Light‐Driven Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption

Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free bi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 24; pp. e2210920 - n/a
Main Authors Li, Haoze, Zhou, Sensen, Wu, Min, Qu, Rui, Wang, Xin, Chen, Weizhi, Jiang, Yuyan, Jiang, Xiqun, Zhen, Xu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies. A novel VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) that consists of a photothermal semiconducting polymer agent camouflaged with a platelet membrane is developed. SPNP exhibits a photothermally controlled recruitment behavior that augments targeting and accumulation of SPNP specifically around injured tumor vessels, achieving precise tumor vascular disruption, inhibition of splenomegaly, and reversion of immunosuppressive tumor microenvironment through two‐stage light manipulation.
AbstractList Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off-target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA-free biomimetic semiconducting polymer nanoparticle (SPN ) is herein reported for precise tumor vascular disruption through two-stage light manipulation. SPN consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPN administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPN to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid-derived suppressor cells. Therefore, this study not only illustrates a light-driven self-recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies.
Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies.
Abstract Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPN P ) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPN P consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPN P administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPN P to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies.
Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies. A novel VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) that consists of a photothermal semiconducting polymer agent camouflaged with a platelet membrane is developed. SPNP exhibits a photothermally controlled recruitment behavior that augments targeting and accumulation of SPNP specifically around injured tumor vessels, achieving precise tumor vascular disruption, inhibition of splenomegaly, and reversion of immunosuppressive tumor microenvironment through two‐stage light manipulation.
Author Wu, Min
Zhou, Sensen
Qu, Rui
Zhen, Xu
Wang, Xin
Jiang, Xiqun
Chen, Weizhi
Jiang, Yuyan
Li, Haoze
Author_xml – sequence: 1
  givenname: Haoze
  surname: Li
  fullname: Li, Haoze
  organization: Nanjing University
– sequence: 2
  givenname: Sensen
  surname: Zhou
  fullname: Zhou, Sensen
  organization: Nanjing University
– sequence: 3
  givenname: Min
  surname: Wu
  fullname: Wu, Min
  organization: Nanjing University
– sequence: 4
  givenname: Rui
  surname: Qu
  fullname: Qu, Rui
  organization: Nanjing University
– sequence: 5
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Nanjing University
– sequence: 6
  givenname: Weizhi
  surname: Chen
  fullname: Chen, Weizhi
  organization: Nanjing University
– sequence: 7
  givenname: Yuyan
  surname: Jiang
  fullname: Jiang, Yuyan
  organization: Stanford University
– sequence: 8
  givenname: Xiqun
  orcidid: 0000-0003-0483-0282
  surname: Jiang
  fullname: Jiang, Xiqun
  email: jiangx@nju.edu.cn
  organization: Nanjing University
– sequence: 9
  givenname: Xu
  orcidid: 0000-0003-1652-5496
  surname: Zhen
  fullname: Zhen, Xu
  email: zhenxu@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36938865$$D View this record in MEDLINE/PubMed
BookMark eNqF0cFu1DAQBmALtaLbwpUjisSFS7ZjJ3ac49IFirRABYVr5Djj4iq2FzsBLScegWfsk-BqS5G4cLJG-ubXyP8xOfDBIyFPKCwpADtVg1NLBoxRaBk8IAvKGS1raPkBWUBb8bIVtTwixyldA0ArQDwkR5VoKykFX5AfG3v1Zbr5-Wsd7Tf0xUccTZ4-oI6znRz6qQimeGGDsw4nqzNwVgc_zHqy_qq4COPOYSzeKR-2KmYxYipMiMVFRG0TFpezy9NnlfQ8qlisbYrzdrLBPyKHRo0JH9-9J-TTq5eXZ-fl5v3rN2erTalrWkE5NIJxQ2HghivGUBnRYNWrXrTCsKqVAzJeQ6M5RwU9rU2PqGklAQWKuq9OyPN97jaGrzOmqXM2aRxH5THMqWONlDJ_TdVk-uwfeh3m6PN1HZOMN0AFk1kt90rHkFJE022jdSruOgrdbSvdbSvdfSt54eld7Nw7HO75nxoyaPfgux1x95-4brV-u_ob_ht_WZ6W
CitedBy_id crossref_primary_10_1002_EXP_20230100
crossref_primary_10_2147_IJN_S441131
crossref_primary_10_1021_acsami_3c15953
crossref_primary_10_1021_acsapm_3c01889
crossref_primary_10_1002_adma_202306246
crossref_primary_10_1002_anie_202318799
crossref_primary_10_1021_acsanm_3c04235
crossref_primary_10_1002_adma_202307263
crossref_primary_10_1002_adhm_202303294
crossref_primary_10_1002_ange_202318799
crossref_primary_10_1002_marc_202300496
Cites_doi 10.1021/acsnano.9b08587
10.1038/s41596-020-00421-0
10.1021/acs.nanolett.7b05292
10.1038/s41467-021-26697-8
10.1007/s12274-018-2135-4
10.1126/sciadv.abb0020
10.1021/acs.nanolett.0c02515
10.1038/nrc3581
10.1038/s41570-021-00326-w
10.1002/adma.201503323
10.1021/acs.nanolett.1c00168
10.1002/cncr.24975
10.1038/s41551-016-0011
10.1016/j.immuni.2013.10.010
10.1002/anie.202010228
10.1038/nrm.2017.20
10.1038/s41467-021-24603-w
10.1038/nri3175
10.1038/s41568-019-0209-6
10.1002/anie.201712550
10.1021/acs.accounts.9b00283
10.1038/nnano.2013.302
10.1038/s41563-020-0669-9
10.1126/sciadv.aaw4197
10.1038/s41571-020-0410-2
10.1038/s41573-020-0061-0
10.1039/C8CS00618K
10.1038/s41467-019-10946-y
10.1158/2326-6066.CIR-18-0578
10.1002/smll.201804105
10.1038/s41551-020-00673-x
10.1126/sciadv.abd7614
10.1038/s43018-021-00194-9
10.1002/anie.200902672
10.1002/adfm.201604774
10.1038/s41590-017-0022-x
10.1038/s41578-020-00233-4
10.1016/j.celrep.2018.10.059
10.1016/j.biomaterials.2017.03.003
10.1038/s41570-021-00323-z
10.1038/s41565-022-01189-y
10.1038/nature15373
10.1002/anie.201914384
10.1038/nbt.3987
10.1021/acsnano.6b02908
10.1056/NEJMra1601561
10.1038/nrc1628
10.1038/s41467-020-14963-0
10.1038/nature15530
10.1038/s41467-021-22674-3
10.1038/s41563-019-0411-7
10.1002/ange.202110013
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202210920
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202210920
36938865
ADMA202210920
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20202002
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 020514380274
– fundername: National Natural Science Foundation of China
  funderid: 92163214; 21720102005; 51903120; 52173130; 51690153
– fundername: State Key Laboratory of Analytical Chemistry for Life Science
  funderid: SKLACLS2212
– fundername: Animal Care Committee at Nanjing University
  funderid: IACUC‐D2103038
– fundername: National Key R & D Program of China
  funderid: 2017YFA0701301
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20202002
– fundername: National Natural Science Foundation of China
  grantid: 51690153
– fundername: National Natural Science Foundation of China
  grantid: 51903120
– fundername: National Natural Science Foundation of China
  grantid: 21720102005
– fundername: National Natural Science Foundation of China
  grantid: 92163214
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 020514380274
– fundername: State Key Laboratory of Analytical Chemistry for Life Science
  grantid: SKLACLS2212
– fundername: National Natural Science Foundation of China
  grantid: 52173130
– fundername: Animal Care Committee at Nanjing University
  grantid: IACUC-D2103038
– fundername: National Key R & D Program of China
  grantid: 2017YFA0701301
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4130-d7625f10d5f5a22eaf67e3bab696f2398de25407c55ea0b14fbeec1380e6e64b3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 23:31:08 EDT 2024
Thu Oct 10 17:34:06 EDT 2024
Thu Sep 26 16:09:08 EDT 2024
Wed Oct 16 00:39:10 EDT 2024
Sat Aug 24 00:58:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords light-driven self-recruitment
reversion of immunosuppression
tumor vascular disruption
biomimetic semiconducting polymer nanoparticles
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4130-d7625f10d5f5a22eaf67e3bab696f2398de25407c55ea0b14fbeec1380e6e64b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1652-5496
0000-0003-0483-0282
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202210920
PMID 36938865
PQID 2825701628
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2788800937
proquest_journals_2825701628
crossref_primary_10_1002_adma_202210920
pubmed_primary_36938865
wiley_primary_10_1002_adma_202210920_ADMA202210920
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2020 2022 2018; 11 34 18
2021; 5
2021; 2
2019; 52
2019; 10
2021 2020 2010; 21 20 116
2019 2015; 5 527
2019 2020 2005; 19 6 5
2022 2021; 17 5
2010 2017; 49 27
2020; 19
2018; 25
2021; 16
2015; 27
2021; 12
2013; 39
2013; 13
2019; 48
2020 2020; 19 17
2020 2016 2018 2017; 59 10 57 127
2019 2016; 18 375
2021 2014 2020 2017 2018; 6 9 59 35 11
2021 2021 2017; 12 7 1
2017; 18
2021; 133
2020 2015 2019; 14 526 15
2012 2018; 12 19
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_13_4
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_23_1
Tang D. (e_1_2_7_14_2) 2022; 34
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_12_5
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 19 6 5
  start-page: 667 423
  year: 2019 2020 2005
  publication-title: Nat. Rev. Cancer Sci. Adv. Nat. Rev. Cancer
– volume: 25
  start-page: 1772
  year: 2018
  publication-title: Cell Rep.
– volume: 12 19
  start-page: 253 108
  year: 2012 2018
  publication-title: Nat. Rev. Immunol. Nat. Immunol.
– volume: 14 526 15
  start-page: 2024 118
  year: 2020 2015 2019
  publication-title: ACS Nano Nature Small
– volume: 12 7 1
  start-page: 2773 0011
  year: 2021 2021 2017
  publication-title: Nat. Commun. Sci. Adv. Nat. Biomed. Eng.
– volume: 17 5
  start-page: 1015 816
  year: 2022 2021
  publication-title: Nat. Nanotechnol. Nat. Rev. Chem.
– volume: 7
  start-page: 1687
  year: 2019
  publication-title: Cancer Immunol. Res.
– volume: 21 20 116
  start-page: 2588 6191 1859
  year: 2021 2020 2010
  publication-title: Nano Lett. Nano Lett. Cancer
– volume: 5 527
  start-page: 466
  year: 2019 2015
  publication-title: Sci. Adv. Nature
– volume: 11 34 18
  start-page: 1126 1498
  year: 2020 2022 2018
  publication-title: Nat. Commun. Angew. Chem., Int. Ed. Nano Lett.
– volume: 49 27
  start-page: 6288
  year: 2010 2017
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater.
– volume: 39
  start-page: 806
  year: 2013
  publication-title: Immunity
– volume: 2
  start-page: 545
  year: 2021
  publication-title: Nat. Cancer
– volume: 5
  start-page: 1143
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 3071
  year: 2019
  publication-title: Nat. Commun.
– volume: 18 375
  start-page: 657 2067
  year: 2019 2016
  publication-title: Nat. Mater. N. Engl. J. Med.
– volume: 18
  start-page: 345
  year: 2017
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 19 17
  start-page: 486 657
  year: 2020 2020
  publication-title: Nat. Mater. Nat. Rev. Clin. Oncol.
– volume: 12
  start-page: 4405
  year: 2021
  publication-title: Nat. Commun.
– volume: 59 10 57 127
  start-page: 8833 6400 3938 97
  year: 2020 2016 2018 2017
  publication-title: Angew. Chem., Int. Ed. ACS Nano Angew. Chem., Int. Ed. Biomaterials
– volume: 12
  start-page: 6310
  year: 2021
  publication-title: Nat. Commun.
– volume: 52
  start-page: 2703
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 773
  year: 2021
  publication-title: Nat. Rev. Chem.
– volume: 16
  start-page: 405
  year: 2021
  publication-title: Nat. Protoc.
– volume: 19
  start-page: 333
  year: 2020
  publication-title: Nat. Rev. Drug Discovery
– volume: 48
  start-page: 2053
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 7043
  year: 2015
  publication-title: Adv. Mater.
– volume: 6 9 59 35 11
  start-page: 7 233 1102 5258
  year: 2021 2014 2020 2017 2018
  publication-title: Nat. Rev. Mater. Nat. Nanotechnol. Angew. Chem., Int. Ed. Nat. Biotechnol. Nano Res.
– volume: 13
  start-page: 739
  year: 2013
  publication-title: Nat. Rev. Cancer
– ident: e_1_2_7_10_1
  doi: 10.1021/acsnano.9b08587
– ident: e_1_2_7_21_1
  doi: 10.1038/s41596-020-00421-0
– ident: e_1_2_7_14_3
  doi: 10.1021/acs.nanolett.7b05292
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-021-26697-8
– ident: e_1_2_7_12_5
  doi: 10.1007/s12274-018-2135-4
– ident: e_1_2_7_3_2
  doi: 10.1126/sciadv.abb0020
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.nanolett.0c02515
– ident: e_1_2_7_29_1
  doi: 10.1038/nrc3581
– ident: e_1_2_7_6_2
  doi: 10.1038/s41570-021-00326-w
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201503323
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.nanolett.1c00168
– ident: e_1_2_7_5_3
  doi: 10.1002/cncr.24975
– ident: e_1_2_7_11_3
  doi: 10.1038/s41551-016-0011
– ident: e_1_2_7_24_1
  doi: 10.1016/j.immuni.2013.10.010
– ident: e_1_2_7_12_3
  doi: 10.1002/anie.202010228
– volume: 34
  year: 2022
  ident: e_1_2_7_14_2
  publication-title: Angew. Chem., Int. Ed.
  contributor:
    fullname: Tang D.
– ident: e_1_2_7_18_1
  doi: 10.1038/nrm.2017.20
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-021-24603-w
– ident: e_1_2_7_30_1
  doi: 10.1038/nri3175
– ident: e_1_2_7_3_1
  doi: 10.1038/s41568-019-0209-6
– ident: e_1_2_7_13_3
  doi: 10.1002/anie.201712550
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.accounts.9b00283
– ident: e_1_2_7_12_2
  doi: 10.1038/nnano.2013.302
– ident: e_1_2_7_8_1
  doi: 10.1038/s41563-020-0669-9
– ident: e_1_2_7_25_1
  doi: 10.1126/sciadv.aaw4197
– ident: e_1_2_7_8_2
  doi: 10.1038/s41571-020-0410-2
– ident: e_1_2_7_15_1
  doi: 10.1038/s41573-020-0061-0
– ident: e_1_2_7_7_1
  doi: 10.1039/C8CS00618K
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-019-10946-y
– ident: e_1_2_7_28_1
  doi: 10.1158/2326-6066.CIR-18-0578
– ident: e_1_2_7_10_3
  doi: 10.1002/smll.201804105
– ident: e_1_2_7_23_1
  doi: 10.1038/s41551-020-00673-x
– ident: e_1_2_7_11_2
  doi: 10.1126/sciadv.abd7614
– ident: e_1_2_7_19_1
  doi: 10.1038/s43018-021-00194-9
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.200902672
– ident: e_1_2_7_22_2
  doi: 10.1002/adfm.201604774
– ident: e_1_2_7_30_2
  doi: 10.1038/s41590-017-0022-x
– ident: e_1_2_7_12_1
  doi: 10.1038/s41578-020-00233-4
– ident: e_1_2_7_27_1
  doi: 10.1016/j.celrep.2018.10.059
– ident: e_1_2_7_13_4
  doi: 10.1016/j.biomaterials.2017.03.003
– ident: e_1_2_7_17_1
  doi: 10.1038/s41570-021-00323-z
– ident: e_1_2_7_6_1
  doi: 10.1038/s41565-022-01189-y
– ident: e_1_2_7_10_2
  doi: 10.1038/nature15373
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201914384
– ident: e_1_2_7_12_4
  doi: 10.1038/nbt.3987
– ident: e_1_2_7_13_2
  doi: 10.1021/acsnano.6b02908
– ident: e_1_2_7_16_2
  doi: 10.1056/NEJMra1601561
– ident: e_1_2_7_3_3
  doi: 10.1038/nrc1628
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-020-14963-0
– ident: e_1_2_7_25_2
  doi: 10.1038/nature15530
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-021-22674-3
– ident: e_1_2_7_16_1
  doi: 10.1038/s41563-019-0411-7
– ident: e_1_2_7_26_1
  doi: 10.1002/ange.202110013
SSID ssj0009606
Score 2.5361307
Snippet Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably...
Abstract Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2210920
SubjectTerms Biocompatibility
biomimetic semiconducting polymer nanoparticles
Biomimetics
Blood Platelets
Blood vessels
Cell Line, Tumor
Coagulation
Disruption
Hemorrhage
Humans
Hyperthermia
light‐driven self‐recruitment
Materials science
Nanoparticles
Nanoparticles - therapeutic use
Neoplasms - drug therapy
Neoplasms - pathology
Polymers
Polymers - therapeutic use
Recruitment
reversion of immunosuppression
Toxicity
Tumor Microenvironment
tumor vascular disruption
Tumors
Title Light‐Driven Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210920
https://www.ncbi.nlm.nih.gov/pubmed/36938865
https://www.proquest.com/docview/2825701628
https://search.proquest.com/docview/2788800937
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQJzhQ_kqXPxmpUk-BxI6d5LiwIISgQgUqbpGd2NKqJKl2Nwc48Qg8I0_CjJMNLByQ2uModux4xuNvnPFnQr7zjGVhlDNP2jCHACXjXmIByMFKHUnH-NVkW_yUpzfh2a24fXOKv-GH6DbccGY4f40TXOnxwStpqModbxCDmCVhGLQHPMKcrsGvV_4ohOeObI8LL5FhPGVt9NnBbPXZVekD1JxFrm7pOflC1LTTTcbJn_16ovezh3d8jv_zVctkqcWltN8Y0gqZM-UqWXzDVrhGHs4xkH9-fBqM0EXSK3NnQULgWQ9dsjqtLD0cVsWwwKORUKAAOyuRURZeQC-ru_vCjCg4dIjU24Q8CqCZXiLFxtjQ67oA6XebHEsHw_Godi5tndycHF8fnXrt1Q1ehquil4OPFTbwc2GFYswoKyPDtdIykRYpB3PDkPovE8IoXweh1cZkAY99I40MNf9K5suqNN8IlQCsIShUWQwaFJGKrWK-AElLHedB1CM_pqpL_zYMHWnDxcxSHM20G80e2Z5qNm1n6jjFs7sR4F4W98he9xjmGP44UaWpaiiD-wS49wONbTQW0TXFZcLjWIoeYU6vn_Qh7Q8u-p20-S-VtsgC3nnf5Kttk_nJqDY7gIwmetdZ_wv8jgdC
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvB9bChgJiVParB07yXFhqRbYVhVsEbfITmxpRZNUu5sDPfET-I38EmacR1k4IMFxEjtxbM_4m8n4M8ALkfM8igseKBcV6KDkIkgdAjlcqWPlGb_abItjNTuN3n2WfTYh7YVp-SGGgBtphrfXpOAUkD64ZA3VhScO4ui0pBy99quo84JOb5h-uGSQIoDu6faEDFIVJT1vY8gPtutvr0t_gM1t7OoXn8NbYPpmtzknX_abjdnPL35jdPyv77oNNztoyibtXLoDV2x1F278Qlh4Dy7m5Mv_-PZ9uiIryT7aM4cSYc9m6fPVWe3Yq2VdLkvaHYkFSpxqFZHK4gPYSX32tbQrhjYdnfUuJ48hbmYnxLKxtmzRlCh96vJj2XS5XjXeqt2H08M3i9ezoDu9IchpYQwKNLPSjcNCOqk5t9qp2AqjjUqVI9bBwnJi_8ultDo048gZa_OxSEKrrIqMeAA7VV3ZR8AUYmv0C3We4BDKWCdO81CiZJRJinE8gpf92GXnLUlH1tIx84x6Mxt6cwR7_dBmnbKuM9q-GyP05ckIng-3Uc3o34mubN1gGQoVUPgHX_awnRLDq4RKRZIoOQLuB_Yvbcgm06PJIO3-S6VncG22OJpn87fH7x_Ddbwu2vS1PdjZrBr7BIHSxjz1qvATW84LWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIiE4tPx3SwEjIXFKm7VjJzluWVYFSrWCFvUW2YktrWiSandzoCcegWfkSTrjZNMuHJDgOIkdO7Zn5htn_AXgtch5HsUFD5SLCgxQchGkDoEceupYecavNtviWB2eRh_O5NmNU_wtP0S_4Uaa4e01KfhF4favSUN14XmDOMYsKceg_XakEP4SLPp8TSBF-Nyz7QkZpCpKVrSNId9fr7_ulv7AmuvQ1fueyRboVa_blJNve83S7OWXvxE6_s9r3YfNDpiyUbuSHsAtWz2EezfoCh_B5RFF8r9-_BzPyUayL_bcoUTIs5n5bHVWO3Ywq8tZSWcjsUCJC60iSll8AJvW599LO2do0TFU7zLyGKJmNiWOjYVlJ02J0tcuO5aNZ4t5423aYzidvDt5exh0_24IcnKLQYFGVrphWEgnNedWOxVbYbRRqXLEOVhYTtx_uZRWh2YYOWNtPhRJaJVVkRFPYKOqK7sNTCGyxqhQ5wnOoIx14jQPJUpGmaQYxgN4s5q67KKl6MhaMmae0Whm_WgOYHc1s1mnqouMDu_GCHx5MoBX_W1UMvpyoitbN1iGNgpo8wcbe9quiL4poVKRJEoOgPt5_UsfstH406iXdv6l0ku4Mx1PsqP3xx-fwV28LNrctV3YWM4b-xxR0tK88IpwBTOHCgk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Driven+Self%E2%80%90Recruitment+of+Biomimetic+Semiconducting+Polymer+Nanoparticles+for+Precise+Tumor+Vascular+Disruption&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Haoze&rft.au=Zhou%2C+Sensen&rft.au=Wu%2C+Min&rft.au=Qu%2C+Rui&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=24&rft_id=info:doi/10.1002%2Fadma.202210920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202210920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon