Synergistic Approaches in the Design and Applications of UCST Polymers
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a s...
Saved in:
Published in | Macromolecular rapid communications. Vol. 44; no. 23; pp. e2300261 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli‐responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
This review highlights the synergistic design strategy for upper critical solution temperature (UCST) polymers by the combination of hydrogen bonding with other molecular interactions in their structures. Potential applications are summarized for the new functional materials made by combining their UCST and other types of stimuli‐responsiveness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1022-1336 1521-3927 1521-3927 |
DOI: | 10.1002/marc.202300261 |