Exploring Spectrum‐based Molecular Descriptors for Reaction Performance Prediction

Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors,...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 18; no. 7; pp. e202300011 - n/a
Main Authors Tang, Miao‐Jiong, Xu, Li‐Cheng, Zhang, Shuo‐Qing, Hong, Xin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 03.04.2023
Subjects
Online AccessGet full text
ISSN1861-4728
1861-471X
1861-471X
DOI10.1002/asia.202300011

Cover

Loading…
Abstract Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd‐catalyzed Buchwald‐Hartwig cross‐coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training. Spectroscopy, as one of the most widely applied characterization techniques, contains a wealth of chemical information, yet its application in chemical machine learning is still limited. This work reports the OCR processing of spectrum images to machine learning‐readable descriptors, and these descriptors were found effective in the modeling of yield prediction.
AbstractList Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd‐catalyzed Buchwald‐Hartwig cross‐coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training.
Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition-based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd-catalyzed Buchwald-Hartwig cross-coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training.Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition-based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd-catalyzed Buchwald-Hartwig cross-coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training.
Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd‐catalyzed Buchwald‐Hartwig cross‐coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training. Spectroscopy, as one of the most widely applied characterization techniques, contains a wealth of chemical information, yet its application in chemical machine learning is still limited. This work reports the OCR processing of spectrum images to machine learning‐readable descriptors, and these descriptors were found effective in the modeling of yield prediction.
Author Xu, Li‐Cheng
Tang, Miao‐Jiong
Zhang, Shuo‐Qing
Hong, Xin
Author_xml – sequence: 1
  givenname: Miao‐Jiong
  surname: Tang
  fullname: Tang, Miao‐Jiong
  organization: Zhejiang University
– sequence: 2
  givenname: Li‐Cheng
  surname: Xu
  fullname: Xu, Li‐Cheng
  organization: Zhejiang University
– sequence: 3
  givenname: Shuo‐Qing
  surname: Zhang
  fullname: Zhang, Shuo‐Qing
  email: angellasty@zju.edu.cn
  organization: Zhejiang University
– sequence: 4
  givenname: Xin
  orcidid: 0000-0003-4717-2814
  surname: Hong
  fullname: Hong, Xin
  email: hxchem@zju.edu.cn
  organization: Westlake University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36762990$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKJDEUhoM4eBu3LqXAjZvuSVKpSrJsvI2gjKgD7opcTiRSVSmTKtSdj-Az-iRWT2sLwuAqyeH7kpzzb6LVNrSA0A7BU4Ix_aWSV1OKaY4xJmQFbRBRkgnj5GZ1uadiHW2mdIdxQbEUa2g9L3lJpcQb6ProsatD9O1tdtWB6ePQvD6_aJXAZuehBjPUKmaHkEz0XR9iylyI2SUo0_vQZhcQx3OjWgPZRQTr_5V_oh9O1Qm239ct9Pf46Prg9-Tsz8npwexsYhjJyYQyqa1yVjNbABMOK6eltMzlTFOFgWPusCmtMRy0FVwrWxREWUf12DrL8y20v7i3i-F-gNRXjU8G6lq1EIZUUc6LkuZSiBHd-4LehSG24-9GSuZC8IIWI7X7Tg26AVt10TcqPlUf8xqB6QIwMaQUwS0Rgqt5INU8kGoZyCiwL4LxvZoPqY_K1__X5EJ78DU8ffNINbs6nX26bwoCoaw
CitedBy_id crossref_primary_10_1002_hlca_202300165
crossref_primary_10_1016_j_aichem_2025_100085
crossref_primary_10_1186_s13321_024_00815_2
Cites_doi 10.1021/acs.chemrev.9b00425
10.1021/c160017a018
10.1002/mrc.4989
10.1021/ci990038z
10.1016/j.chempr.2020.05.014
10.1016/j.saa.2006.04.011
10.1021/ci050282s
10.2533/chimia.2008.280
10.1021/acs.accounts.8b00087
10.1021/acs.accounts.1c00050
10.1366/0003702884428734
10.1021/ac010737m
10.1021/ja01280a022
10.1021/acs.accounts.0c00770
10.1021/cr100212h
10.1021/ja01131a010
10.6023/cjoc202006051
10.1366/0003702934067874
10.1021/acs.oprd.1c00155
10.1021/ci100050t
10.1016/j.fmre.2021.05.005
10.1016/j.cpc.2019.106949
10.1038/s43586-021-00022-5
10.1021/acscentsci.1c00535
10.1021/acs.accounts.7b00400
10.1039/D0CP01893G
10.2174/1386207003331454
10.1073/pnas.2025879118
10.1021/acs.jpclett.9b02517
10.1002/advs.201801367
10.1126/science.aar5169
10.1021/cr100125d
10.1021/acs.accounts.9b00225
10.1038/s41586-018-0307-8
10.1021/acsomega.1c01035
10.1073/pnas.2212711119
10.1073/pnas.2202713119
10.1039/C7SC02267K
10.1021/acs.jctc.2c00331
10.1039/D1SC02742E
10.1021/acs.chemrev.5b00163
10.1016/j.jmr.2010.12.008
10.1021/ci010132r
10.1021/jacsau.1c00449
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/asia.202300011
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage n/a
ExternalDocumentID 36762990
10_1002_asia_202300011
ASIA202300011
Genre article
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2022YFA1504301
– fundername: National Natural Science Foundation of China
  funderid: 21873081; 22122109; 22103070
– fundername: National Natural Science Foundation of China
  grantid: 22103070
– fundername: National Key R&D Program of China
  grantid: 2022YFA1504301
– fundername: National Natural Science Foundation of China
  grantid: 22122109
– fundername: National Natural Science Foundation of China
  grantid: 21873081
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c4131-249bdafdb4d5e48f0afb99d4f34b2a0e707f0c6dcc7ebd87bad551adf2b002433
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 07:55:30 EDT 2025
Mon Jun 30 10:19:09 EDT 2025
Wed Feb 19 02:24:34 EST 2025
Tue Jul 01 00:53:37 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
Wed Jan 22 16:24:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords molecular descriptor
yield prediction
quantitative structure-activity relationship
machine learning
spectrum
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4131-249bdafdb4d5e48f0afb99d4f34b2a0e707f0c6dcc7ebd87bad551adf2b002433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4717-2814
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/asia.202300011
PMID 36762990
PQID 2793887525
PQPubID 986338
PageCount 5
ParticipantIDs proquest_miscellaneous_2775623988
proquest_journals_2793887525
pubmed_primary_36762990
crossref_primary_10_1002_asia_202300011
crossref_citationtrail_10_1002_asia_202300011
wiley_primary_10_1002_asia_202300011_ASIA202300011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 3, 2023
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 04
  year: 2023
  text: April 3, 2023
  day: 03
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 47
2021; 7
2021; 6
2017; 8
2019; 6
2018; 360
2002; 74
2019; 52
2020; 120
2020; 40
2000; 3
2019; 10
1952; 74
2020; 247
2022; 26
2020; 58
2021; 1
2022; 119
2011; 111
2017; 50
2020; 6
2021; 54
2021; 12
2015; 115
2022
2002; 42
2006; 46
2018; 559
2011; 209
1999; 39
1965; 5
2021; 118
1937; 59
2018; 51
2020; 22
1988; 42
2008; 62
2007; 66
2022; 18
2010; 50
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Zhang S. (e_1_2_7_3_1) 2022
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 3
  start-page: 363
  year: 2000
  end-page: 372
  publication-title: CCHTS
– volume: 52
  start-page: 2278
  year: 2019
  end-page: 2289
  publication-title: Acc. Chem. Res.
– volume: 42
  start-page: 151
  year: 1988
  end-page: 162
  publication-title: Appl. Spectrosc.
– volume: 6
  start-page: 1527
  year: 2020
  end-page: 1542
  publication-title: Chem
– volume: 111
  start-page: 2865
  year: 2011
  end-page: 2899
  publication-title: Chem. Rev.
– volume: 360
  start-page: 186
  year: 2018
  end-page: 190
  publication-title: Science
– volume: 6
  start-page: 14278
  year: 2021
  end-page: 14287
  publication-title: ACS Omega
– volume: 1
  start-page: 2377
  year: 2021
  end-page: 2384
  publication-title: JACS Au
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 6026
  year: 2019
  end-page: 6031
  publication-title: J. Phys. Chem. Lett.
– volume: 111
  start-page: 5042
  year: 2011
  end-page: 5137
  publication-title: Chem. Rev.
– volume: 1
  start-page: 488
  year: 2021
  end-page: 494
  publication-title: Fundam. res.
– volume: 39
  start-page: 861
  year: 1999
  end-page: 867
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 18
  start-page: 4282
  year: 2022
  end-page: 4292
  publication-title: J. Chem. Theory Comput.
– volume: 120
  start-page: 1620
  year: 2020
  end-page: 1689
  publication-title: Chem. Rev.
– volume: 115
  start-page: 9532
  year: 2015
  end-page: 9586
  publication-title: Chem. Rev.
– volume: 62
  start-page: 280
  year: 2008
  publication-title: Chimia
– volume: 51
  start-page: 1281
  year: 2018
  end-page: 1289
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 2799
  year: 2017
  end-page: 2808
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 2158
  year: 2021
  end-page: 2171
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 487
  year: 2006
  end-page: 494
  publication-title: J. Chem. Inf. Model.
– volume: 74
  start-page: 80
  year: 2002
  end-page: 90
  publication-title: Anal. Chem.
– volume: 559
  start-page: 377
  year: 2018
  end-page: 381
  publication-title: Nature
– volume: 74
  start-page: 2729
  year: 1952
  end-page: 2732
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 11473
  year: 2021
  end-page: 11483
  publication-title: Chem. Sci.
– volume: 58
  start-page: 512
  year: 2020
  end-page: 519
  publication-title: Magn. Reson. Chem.
– volume: 1
  start-page: 23
  year: 2021
  publication-title: Nat Rev Methods Primers
– volume: 209
  start-page: 123
  year: 2011
  end-page: 130
  publication-title: J. Magn. Reson.
– volume: 50
  start-page: 742
  year: 2010
  end-page: 754
  publication-title: J. Chem. Inf. Model.
– volume: 7
  start-page: 1622
  year: 2021
  end-page: 1637
  publication-title: ACS Cent. Sci.
– volume: 59
  start-page: 96
  year: 1937
  end-page: 103
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 66
  start-page: 681
  year: 2007
  end-page: 685
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 8
  start-page: 6924
  year: 2017
  end-page: 6935
  publication-title: Chem. Sci.
– volume: 40
  start-page: 3812
  year: 2020
  publication-title: Chin. J. Org. Chem.
– volume: 47
  start-page: 1093
  year: 1993
  end-page: 1099
  publication-title: Appl. Spectrosc.
– volume: 22
  start-page: 10592
  year: 2020
  end-page: 10602
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26
  start-page: 670
  year: 2022
  end-page: 682
  publication-title: Org. Process Res. Dev.
– volume: 42
  start-page: 1273
  year: 2002
  end-page: 1280
  publication-title: J. Chem. Inf. Comput. Sci.
– year: 2022
  publication-title: Chemistry A European J
– volume: 54
  start-page: 1856
  year: 2021
  end-page: 1865
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 107
  year: 1965
  end-page: 113
  publication-title: J. Chem. Doc.
– volume: 247
  year: 2020
  publication-title: Comput. Phys. Commun.
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.9b00425
– ident: e_1_2_7_19_1
  doi: 10.1021/c160017a018
– ident: e_1_2_7_25_1
  doi: 10.1002/mrc.4989
– ident: e_1_2_7_30_1
  doi: 10.1021/ci990038z
– ident: e_1_2_7_24_1
  doi: 10.1016/j.chempr.2020.05.014
– ident: e_1_2_7_29_1
  doi: 10.1016/j.saa.2006.04.011
– ident: e_1_2_7_31_1
  doi: 10.1021/ci050282s
– ident: e_1_2_7_47_1
  doi: 10.2533/chimia.2008.280
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.accounts.8b00087
– year: 2022
  ident: e_1_2_7_3_1
  publication-title: Chemistry A European J
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.accounts.1c00050
– ident: e_1_2_7_44_1
  doi: 10.1366/0003702884428734
– ident: e_1_2_7_48_1
  doi: 10.1021/ac010737m
– ident: e_1_2_7_5_1
  doi: 10.1021/ja01280a022
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.accounts.0c00770
– ident: e_1_2_7_15_1
  doi: 10.1021/cr100212h
– ident: e_1_2_7_6_1
  doi: 10.1021/ja01131a010
– ident: e_1_2_7_11_1
  doi: 10.6023/cjoc202006051
– ident: e_1_2_7_45_1
  doi: 10.1366/0003702934067874
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.oprd.1c00155
– ident: e_1_2_7_21_1
  doi: 10.1021/ci100050t
– ident: e_1_2_7_34_1
  doi: 10.1016/j.fmre.2021.05.005
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cpc.2019.106949
– ident: e_1_2_7_4_1
  doi: 10.1038/s43586-021-00022-5
– ident: e_1_2_7_10_1
  doi: 10.1021/acscentsci.1c00535
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.accounts.7b00400
– ident: e_1_2_7_38_1
  doi: 10.1039/D0CP01893G
– ident: e_1_2_7_18_1
  doi: 10.2174/1386207003331454
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.2025879118
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.jpclett.9b02517
– ident: e_1_2_7_39_1
  doi: 10.1002/advs.201801367
– ident: e_1_2_7_41_1
  doi: 10.1126/science.aar5169
– ident: e_1_2_7_28_1
  doi: 10.1021/cr100125d
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.accounts.9b00225
– ident: e_1_2_7_13_1
  doi: 10.1038/s41586-018-0307-8
– ident: e_1_2_7_26_1
  doi: 10.1021/acsomega.1c01035
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.2212711119
– ident: e_1_2_7_43_1
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.2202713119
– ident: e_1_2_7_37_1
  doi: 10.1039/C7SC02267K
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.jctc.2c00331
– ident: e_1_2_7_23_1
  doi: 10.1039/D1SC02742E
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.chemrev.5b00163
– ident: e_1_2_7_42_1
– ident: e_1_2_7_9_1
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jmr.2010.12.008
– ident: e_1_2_7_20_1
  doi: 10.1021/ci010132r
– ident: e_1_2_7_35_1
  doi: 10.1021/jacsau.1c00449
SSID ssj0052098
Score 2.378324
Snippet Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300011
SubjectTerms Chemistry
Cross coupling
Halides
Machine learning
molecular descriptor
Optical character recognition
Performance prediction
quantitative structure-activity relationship
spectrum
yield prediction
Title Exploring Spectrum‐based Molecular Descriptors for Reaction Performance Prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202300011
https://www.ncbi.nlm.nih.gov/pubmed/36762990
https://www.proquest.com/docview/2793887525
https://www.proquest.com/docview/2775623988
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXVN6hBRkJiVNKmnjzOG6hq1JVpUBWyi2yY1tdCXZR2Vw4ceHe39hfwoxjO1m1PMol2rW9jtff2DNjz4OQlyzVXCs8dJeyCFki98ICVGsAhKc6SQTeNaG1xUl6OGNH1bgajX4OrJbaldhtvl_rV_I_qEIZ4IpesjdA1ncKBfAZ8IUnIAzPf8K4N6DDNPKr8_aLt11A7iRhxdrkt7CvdPsD5tZBy8KPyiYJPx14Dpye47WNh8oFMHA54TpLT0B0bk_v3QCNTyFf-pcfzTGDUcktV0R7n7mvhO6gsmr92c5Z2__yA_4Zc4jt6c3aDFc2RLg9oYgTY9iS3GAfHOy_eQoqbWb9xdWwzGTWuWbTbq2p8RVe0MWWRV_UXRyVkX57rudu-k_e19PZ8XFdHlTlLbIZg7YB-_vmZP_t_tSxdDQVMj6VbnQu-mcUv17vf126uaKyrGtARoQpt8hdq3vQSUdI98hILe6T2x7eB6T0BEUdQV3-uDCkRD0p0QEpUSAd6kiJDkiJ9qT0kMymB-Wbw9Cm3QgbkGj2QlDIheRaCibHiuU64loUhWQ6YSLmkcqiTEdNKpsmU0LmmeASxG4udWwkviR5RDYWy4V6QqjUkQJ5USoGPTHMLZQVOfSUa6UjUfCAhG666sbGpMfUKJ_rLpp2XOP01n56A_LKt__aRWP5bcsdN_u1XRDf6hiYETDVcTwOyAtfDXOMl2R8oZYttslQJSjyPCCPO9T8qzC6IYpvAYkNjH8ZQz359G7ivz3984i2yZ1-7eyQDYBYPQN5dyWeW2r8BSv6qSU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Spectrum%E2%80%90based+Molecular+Descriptors+for+Reaction+Performance+Prediction&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Miao%E2%80%90Jiong+Tang&rft.au=Li%E2%80%90Cheng+Xu&rft.au=Shuo%E2%80%90Qing+Zhang&rft.au=Hong%2C+Xin&rft.date=2023-04-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=18&rft.issue=7&rft_id=info:doi/10.1002%2Fasia.202300011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon