Exploring Spectrum‐based Molecular Descriptors for Reaction Performance Prediction
Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors,...
Saved in:
Published in | Chemistry, an Asian journal Vol. 18; no. 7; pp. e202300011 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
03.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-4728 1861-471X 1861-471X |
DOI | 10.1002/asia.202300011 |
Cover
Loading…
Abstract | Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd‐catalyzed Buchwald‐Hartwig cross‐coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training.
Spectroscopy, as one of the most widely applied characterization techniques, contains a wealth of chemical information, yet its application in chemical machine learning is still limited. This work reports the OCR processing of spectrum images to machine learning‐readable descriptors, and these descriptors were found effective in the modeling of yield prediction. |
---|---|
AbstractList | Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd‐catalyzed Buchwald‐Hartwig cross‐coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training. Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition-based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd-catalyzed Buchwald-Hartwig cross-coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training.Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition-based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd-catalyzed Buchwald-Hartwig cross-coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training. Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still primitive. Here, we report an optical character recognition‐based automatic process to utilize spectral information as molecular descriptors, which directly transforms experimental spectrum images to readable vectors. We demonstrate its machine learning application in the reaction yield dataset of Pd‐catalyzed Buchwald‐Hartwig cross‐coupling with aryl halides. In addition, we also show that the predicted spectrum can serve as an alternative encoding source to support the model training. Spectroscopy, as one of the most widely applied characterization techniques, contains a wealth of chemical information, yet its application in chemical machine learning is still limited. This work reports the OCR processing of spectrum images to machine learning‐readable descriptors, and these descriptors were found effective in the modeling of yield prediction. |
Author | Xu, Li‐Cheng Tang, Miao‐Jiong Zhang, Shuo‐Qing Hong, Xin |
Author_xml | – sequence: 1 givenname: Miao‐Jiong surname: Tang fullname: Tang, Miao‐Jiong organization: Zhejiang University – sequence: 2 givenname: Li‐Cheng surname: Xu fullname: Xu, Li‐Cheng organization: Zhejiang University – sequence: 3 givenname: Shuo‐Qing surname: Zhang fullname: Zhang, Shuo‐Qing email: angellasty@zju.edu.cn organization: Zhejiang University – sequence: 4 givenname: Xin orcidid: 0000-0003-4717-2814 surname: Hong fullname: Hong, Xin email: hxchem@zju.edu.cn organization: Westlake University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36762990$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKJDEUhoM4eBu3LqXAjZvuSVKpSrJsvI2gjKgD7opcTiRSVSmTKtSdj-Az-iRWT2sLwuAqyeH7kpzzb6LVNrSA0A7BU4Ix_aWSV1OKaY4xJmQFbRBRkgnj5GZ1uadiHW2mdIdxQbEUa2g9L3lJpcQb6ProsatD9O1tdtWB6ePQvD6_aJXAZuehBjPUKmaHkEz0XR9iylyI2SUo0_vQZhcQx3OjWgPZRQTr_5V_oh9O1Qm239ct9Pf46Prg9-Tsz8npwexsYhjJyYQyqa1yVjNbABMOK6eltMzlTFOFgWPusCmtMRy0FVwrWxREWUf12DrL8y20v7i3i-F-gNRXjU8G6lq1EIZUUc6LkuZSiBHd-4LehSG24-9GSuZC8IIWI7X7Tg26AVt10TcqPlUf8xqB6QIwMaQUwS0Rgqt5INU8kGoZyCiwL4LxvZoPqY_K1__X5EJ78DU8ffNINbs6nX26bwoCoaw |
CitedBy_id | crossref_primary_10_1002_hlca_202300165 crossref_primary_10_1016_j_aichem_2025_100085 crossref_primary_10_1186_s13321_024_00815_2 |
Cites_doi | 10.1021/acs.chemrev.9b00425 10.1021/c160017a018 10.1002/mrc.4989 10.1021/ci990038z 10.1016/j.chempr.2020.05.014 10.1016/j.saa.2006.04.011 10.1021/ci050282s 10.2533/chimia.2008.280 10.1021/acs.accounts.8b00087 10.1021/acs.accounts.1c00050 10.1366/0003702884428734 10.1021/ac010737m 10.1021/ja01280a022 10.1021/acs.accounts.0c00770 10.1021/cr100212h 10.1021/ja01131a010 10.6023/cjoc202006051 10.1366/0003702934067874 10.1021/acs.oprd.1c00155 10.1021/ci100050t 10.1016/j.fmre.2021.05.005 10.1016/j.cpc.2019.106949 10.1038/s43586-021-00022-5 10.1021/acscentsci.1c00535 10.1021/acs.accounts.7b00400 10.1039/D0CP01893G 10.2174/1386207003331454 10.1073/pnas.2025879118 10.1021/acs.jpclett.9b02517 10.1002/advs.201801367 10.1126/science.aar5169 10.1021/cr100125d 10.1021/acs.accounts.9b00225 10.1038/s41586-018-0307-8 10.1021/acsomega.1c01035 10.1073/pnas.2212711119 10.1073/pnas.2202713119 10.1039/C7SC02267K 10.1021/acs.jctc.2c00331 10.1039/D1SC02742E 10.1021/acs.chemrev.5b00163 10.1016/j.jmr.2010.12.008 10.1021/ci010132r 10.1021/jacsau.1c00449 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.202300011 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | n/a |
ExternalDocumentID | 36762990 10_1002_asia_202300011 ASIA202300011 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2022YFA1504301 – fundername: National Natural Science Foundation of China funderid: 21873081; 22122109; 22103070 – fundername: National Natural Science Foundation of China grantid: 22103070 – fundername: National Key R&D Program of China grantid: 2022YFA1504301 – fundername: National Natural Science Foundation of China grantid: 22122109 – fundername: National Natural Science Foundation of China grantid: 21873081 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4131-249bdafdb4d5e48f0afb99d4f34b2a0e707f0c6dcc7ebd87bad551adf2b002433 |
ISSN | 1861-4728 1861-471X |
IngestDate | Fri Jul 11 07:55:30 EDT 2025 Mon Jun 30 10:19:09 EDT 2025 Wed Feb 19 02:24:34 EST 2025 Tue Jul 01 00:53:37 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Wed Jan 22 16:24:41 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | molecular descriptor yield prediction quantitative structure-activity relationship machine learning spectrum |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4131-249bdafdb4d5e48f0afb99d4f34b2a0e707f0c6dcc7ebd87bad551adf2b002433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4717-2814 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/asia.202300011 |
PMID | 36762990 |
PQID | 2793887525 |
PQPubID | 986338 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2775623988 proquest_journals_2793887525 pubmed_primary_36762990 crossref_primary_10_1002_asia_202300011 crossref_citationtrail_10_1002_asia_202300011 wiley_primary_10_1002_asia_202300011_ASIA202300011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 3, 2023 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: April 3, 2023 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 47 2021; 7 2021; 6 2017; 8 2019; 6 2018; 360 2002; 74 2019; 52 2020; 120 2020; 40 2000; 3 2019; 10 1952; 74 2020; 247 2022; 26 2020; 58 2021; 1 2022; 119 2011; 111 2017; 50 2020; 6 2021; 54 2021; 12 2015; 115 2022 2002; 42 2006; 46 2018; 559 2011; 209 1999; 39 1965; 5 2021; 118 1937; 59 2018; 51 2020; 22 1988; 42 2008; 62 2007; 66 2022; 18 2010; 50 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Zhang S. (e_1_2_7_3_1) 2022 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 3 start-page: 363 year: 2000 end-page: 372 publication-title: CCHTS – volume: 52 start-page: 2278 year: 2019 end-page: 2289 publication-title: Acc. Chem. Res. – volume: 42 start-page: 151 year: 1988 end-page: 162 publication-title: Appl. Spectrosc. – volume: 6 start-page: 1527 year: 2020 end-page: 1542 publication-title: Chem – volume: 111 start-page: 2865 year: 2011 end-page: 2899 publication-title: Chem. Rev. – volume: 360 start-page: 186 year: 2018 end-page: 190 publication-title: Science – volume: 6 start-page: 14278 year: 2021 end-page: 14287 publication-title: ACS Omega – volume: 1 start-page: 2377 year: 2021 end-page: 2384 publication-title: JACS Au – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 6026 year: 2019 end-page: 6031 publication-title: J. Phys. Chem. Lett. – volume: 111 start-page: 5042 year: 2011 end-page: 5137 publication-title: Chem. Rev. – volume: 1 start-page: 488 year: 2021 end-page: 494 publication-title: Fundam. res. – volume: 39 start-page: 861 year: 1999 end-page: 867 publication-title: J. Chem. Inf. Comput. Sci. – volume: 18 start-page: 4282 year: 2022 end-page: 4292 publication-title: J. Chem. Theory Comput. – volume: 120 start-page: 1620 year: 2020 end-page: 1689 publication-title: Chem. Rev. – volume: 115 start-page: 9532 year: 2015 end-page: 9586 publication-title: Chem. Rev. – volume: 62 start-page: 280 year: 2008 publication-title: Chimia – volume: 51 start-page: 1281 year: 2018 end-page: 1289 publication-title: Acc. Chem. Res. – volume: 50 start-page: 2799 year: 2017 end-page: 2808 publication-title: Acc. Chem. Res. – volume: 54 start-page: 2158 year: 2021 end-page: 2171 publication-title: Acc. Chem. Res. – volume: 46 start-page: 487 year: 2006 end-page: 494 publication-title: J. Chem. Inf. Model. – volume: 74 start-page: 80 year: 2002 end-page: 90 publication-title: Anal. Chem. – volume: 559 start-page: 377 year: 2018 end-page: 381 publication-title: Nature – volume: 74 start-page: 2729 year: 1952 end-page: 2732 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 11473 year: 2021 end-page: 11483 publication-title: Chem. Sci. – volume: 58 start-page: 512 year: 2020 end-page: 519 publication-title: Magn. Reson. Chem. – volume: 1 start-page: 23 year: 2021 publication-title: Nat Rev Methods Primers – volume: 209 start-page: 123 year: 2011 end-page: 130 publication-title: J. Magn. Reson. – volume: 50 start-page: 742 year: 2010 end-page: 754 publication-title: J. Chem. Inf. Model. – volume: 7 start-page: 1622 year: 2021 end-page: 1637 publication-title: ACS Cent. Sci. – volume: 59 start-page: 96 year: 1937 end-page: 103 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 66 start-page: 681 year: 2007 end-page: 685 publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 8 start-page: 6924 year: 2017 end-page: 6935 publication-title: Chem. Sci. – volume: 40 start-page: 3812 year: 2020 publication-title: Chin. J. Org. Chem. – volume: 47 start-page: 1093 year: 1993 end-page: 1099 publication-title: Appl. Spectrosc. – volume: 22 start-page: 10592 year: 2020 end-page: 10602 publication-title: Phys. Chem. Chem. Phys. – volume: 26 start-page: 670 year: 2022 end-page: 682 publication-title: Org. Process Res. Dev. – volume: 42 start-page: 1273 year: 2002 end-page: 1280 publication-title: J. Chem. Inf. Comput. Sci. – year: 2022 publication-title: Chemistry A European J – volume: 54 start-page: 1856 year: 2021 end-page: 1865 publication-title: Acc. Chem. Res. – volume: 5 start-page: 107 year: 1965 end-page: 113 publication-title: J. Chem. Doc. – volume: 247 year: 2020 publication-title: Comput. Phys. Commun. – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.9b00425 – ident: e_1_2_7_19_1 doi: 10.1021/c160017a018 – ident: e_1_2_7_25_1 doi: 10.1002/mrc.4989 – ident: e_1_2_7_30_1 doi: 10.1021/ci990038z – ident: e_1_2_7_24_1 doi: 10.1016/j.chempr.2020.05.014 – ident: e_1_2_7_29_1 doi: 10.1016/j.saa.2006.04.011 – ident: e_1_2_7_31_1 doi: 10.1021/ci050282s – ident: e_1_2_7_47_1 doi: 10.2533/chimia.2008.280 – ident: e_1_2_7_12_1 doi: 10.1021/acs.accounts.8b00087 – year: 2022 ident: e_1_2_7_3_1 publication-title: Chemistry A European J – ident: e_1_2_7_14_1 doi: 10.1021/acs.accounts.1c00050 – ident: e_1_2_7_44_1 doi: 10.1366/0003702884428734 – ident: e_1_2_7_48_1 doi: 10.1021/ac010737m – ident: e_1_2_7_5_1 doi: 10.1021/ja01280a022 – ident: e_1_2_7_8_1 doi: 10.1021/acs.accounts.0c00770 – ident: e_1_2_7_15_1 doi: 10.1021/cr100212h – ident: e_1_2_7_6_1 doi: 10.1021/ja01131a010 – ident: e_1_2_7_11_1 doi: 10.6023/cjoc202006051 – ident: e_1_2_7_45_1 doi: 10.1366/0003702934067874 – ident: e_1_2_7_2_1 doi: 10.1021/acs.oprd.1c00155 – ident: e_1_2_7_21_1 doi: 10.1021/ci100050t – ident: e_1_2_7_34_1 doi: 10.1016/j.fmre.2021.05.005 – ident: e_1_2_7_22_1 doi: 10.1016/j.cpc.2019.106949 – ident: e_1_2_7_4_1 doi: 10.1038/s43586-021-00022-5 – ident: e_1_2_7_10_1 doi: 10.1021/acscentsci.1c00535 – ident: e_1_2_7_16_1 doi: 10.1021/acs.accounts.7b00400 – ident: e_1_2_7_38_1 doi: 10.1039/D0CP01893G – ident: e_1_2_7_18_1 doi: 10.2174/1386207003331454 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.2025879118 – ident: e_1_2_7_33_1 doi: 10.1021/acs.jpclett.9b02517 – ident: e_1_2_7_39_1 doi: 10.1002/advs.201801367 – ident: e_1_2_7_41_1 doi: 10.1126/science.aar5169 – ident: e_1_2_7_28_1 doi: 10.1021/cr100125d – ident: e_1_2_7_27_1 doi: 10.1021/acs.accounts.9b00225 – ident: e_1_2_7_13_1 doi: 10.1038/s41586-018-0307-8 – ident: e_1_2_7_26_1 doi: 10.1021/acsomega.1c01035 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.2212711119 – ident: e_1_2_7_43_1 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.2202713119 – ident: e_1_2_7_37_1 doi: 10.1039/C7SC02267K – ident: e_1_2_7_7_1 doi: 10.1021/acs.jctc.2c00331 – ident: e_1_2_7_23_1 doi: 10.1039/D1SC02742E – ident: e_1_2_7_17_1 doi: 10.1021/acs.chemrev.5b00163 – ident: e_1_2_7_42_1 – ident: e_1_2_7_9_1 – ident: e_1_2_7_46_1 doi: 10.1016/j.jmr.2010.12.008 – ident: e_1_2_7_20_1 doi: 10.1021/ci010132r – ident: e_1_2_7_35_1 doi: 10.1021/jacsau.1c00449 |
SSID | ssj0052098 |
Score | 2.378324 |
Snippet | Despite the availability and accuracy of modern spectroscopic characterization, the utilization of spectral information in chemical machine learning is still... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300011 |
SubjectTerms | Chemistry Cross coupling Halides Machine learning molecular descriptor Optical character recognition Performance prediction quantitative structure-activity relationship spectrum yield prediction |
Title | Exploring Spectrum‐based Molecular Descriptors for Reaction Performance Prediction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202300011 https://www.ncbi.nlm.nih.gov/pubmed/36762990 https://www.proquest.com/docview/2793887525 https://www.proquest.com/docview/2775623988 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXVN6hBRkJiVNKmnjzOG6hq1JVpUBWyi2yY1tdCXZR2Vw4ceHe39hfwoxjO1m1PMol2rW9jtff2DNjz4OQlyzVXCs8dJeyCFki98ICVGsAhKc6SQTeNaG1xUl6OGNH1bgajX4OrJbaldhtvl_rV_I_qEIZ4IpesjdA1ncKBfAZ8IUnIAzPf8K4N6DDNPKr8_aLt11A7iRhxdrkt7CvdPsD5tZBy8KPyiYJPx14Dpye47WNh8oFMHA54TpLT0B0bk_v3QCNTyFf-pcfzTGDUcktV0R7n7mvhO6gsmr92c5Z2__yA_4Zc4jt6c3aDFc2RLg9oYgTY9iS3GAfHOy_eQoqbWb9xdWwzGTWuWbTbq2p8RVe0MWWRV_UXRyVkX57rudu-k_e19PZ8XFdHlTlLbIZg7YB-_vmZP_t_tSxdDQVMj6VbnQu-mcUv17vf126uaKyrGtARoQpt8hdq3vQSUdI98hILe6T2x7eB6T0BEUdQV3-uDCkRD0p0QEpUSAd6kiJDkiJ9qT0kMymB-Wbw9Cm3QgbkGj2QlDIheRaCibHiuU64loUhWQ6YSLmkcqiTEdNKpsmU0LmmeASxG4udWwkviR5RDYWy4V6QqjUkQJ5USoGPTHMLZQVOfSUa6UjUfCAhG666sbGpMfUKJ_rLpp2XOP01n56A_LKt__aRWP5bcsdN_u1XRDf6hiYETDVcTwOyAtfDXOMl2R8oZYttslQJSjyPCCPO9T8qzC6IYpvAYkNjH8ZQz359G7ivz3984i2yZ1-7eyQDYBYPQN5dyWeW2r8BSv6qSU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Spectrum%E2%80%90based+Molecular+Descriptors+for+Reaction+Performance+Prediction&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Miao%E2%80%90Jiong+Tang&rft.au=Li%E2%80%90Cheng+Xu&rft.au=Shuo%E2%80%90Qing+Zhang&rft.au=Hong%2C+Xin&rft.date=2023-04-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=18&rft.issue=7&rft_id=info:doi/10.1002%2Fasia.202300011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |