/acs.langmuir.9b01444 10.1021/acs.biomac.3c00322 10.1021/acs.biomac.9b00963 10.1021/acs.macromol.2c00829 10.1039/C7PY01351E 10.1039/D1QM00808K 10.1021/acs.biomac.8b00240 10.1016/j.progpolymsci.2014.02.005 10.1039/C8CC04614J 10.1021/bm400120y 10.1021/acsami.9b17159 10.1002/marc.202100556 10.1021/jp711581h 10.1039/D2PY01044E 10.1021/acssuschemeng.8b00769 10.1016/j.cej.2021.134354 10.1002/smll.201802420 10.1002/cbic.202100427 10.1021/acs.accounts.0c00514 10.1039/D2PY00626J 10.1021/acsapm.1c00735 10.1002/app.53594 10.1021/acs.chemmater.1c02639 10.1038/pj.2016.1 10.1039/C7TC04879C 10.1021/acs.langmuir.5b02006 10.1039/C8BM01541D 10.1021/mz400227y 10.1039/D0MH01762K 10.1002/marc.201800640 10.1016/j.jcis.2020.12.018 10.1002/smll.202107374 10.1021/acsapm.2c00448 10.1016/j.solmat.2021.111202 10.1126/sciadv.aaw4252 10.1002/marc.201500247 10.1021/acsapm.0c00414 10.1021/acs.macromol.2c01531 10.1016/j.progpolymsci.2019.101176 10.1039/D0PY00567C 10.1021/acs.biomac.9b00321 10.1021/acs.langmuir.0c03128 10.1021/acsami.1c00676 10.1002/jbm.a.30375 10.3389/fphar.2021.738630 10.1021/acsami.0c17085 10.1021/acs.jctc.1c00140 10.1002/macp.202000330 10.1039/C9BM00255C 10.1002/marc.202000203 10.1021/acsami.1c00022 10.1021/jacs.8b10168 10.1021/acs.macromol.2c00291 10.1016/j.reactfunctpolym.2019.02.002 10.1016/j.jcis.2023.02.049 10.1039/D0PY00917B 10.1021/acs.macromol.3c00185 10.1007/s11426-020-9893-6 10.1021/acsapm.9b00779 10.1039/C5PY00160A 10.1021/acs.biomac.1c01356 10.1007/s10118-019-2287-z 10.1002/marc.202100208 10.1016/j.bioactmat.2023.01.005 10.1021/acs.biomac.2c01226 10.1016/j.mattod.2019.08.010 10.3144/expresspolymlett.2019.85 10.1016/j.addr.2006.09.020 10.1016/j.polymer.2017.08.016 10.1002/marc.201200433 10.1021/acs.macromol.3c00751 10.1021/acs.biomac.1c01520 10.1021/acs.macromol.1c00952 10.1021/acsami.2c22267 10.1002/marc.202000661 10.1016/j.actbio.2022.06.007 10.1021/acsapm.2c00836 10.1007/s10853-020-05710-3 10.1039/C6CP01244B 10.1021/acsami.9b12889 10.1002/pol.20210161 10.1021/acsaelm.2c01579 10.1021/acs.macromol.9b00880 10.1002/adfm.201907851 10.1002/anie.202117066 10.1039/C8PY01211C 10.1021/acs.macromol.7b00020 10.1016/j.bioactmat.2023.03.016 10.1007/12_2010_57 10.1002/macp.201900549 10.1002/macp.201000147 10.1002/marc.202000648 10.1002/anie.201900224 10.1016/j.biomaterials.2019.119680 10.1002/smll.202101220 10.1039/D2PY00032F 10.1002/cctc.201701512 10.1021/acs.biomac.1c01198 10.1002/marc.202000058 10.1021/acsnano.0c07721 10.1016/j.progpolymsci.2015.02.003 10.1002/asia.202200386 10.1021/bm200083n 10.1002/mabi.202000345 10.1016/j.matt.2020.12.005 10.1039/C9SC04338A 10.1021/acsomega.8b01308 10.1039/D3QM00019B 10.1039/D1TC01189H 10.1002/chem.202101283 10.1016/j.progpolymsci.2019.01.001 10.1021/acs.macromol.9b00794 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH 2023 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Macromolecular Rapid Communications published by Wiley‐VCH GmbH – notice: 2023 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202300261 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 37477638 10_1002_marc_202300261 MARC202300261 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075154; 21604044 – fundername: Canada Research Chairs program – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada – fundername: FRQNT of Quebec – fundername: National Natural Science Foundation of China grantid: 21604044 – fundername: National Natural Science Foundation of China grantid: 22075154 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4131-335f3e4de16abef97c29e5e1fefe596ac813bb89e7f7d4745a4b17ac19d588a13 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 11:12:29 EDT 2025 Fri Jul 25 10:46:09 EDT 2025 Mon Jul 21 06:01:03 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Tue Jul 01 03:31:49 EDT 2025 Wed Jan 22 16:18:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | thermoresponsive polymers upper critical solution temperature polymers hydrogen bonds synergistic effect |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4131-335f3e4de16abef97c29e5e1fefe596ac813bb89e7f7d4745a4b17ac19d588a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8092-4101 0000-0003-0828-299X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202300261 |
PMID | 37477638 |
PQID | 2898708811 |
PQPubID | 1016394 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2841022969 proquest_journals_2898708811 pubmed_primary_37477638 crossref_citationtrail_10_1002_marc_202300261 crossref_primary_10_1002_marc_202300261 wiley_primary_10_1002_marc_202300261_MARC202300261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 90 2021; 64 2013; 2 2019; 11 1968; 2 2019; 13 2022; 23 2020; 14 2020; 12 2020; 11 2022; 217 2022; 179 2018; 6 2018; 9 2018; 39 2018; 3 2019; 20 2023; 454 2008; 112 2016; 48 2011; 242 2019; 7 2021; 42 2023; 56 2019; 5 2016; 19 2019; 31 2020; 41 2019; 35 2006; 58 2019; 37 2019; 102 2020; 32 2016; 18 2005; 75A 2012; 33 2017; 50 2018; 19 2021; 59 2021; 54 2021; 56 2022; 4 2020; 30 2010; 211 2022; 13 2008; 46 2014; 39 2012; 45 2018; 10 2022; 17 2018; 14 2022; 18 2021; 27 2015; 36 2017; 8 2021; 21 2021; 22 2019; 52 2023; 5 2023; 140 2023; 7 2019; 57 2015; 31 2006; 77A 2019; 58 2011; 12 2015; 48 2021; 37 2023; 24 2013; 14 2020; 2 2021; 33 2020; 53 2020; 52 2023; 27 2021; 230 2017; 126 2021; 9 2021; 8 2015; 6 2021; 5 2021; 4 2021; 3 2021; 222 2023; 15 2023; 640 2021; 589 2013; 42 2015; 10 2020; 100 2020; 221 2019; 141 2022; 432 2021; 13 2021; 12 2022; 61 2020; 231 2021; 17 2019; 137 2022; 55 2018; 54 2022; 148 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 Asadujjaman A. (e_1_2_7_32_1) 2019; 57 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 Lutz J. F. (e_1_2_7_56_1) 2008; 46 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 Xu M. (e_1_2_7_120_1) 2021; 64 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 Badreldin M. (e_1_2_7_62_1) 2022; 61 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_134_1 |
References_xml | – volume: 3 year: 2018 publication-title: ACS Omega – volume: 14 start-page: 1452 year: 2013 publication-title: Biomacromolecules – volume: 12 year: 2021 publication-title: Front. Pharmacol. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 4 start-page: 338 year: 2021 publication-title: Matter – volume: 432 year: 2022 publication-title: Chem. Eng. J. – volume: 100 year: 2020 publication-title: Prog. Polym. Sci. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 7214 year: 2013 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 8599 year: 2022 publication-title: Macromolecules – volume: 13 start-page: 3601 year: 2021 publication-title: Polymers – volume: 4 start-page: 5395 year: 2022 publication-title: ACS Appl. Polym. Mater. – volume: 23 start-page: 174 year: 2022 publication-title: Biomacromolecules – volume: 14 year: 2018 publication-title: Small – volume: 211 start-page: 2109 year: 2010 publication-title: Macromol. Chem. Phys. – volume: 56 start-page: 5162 year: 2023 publication-title: Macromolecules – volume: 217 year: 2022 publication-title: Colloids Surf., B – volume: 10 start-page: 1166 year: 2018 publication-title: ChemCatChem – volume: 13 start-page: 1075 year: 2022 publication-title: Polym. Chem. – volume: 42 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 54 start-page: 7963 year: 2021 publication-title: Macromolecules – volume: 4 start-page: 5996 year: 2022 publication-title: ACS Appl. Polym. Mater. – volume: 50 start-page: 2175 year: 2017 publication-title: Macromolecules – volume: 48 start-page: 122 year: 2015 publication-title: Prog. Polym. Sci. – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 148 start-page: 142 year: 2022 publication-title: Acta Biomater. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 112 start-page: 8447 year: 2008 publication-title: J. Phys. Chem. B – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 5870 year: 2020 publication-title: Polym. Chem. – volume: 37 start-page: 1113 year: 2019 publication-title: Chin. J. Polym. Sci. – volume: 13 start-page: 5700 year: 2022 publication-title: Polym. Chem. – volume: 2 start-page: 3259 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 31 start-page: 1430 year: 2019 publication-title: Chem. Mater. – volume: 140 year: 2023 publication-title: J. Appl. Polym. Sci. – volume: 5 start-page: 6693 year: 2021 publication-title: Mater. Chem. Front. – volume: 20 start-page: 2338 year: 2019 publication-title: Biomacromolecules – volume: 58 start-page: 1655 year: 2006 publication-title: Adv. Drug Delivery Rev. – volume: 57 start-page: 2064 year: 2019 publication-title: J. Macromol. Sci. A – volume: 20 start-page: 3873 year: 2019 publication-title: Biomacromolecules – volume: 53 start-page: 2879 year: 2020 publication-title: Acc. Chem. Res. – volume: 137 start-page: 88 year: 2019 publication-title: React. Funct. Polym. – volume: 90 start-page: 269 year: 2019 publication-title: Prog. Polym. Sci. – volume: 17 start-page: 4499 year: 2021 publication-title: J. Chem. Theory Comput. – volume: 231 year: 2020 publication-title: Biomaterials – volume: 17 year: 2021 publication-title: Small – volume: 23 start-page: 1291 year: 2022 publication-title: Biomacromolecules – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 4278 year: 2023 publication-title: Macromolecules – volume: 55 year: 2022 publication-title: Macromolecules – volume: 5 start-page: 1097 year: 2023 publication-title: ACS Appl. Electron. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 1761 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 11 start-page: 3863 year: 2020 publication-title: Polym. Chem. – volume: 64 start-page: 1770 year: 2021 publication-title: Chem – volume: 589 start-page: 110 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 24 start-page: 524 year: 2023 publication-title: Bioact. Mater. – volume: 56 start-page: 6955 year: 2021 publication-title: J. Mater. Sci. – volume: 13 start-page: 3865 year: 2022 publication-title: Polym. Chem. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 55 start-page: 3801 year: 2022 publication-title: Macromolecules – volume: 45 start-page: 3910 year: 2012 publication-title: Macromolecules – volume: 48 start-page: 359 year: 2016 publication-title: Polym. J. – volume: 221 year: 2020 publication-title: Macromol. Chem. Phys. – volume: 102 start-page: 589 year: 2019 publication-title: Mater. Sci. Eng., C – volume: 15 start-page: 7867 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 44 year: 2016 publication-title: Mater. Today – volume: 52 start-page: 7646 year: 2019 publication-title: Macromolecules – volume: 8 start-page: 5749 year: 2017 publication-title: Polym. Chem. – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 55 start-page: 7512 year: 2022 publication-title: Macromolecules – volume: 31 start-page: 8940 year: 2015 publication-title: Langmuir – volume: 6 start-page: 5705 year: 2015 publication-title: Polym. Chem. – volume: 6 start-page: 7779 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 41 year: 2020 publication-title: Macromol. Rapid Commun. – volume: 13 start-page: 2674 year: 2022 publication-title: Polym. Chem. – volume: 9 start-page: 5257 year: 2018 publication-title: Polym. Chem. – volume: 3 start-page: 4992 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 24 start-page: 3283 year: 2023 publication-title: Biomacromolecules – volume: 7 start-page: 1875 year: 2023 publication-title: Mater. Chem. Front. – volume: 179 year: 2022 publication-title: Eur. Polym. J. – volume: 8 start-page: 1189 year: 2021 publication-title: Mater. Horiz. – volume: 19 start-page: 2109 year: 2018 publication-title: Biomacromolecules – volume: 75A start-page: 73 year: 2005 publication-title: J. Biomed. Mater. Res., Part A – volume: 7 start-page: 2134 year: 2019 publication-title: Biomater. Sci. – volume: 2 start-page: 597 year: 2013 publication-title: ACS Macro Lett. – volume: 454 year: 2023 publication-title: Chem. Eng. J – volume: 7 start-page: 1705 year: 2019 publication-title: Biomater. Sci. – volume: 32 start-page: 275 year: 2020 publication-title: Mater. Today – volume: 35 start-page: 9660 year: 2019 publication-title: Langmuir – volume: 242 start-page: 29 year: 2011 publication-title: Adv. Polym. Sci. – volume: 33 start-page: 1898 year: 2012 publication-title: Macromol. Rapid Commun. – volume: 17 year: 2022 publication-title: Chem. Asian J. – volume: 8 start-page: 220 year: 2017 publication-title: Polym. Chem. – volume: 22 start-page: 3452 year: 2021 publication-title: ChemBioChem – volume: 7 start-page: 5789 year: 2019 publication-title: J. Mater. Chem. B – volume: 37 start-page: 3261 year: 2021 publication-title: Langmuir – volume: 640 start-page: 41 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 7174 year: 2021 publication-title: J. Mater. Chem. C – volume: 52 start-page: 4441 year: 2019 publication-title: Macromolecules – volume: 13 start-page: 974 year: 2019 publication-title: Express Polym. Lett. – volume: 77A start-page: 718 year: 2006 publication-title: J. Biomed. Mater. Res., Part A – volume: 58 start-page: 7866 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 23 start-page: 937 year: 2022 publication-title: Biomacromolecules – volume: 126 start-page: 1 year: 2017 publication-title: Polymer – volume: 27 start-page: 58 year: 2023 publication-title: Bioact. Mater – volume: 23 start-page: 5361 year: 2022 publication-title: Biomacromolecules – volume: 33 start-page: 8351 year: 2021 publication-title: Chem. Mater. – volume: 230 year: 2021 publication-title: Sol. Energy Mater. Sol. Cells – volume: 46 start-page: 3459 year: 2008 publication-title: J. Macromol. Sci. A. – volume: 2 start-page: 1441 year: 1968 publication-title: J. Macromol. Sci. A – volume: 21 year: 2021 publication-title: Macromol. Biosci. – volume: 2 start-page: 256 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 39 start-page: 1074 year: 2014 publication-title: Prog. Polym. Sci. – volume: 10 start-page: 99 year: 2015 publication-title: Asian J. Pharm. Sci. – volume: 27 year: 2021 publication-title: Chem. ‐ Eur. J. – volume: 12 start-page: 1387 year: 2011 publication-title: Biomacromolecules – volume: 64 start-page: 403 year: 2021 publication-title: Sci. China Chem. – volume: 11 start-page: 141 year: 2020 publication-title: Chem. Sci. – volume: 59 start-page: 1701 year: 2021 publication-title: J. Polym. Sci. – volume: 141 start-page: 1261 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 222 year: 2021 publication-title: Macromol. Chem. Phys. – volume: 6 start-page: 1320 year: 2018 publication-title: J. Mater. Chem. C – volume: 7 start-page: 2421 year: 2019 publication-title: Biomater. Sci. – volume: 52 start-page: 681 year: 2020 publication-title: Polym. J. – ident: e_1_2_7_10_1 doi: 10.1016/j.ajps.2014.08.010 – ident: e_1_2_7_23_1 doi: 10.1021/ma300355k – ident: e_1_2_7_35_1 doi: 10.1021/acs.chemmater.8b05262 – ident: e_1_2_7_42_1 doi: 10.1016/j.colsurfb.2022.112694 – ident: e_1_2_7_134_1 doi: 10.1016/j.mattod.2015.06.013 – ident: e_1_2_7_98_1 doi: 10.1039/C8BM01672K – ident: e_1_2_7_49_1 doi: 10.3390/polym13203601 – ident: e_1_2_7_115_1 doi: 10.1016/j.eurpolymj.2022.111561 – ident: e_1_2_7_105_1 doi: 10.1039/C9TB01071H – ident: e_1_2_7_17_1 doi: 10.1039/C6PY01612J – ident: e_1_2_7_81_1 doi: 10.1021/acs.macromol.2c01953 – ident: e_1_2_7_108_1 doi: 10.1016/j.cej.2022.140437 – ident: e_1_2_7_45_1 doi: 10.1039/D1PY01578H – ident: e_1_2_7_14_1 doi: 10.1038/s41428-020-0330-0 – ident: e_1_2_7_3_1 doi: 10.1080/10601326808051910 – ident: e_1_2_7_6_1 doi: 10.1002/jbm.a.30638 – ident: e_1_2_7_4_1 doi: 10.1016/j.msec.2019.04.069 – volume: 46 start-page: 3459 year: 2008 ident: e_1_2_7_56_1 publication-title: J. Macromol. Sci. A. – ident: e_1_2_7_13_1 doi: 10.1039/c3cs35499g – ident: e_1_2_7_75_1 doi: 10.1021/acs.langmuir.9b01444 – ident: e_1_2_7_63_1 doi: 10.1021/acs.biomac.3c00322 – ident: e_1_2_7_101_1 doi: 10.1021/acs.biomac.9b00963 – ident: e_1_2_7_61_1 doi: 10.1021/acs.macromol.2c00829 – ident: e_1_2_7_77_1 doi: 10.1039/C7PY01351E – ident: e_1_2_7_68_1 doi: 10.1039/D1QM00808K – ident: e_1_2_7_86_1 doi: 10.1021/acs.biomac.8b00240 – ident: e_1_2_7_57_1 doi: 10.1016/j.progpolymsci.2014.02.005 – ident: e_1_2_7_18_1 doi: 10.1039/C8CC04614J – ident: e_1_2_7_89_1 doi: 10.1021/bm400120y – ident: e_1_2_7_122_1 doi: 10.1021/acsami.9b17159 – ident: e_1_2_7_30_1 doi: 10.1002/marc.202100556 – ident: e_1_2_7_59_1 doi: 10.1021/jp711581h – ident: e_1_2_7_25_1 doi: 10.1039/D2PY01044E – volume: 57 start-page: 2064 year: 2019 ident: e_1_2_7_32_1 publication-title: J. Macromol. Sci. A – ident: e_1_2_7_95_1 doi: 10.1021/acssuschemeng.8b00769 – ident: e_1_2_7_11_1 doi: 10.1016/j.cej.2021.134354 – ident: e_1_2_7_97_1 doi: 10.1002/smll.201802420 – ident: e_1_2_7_47_1 doi: 10.1002/cbic.202100427 – volume: 61 year: 2022 ident: e_1_2_7_62_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_70_1 doi: 10.1021/acs.accounts.0c00514 – ident: e_1_2_7_38_1 doi: 10.1039/D2PY00626J – ident: e_1_2_7_121_1 doi: 10.1021/acsapm.1c00735 – ident: e_1_2_7_129_1 doi: 10.1002/app.53594 – ident: e_1_2_7_123_1 doi: 10.1021/acs.chemmater.1c02639 – ident: e_1_2_7_64_1 doi: 10.1038/pj.2016.1 – ident: e_1_2_7_126_1 doi: 10.1039/C7TC04879C – ident: e_1_2_7_71_1 doi: 10.1021/acs.langmuir.5b02006 – ident: e_1_2_7_107_1 doi: 10.1039/C8BM01541D – ident: e_1_2_7_16_1 doi: 10.1021/mz400227y – ident: e_1_2_7_46_1 doi: 10.1039/D0MH01762K – ident: e_1_2_7_79_1 doi: 10.1002/marc.201800640 – ident: e_1_2_7_114_1 doi: 10.1016/j.jcis.2020.12.018 – ident: e_1_2_7_118_1 doi: 10.1002/smll.202107374 – ident: e_1_2_7_41_1 doi: 10.1021/acsapm.2c00448 – ident: e_1_2_7_130_1 doi: 10.1016/j.solmat.2021.111202 – ident: e_1_2_7_93_1 doi: 10.1126/sciadv.aaw4252 – ident: e_1_2_7_9_1 doi: 10.1002/marc.201500247 – ident: e_1_2_7_124_1 doi: 10.1021/acsapm.0c00414 – ident: e_1_2_7_40_1 doi: 10.1021/acs.macromol.2c01531 – ident: e_1_2_7_65_1 doi: 10.1016/j.progpolymsci.2019.101176 – ident: e_1_2_7_106_1 doi: 10.1039/D0PY00567C – ident: e_1_2_7_103_1 doi: 10.1021/acs.biomac.9b00321 – ident: e_1_2_7_72_1 doi: 10.1021/acs.langmuir.0c03128 – ident: e_1_2_7_73_1 doi: 10.1021/acsami.1c00676 – ident: e_1_2_7_7_1 doi: 10.1002/jbm.a.30375 – ident: e_1_2_7_99_1 doi: 10.3389/fphar.2021.738630 – ident: e_1_2_7_125_1 doi: 10.1021/acsami.0c17085 – ident: e_1_2_7_53_1 doi: 10.1021/acs.jctc.1c00140 – ident: e_1_2_7_84_1 doi: 10.1002/macp.202000330 – ident: e_1_2_7_113_1 doi: 10.1039/C9BM00255C – ident: e_1_2_7_50_1 doi: 10.1002/marc.202000203 – ident: e_1_2_7_100_1 doi: 10.1021/acsami.1c00022 – volume: 64 start-page: 1770 year: 2021 ident: e_1_2_7_120_1 publication-title: Chem – ident: e_1_2_7_37_1 doi: 10.1021/jacs.8b10168 – ident: e_1_2_7_36_1 doi: 10.1021/acs.macromol.2c00291 – ident: e_1_2_7_117_1 doi: 10.1016/j.reactfunctpolym.2019.02.002 – ident: e_1_2_7_104_1 doi: 10.1016/j.jcis.2023.02.049 – ident: e_1_2_7_88_1 doi: 10.1039/D0PY00917B – ident: e_1_2_7_55_1 doi: 10.1021/acs.macromol.3c00185 – ident: e_1_2_7_67_1 doi: 10.1007/s11426-020-9893-6 – ident: e_1_2_7_27_1 doi: 10.1021/acsapm.9b00779 – ident: e_1_2_7_21_1 doi: 10.1039/C5PY00160A – ident: e_1_2_7_96_1 doi: 10.1021/acs.biomac.1c01356 – ident: e_1_2_7_66_1 doi: 10.1007/s10118-019-2287-z – ident: e_1_2_7_80_1 doi: 10.1002/marc.202100208 – ident: e_1_2_7_60_1 doi: 10.1016/j.bioactmat.2023.01.005 – ident: e_1_2_7_128_1 doi: 10.1021/acs.biomac.2c01226 – ident: e_1_2_7_69_1 doi: 10.1016/j.mattod.2019.08.010 – ident: e_1_2_7_1_1 doi: 10.3144/expresspolymlett.2019.85 – ident: e_1_2_7_8_1 doi: 10.1016/j.addr.2006.09.020 – ident: e_1_2_7_31_1 doi: 10.1016/j.polymer.2017.08.016 – ident: e_1_2_7_15_1 doi: 10.1002/marc.201200433 – ident: e_1_2_7_85_1 doi: 10.1021/acs.macromol.3c00751 – ident: e_1_2_7_26_1 doi: 10.1021/acs.biomac.1c01520 – ident: e_1_2_7_44_1 doi: 10.1021/acs.macromol.1c00952 – ident: e_1_2_7_51_1 doi: 10.1021/acsami.2c22267 – ident: e_1_2_7_24_1 doi: 10.1002/marc.202000661 – ident: e_1_2_7_83_1 doi: 10.1016/j.actbio.2022.06.007 – ident: e_1_2_7_52_1 doi: 10.1021/acsapm.2c00836 – ident: e_1_2_7_131_1 doi: 10.1007/s10853-020-05710-3 – ident: e_1_2_7_58_1 doi: 10.1039/C6CP01244B – ident: e_1_2_7_102_1 doi: 10.1021/acsami.9b12889 – ident: e_1_2_7_34_1 doi: 10.1002/pol.20210161 – ident: e_1_2_7_48_1 doi: 10.1021/acsaelm.2c01579 – ident: e_1_2_7_29_1 doi: 10.1021/acs.macromol.9b00880 – ident: e_1_2_7_132_1 doi: 10.1002/adfm.201907851 – ident: e_1_2_7_127_1 doi: 10.1002/anie.202117066 – ident: e_1_2_7_87_1 doi: 10.1039/C8PY01211C – ident: e_1_2_7_78_1 doi: 10.1021/acs.macromol.7b00020 – ident: e_1_2_7_119_1 doi: 10.1016/j.bioactmat.2023.03.016 – ident: e_1_2_7_12_1 doi: 10.1007/12_2010_57 – ident: e_1_2_7_39_1 doi: 10.1002/macp.201900549 – ident: e_1_2_7_22_1 doi: 10.1002/macp.201000147 – ident: e_1_2_7_74_1 doi: 10.1002/marc.202000648 – ident: e_1_2_7_91_1 doi: 10.1002/anie.201900224 – ident: e_1_2_7_90_1 doi: 10.1016/j.biomaterials.2019.119680 – ident: e_1_2_7_133_1 doi: 10.1002/smll.202101220 – ident: e_1_2_7_76_1 doi: 10.1039/D2PY00032F – ident: e_1_2_7_94_1 doi: 10.1002/cctc.201701512 – ident: e_1_2_7_33_1 doi: 10.1021/acs.biomac.1c01198 – ident: e_1_2_7_43_1 doi: 10.1002/marc.202000058 – ident: e_1_2_7_109_1 doi: 10.1021/acsnano.0c07721 – ident: e_1_2_7_2_1 doi: 10.1016/j.progpolymsci.2015.02.003 – ident: e_1_2_7_110_1 doi: 10.1002/asia.202200386 – ident: e_1_2_7_5_1 doi: 10.1021/bm200083n – ident: e_1_2_7_92_1 doi: 10.1002/mabi.202000345 – ident: e_1_2_7_20_1 doi: 10.1016/j.matt.2020.12.005 – ident: e_1_2_7_112_1 doi: 10.1039/C9SC04338A – ident: e_1_2_7_82_1 doi: 10.1021/acsomega.8b01308 – ident: e_1_2_7_111_1 doi: 10.1039/D3QM00019B – ident: e_1_2_7_116_1 doi: 10.1039/D1TC01189H – ident: e_1_2_7_54_1 doi: 10.1002/chem.202101283 – ident: e_1_2_7_19_1 doi: 10.1016/j.progpolymsci.2019.01.001 – ident: e_1_2_7_28_1 doi: 10.1021/acs.macromol.9b00794 |
SSID | ssj0008402 |
Score | 2.5411215 |
SecondaryResourceType | review_article |
Snippet | This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300261 |
SubjectTerms | Actuators Controlled release Design Functional materials Hydrogen Bonding hydrogen bonds Polymers Polymers - chemistry Synergistic effect Temperature thermoresponsive polymers upper critical solution temperature polymers Water - chemistry |
Title | Synergistic Approaches in the Design and Applications of UCST Polymers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202300261 https://www.ncbi.nlm.nih.gov/pubmed/37477638 https://www.proquest.com/docview/2898708811 https://www.proquest.com/docview/2841022969 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66F33xfpnOEUHwqVvTpm3yOKZDBGXsAnsrSZuAOFpx28P89Z70tk0RQd9ackLTnJPkO8nJdxC6UYGmrjTkg4rFFtW2toQQ3BIAFsDCpK1lFuX77D-M6ePEm6zd4s_5IaoNNzMysvnaDHAhZ-0VaaihemiZ5N-ZGwGTsAnYMqhosOKPAu8lP-4EjwucMb9kbbSd9mb1zVXpG9TcRK7Z0tPbR6JsdB5x8tpazGUr-vjC5_ifvzpAewUuxZ3ckA7RlkqO0E63TAd3jHrDpbkmmPE6407BRK5m-CXBgCHxXRYJgkUS487amThONR53hyPcT6dLs0V-gsa9-1H3wSqSMFgRrG_Ecl1Pu4rGivhCKs2DyOHKU0QrrTzui4gRV0rGQelBTAPqCSpJICLCY48xQdxTVEvSRJ0jzF2lATBEtgBJSWzJqIoYp57JbOhrVkdWqYQwKhjKTaKMaZhzKzuh6Z2w6p06uq3k33Jujh8lG6VOw2KMzkJwNWGyYoxA8XVVDL1qjkxEotKFkaHGeLjP6-gst4XqUy54YjA7Q7OdTKO_tCF86gy61dvFXypdol3znEfTNFBt_r5QV4CJ5rKJth3ab2bW_wl2dwIK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xeGAvsA_GCmwYadKeUuLGSezHqltVPoWglXiL7MSW0KoUQfsAfz13zgfrpglpPCY-K47vzr47n38H8M2mTkSGwAetLALhQhdorVWg0VhACTOhMz7L9zwZTcTxddxkE9JdmAofog24kWb49ZoUnALSh8-ooYT10KXq396PeANrVNbbe1WXzwhS6L9UB57oc6E7ljS4jWHvcLn_8r70l7G5bLv6zWe4CaYZdpVz8qu7mJtu_vgHouOr_usdbNSmKetXsvQeVmz5AdYHTUW4jzC8eqCbgh7amfVrMHJ7z25KhmYk--GTQZguC9b_7ViczRybDK7G7GI2faAo-RZMhj_Hg1FQ12EIctzieBBFsYusKCxPtLFOpXlP2dhyZ52NVaJzySNjpEK-p4VIRayF4anOuSpiKTWPPsFqOSvtZ2Aqsg5thjzUSGl4aKSwuVQipuKGiZMdCBouZHkNUk61MqZZBa_cy2h2snZ2OvC9pb-t4Dn-SbnXMDWr1fQ-Q28T1yspOTYftM04q3Rqoks7WxCNIOlRierAdiUM7acidMZwgcZh9zxLXxhDdta_HLRPO__TaR_WR-Oz0-z06PxkF97S-yq5Zg9W53cL-wVNpLn56pXgCYoUBU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLY4JOCF-xhnkJB46tasaZs8ThsTtxAwibcqaRMJgTrEtofx63F6wUAICR7bOGoa24kdO58BjnRomKcs-KDmicOMaxwppXAkGgsoYco1KsvyvQ5Oe-z8wX_4dIs_x4eoDtysZmTrtVXwl8Q0PkBDLdRD3Rb_ztyIaZhlgcutXHduPwCk0H3J453ocqE3FpSwjW6zMdl_clv6ZmtOmq7Z3tNdAlmOOk85eaqPhqoev30BdPzPby3DYmGYklYuSSswpdNVmG-X9eDWoHs3tvcEM2Bn0iqgyPWAPKYEjUjSyVJBiEwT0voUFCd9Q3rtu3ty038e2zPydeh1T-7bp05RhcGJcYOjjuf5xtMs0TSQShsRxk2hfU2NNtoXgYw59ZTiArkeJixkvmSKhjKmIvE5l9TbgJm0n-otIMLTBi2G2JVIqairONMxF8y3pQ0Dw2vglEyI4gKi3FbKeI5ycOVmZGcnqmanBscV_UsOzvEj5W7J06hQ0kGEviauVpxTbD6smnFWbcxEpro_sjTMCo8IRA02c1moPuWhK4bLMw67mXH0lzFEV63bdvW0_ZdOBzB30-lGl2fXFzuwYF_nmTW7MDN8Hek9tI-Gaj9TgXeGfAQG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Approaches+in+the+Design+and+Applications+of+UCST+Polymers&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Nan%2C+Yi&rft.au=Zhao%2C+Chuanzhuang&rft.au=Beaudoin%2C+Guillaume&rft.au=Zhu%2C+X.+X.&rft.date=2023-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=44&rft.issue=23&rft_id=info:doi/10.1002%2Fmarc.202300261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202300261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |