Light‐Driven Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption
Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free bi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 24; pp. e2210920 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies.
A novel VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) that consists of a photothermal semiconducting polymer agent camouflaged with a platelet membrane is developed. SPNP exhibits a photothermally controlled recruitment behavior that augments targeting and accumulation of SPNP specifically around injured tumor vessels, achieving precise tumor vascular disruption, inhibition of splenomegaly, and reversion of immunosuppressive tumor microenvironment through two‐stage light manipulation. |
---|---|
AbstractList | Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off-target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA-free biomimetic semiconducting polymer nanoparticle (SPN
) is herein reported for precise tumor vascular disruption through two-stage light manipulation. SPN
consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPN
administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPN
to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid-derived suppressor cells. Therefore, this study not only illustrates a light-driven self-recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies. Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies. Abstract Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPN P ) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPN P consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPN P administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPN P to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies. Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably limited due to the off‐target effects and repeated dose toxicity of vascular disrupting agents (VDAs). To tackle this problem, a VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) is herein reported for precise tumor vascular disruption through two‐stage light manipulation. SPNP consists of a semiconducting polymer nanoparticle as the photothermal agent camouflaged with platelet membranes that specifically target disrupted vasculature. Upon the first photoirradiation, SPNP administered in vivo generates mild hyperthermia to trigger tumor vascular hemorrhage, which activates the coagulation cascade and recruits more SPNP to injured blood vessels. Such enhanced tumor vascular targeting of photothermal agents enables intense hyperthermia to destroy the tumor vasculature during the second photoirradiation, leading to complete tumor eradication and efficient metastasis inhibition. Intriguingly, the mechanism study reveals that this vascular disruption strategy alleviates splenomegaly and reverses the immunosuppressive tumor microenvironment by reducing myeloid‐derived suppressor cells. Therefore, this study not only illustrates a light‐driven self‐recruitment strategy to enhance tumor vascular disruption via a single dose of biomimetic therapeutics but also deciphers the immunotherapeutic role of vascular disruption therapy that is conducive to clinical studies. A novel VDA‐free biomimetic semiconducting polymer nanoparticle (SPNP) that consists of a photothermal semiconducting polymer agent camouflaged with a platelet membrane is developed. SPNP exhibits a photothermally controlled recruitment behavior that augments targeting and accumulation of SPNP specifically around injured tumor vessels, achieving precise tumor vascular disruption, inhibition of splenomegaly, and reversion of immunosuppressive tumor microenvironment through two‐stage light manipulation. |
Author | Wu, Min Zhou, Sensen Qu, Rui Zhen, Xu Wang, Xin Jiang, Xiqun Chen, Weizhi Jiang, Yuyan Li, Haoze |
Author_xml | – sequence: 1 givenname: Haoze surname: Li fullname: Li, Haoze organization: Nanjing University – sequence: 2 givenname: Sensen surname: Zhou fullname: Zhou, Sensen organization: Nanjing University – sequence: 3 givenname: Min surname: Wu fullname: Wu, Min organization: Nanjing University – sequence: 4 givenname: Rui surname: Qu fullname: Qu, Rui organization: Nanjing University – sequence: 5 givenname: Xin surname: Wang fullname: Wang, Xin organization: Nanjing University – sequence: 6 givenname: Weizhi surname: Chen fullname: Chen, Weizhi organization: Nanjing University – sequence: 7 givenname: Yuyan surname: Jiang fullname: Jiang, Yuyan organization: Stanford University – sequence: 8 givenname: Xiqun orcidid: 0000-0003-0483-0282 surname: Jiang fullname: Jiang, Xiqun email: jiangx@nju.edu.cn organization: Nanjing University – sequence: 9 givenname: Xu orcidid: 0000-0003-1652-5496 surname: Zhen fullname: Zhen, Xu email: zhenxu@nju.edu.cn organization: Nanjing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36938865$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0cFu1DAQBmALtaLbwpUjisSFS7ZjJ3ac49IFirRABYVr5Djj4iq2FzsBLScegWfsk-BqS5G4cLJG-ubXyP8xOfDBIyFPKCwpADtVg1NLBoxRaBk8IAvKGS1raPkBWUBb8bIVtTwixyldA0ArQDwkR5VoKykFX5AfG3v1Zbr5-Wsd7Tf0xUccTZ4-oI6znRz6qQimeGGDsw4nqzNwVgc_zHqy_qq4COPOYSzeKR-2KmYxYipMiMVFRG0TFpezy9NnlfQ8qlisbYrzdrLBPyKHRo0JH9-9J-TTq5eXZ-fl5v3rN2erTalrWkE5NIJxQ2HghivGUBnRYNWrXrTCsKqVAzJeQ6M5RwU9rU2PqGklAQWKuq9OyPN97jaGrzOmqXM2aRxH5THMqWONlDJ_TdVk-uwfeh3m6PN1HZOMN0AFk1kt90rHkFJE022jdSruOgrdbSvdbSvdfSt54eld7Nw7HO75nxoyaPfgux1x95-4brV-u_ob_ht_WZ6W |
CitedBy_id | crossref_primary_10_1002_EXP_20230100 crossref_primary_10_2147_IJN_S441131 crossref_primary_10_1021_acsami_3c15953 crossref_primary_10_1021_acsapm_3c01889 crossref_primary_10_1002_adma_202306246 crossref_primary_10_1002_anie_202318799 crossref_primary_10_1021_acsanm_3c04235 crossref_primary_10_1002_adma_202307263 crossref_primary_10_1002_adhm_202303294 crossref_primary_10_1002_ange_202318799 crossref_primary_10_1002_marc_202300496 |
Cites_doi | 10.1021/acsnano.9b08587 10.1038/s41596-020-00421-0 10.1021/acs.nanolett.7b05292 10.1038/s41467-021-26697-8 10.1007/s12274-018-2135-4 10.1126/sciadv.abb0020 10.1021/acs.nanolett.0c02515 10.1038/nrc3581 10.1038/s41570-021-00326-w 10.1002/adma.201503323 10.1021/acs.nanolett.1c00168 10.1002/cncr.24975 10.1038/s41551-016-0011 10.1016/j.immuni.2013.10.010 10.1002/anie.202010228 10.1038/nrm.2017.20 10.1038/s41467-021-24603-w 10.1038/nri3175 10.1038/s41568-019-0209-6 10.1002/anie.201712550 10.1021/acs.accounts.9b00283 10.1038/nnano.2013.302 10.1038/s41563-020-0669-9 10.1126/sciadv.aaw4197 10.1038/s41571-020-0410-2 10.1038/s41573-020-0061-0 10.1039/C8CS00618K 10.1038/s41467-019-10946-y 10.1158/2326-6066.CIR-18-0578 10.1002/smll.201804105 10.1038/s41551-020-00673-x 10.1126/sciadv.abd7614 10.1038/s43018-021-00194-9 10.1002/anie.200902672 10.1002/adfm.201604774 10.1038/s41590-017-0022-x 10.1038/s41578-020-00233-4 10.1016/j.celrep.2018.10.059 10.1016/j.biomaterials.2017.03.003 10.1038/s41570-021-00323-z 10.1038/s41565-022-01189-y 10.1038/nature15373 10.1002/anie.201914384 10.1038/nbt.3987 10.1021/acsnano.6b02908 10.1056/NEJMra1601561 10.1038/nrc1628 10.1038/s41467-020-14963-0 10.1038/nature15530 10.1038/s41467-021-22674-3 10.1038/s41563-019-0411-7 10.1002/ange.202110013 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202210920 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202210920 36938865 ADMA202210920 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20202002 – fundername: Fundamental Research Funds for the Central Universities funderid: 020514380274 – fundername: National Natural Science Foundation of China funderid: 92163214; 21720102005; 51903120; 52173130; 51690153 – fundername: State Key Laboratory of Analytical Chemistry for Life Science funderid: SKLACLS2212 – fundername: Animal Care Committee at Nanjing University funderid: IACUC‐D2103038 – fundername: National Key R & D Program of China funderid: 2017YFA0701301 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20202002 – fundername: National Natural Science Foundation of China grantid: 51690153 – fundername: National Natural Science Foundation of China grantid: 51903120 – fundername: National Natural Science Foundation of China grantid: 21720102005 – fundername: National Natural Science Foundation of China grantid: 92163214 – fundername: Fundamental Research Funds for the Central Universities grantid: 020514380274 – fundername: State Key Laboratory of Analytical Chemistry for Life Science grantid: SKLACLS2212 – fundername: National Natural Science Foundation of China grantid: 52173130 – fundername: Animal Care Committee at Nanjing University grantid: IACUC-D2103038 – fundername: National Key R & D Program of China grantid: 2017YFA0701301 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CGR CUY CVF ECM EIF EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4130-d7625f10d5f5a22eaf67e3bab696f2398de25407c55ea0b14fbeec1380e6e64b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 23:31:08 EDT 2024 Thu Oct 10 17:34:06 EDT 2024 Thu Sep 26 16:09:08 EDT 2024 Wed Oct 16 00:39:10 EDT 2024 Sat Aug 24 00:58:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | light-driven self-recruitment reversion of immunosuppression tumor vascular disruption biomimetic semiconducting polymer nanoparticles |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4130-d7625f10d5f5a22eaf67e3bab696f2398de25407c55ea0b14fbeec1380e6e64b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1652-5496 0000-0003-0483-0282 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202210920 |
PMID | 36938865 |
PQID | 2825701628 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2788800937 proquest_journals_2825701628 crossref_primary_10_1002_adma_202210920 pubmed_primary_36938865 wiley_primary_10_1002_adma_202210920_ADMA202210920 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2020 2022 2018; 11 34 18 2021; 5 2021; 2 2019; 52 2019; 10 2021 2020 2010; 21 20 116 2019 2015; 5 527 2019 2020 2005; 19 6 5 2022 2021; 17 5 2010 2017; 49 27 2020; 19 2018; 25 2021; 16 2015; 27 2021; 12 2013; 39 2013; 13 2019; 48 2020 2020; 19 17 2020 2016 2018 2017; 59 10 57 127 2019 2016; 18 375 2021 2014 2020 2017 2018; 6 9 59 35 11 2021 2021 2017; 12 7 1 2017; 18 2021; 133 2020 2015 2019; 14 526 15 2012 2018; 12 19 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_13_4 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_23_1 Tang D. (e_1_2_7_14_2) 2022; 34 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_12_5 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_30_2 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 19 6 5 start-page: 667 423 year: 2019 2020 2005 publication-title: Nat. Rev. Cancer Sci. Adv. Nat. Rev. Cancer – volume: 25 start-page: 1772 year: 2018 publication-title: Cell Rep. – volume: 12 19 start-page: 253 108 year: 2012 2018 publication-title: Nat. Rev. Immunol. Nat. Immunol. – volume: 14 526 15 start-page: 2024 118 year: 2020 2015 2019 publication-title: ACS Nano Nature Small – volume: 12 7 1 start-page: 2773 0011 year: 2021 2021 2017 publication-title: Nat. Commun. Sci. Adv. Nat. Biomed. Eng. – volume: 17 5 start-page: 1015 816 year: 2022 2021 publication-title: Nat. Nanotechnol. Nat. Rev. Chem. – volume: 7 start-page: 1687 year: 2019 publication-title: Cancer Immunol. Res. – volume: 21 20 116 start-page: 2588 6191 1859 year: 2021 2020 2010 publication-title: Nano Lett. Nano Lett. Cancer – volume: 5 527 start-page: 466 year: 2019 2015 publication-title: Sci. Adv. Nature – volume: 11 34 18 start-page: 1126 1498 year: 2020 2022 2018 publication-title: Nat. Commun. Angew. Chem., Int. Ed. Nano Lett. – volume: 49 27 start-page: 6288 year: 2010 2017 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. – volume: 39 start-page: 806 year: 2013 publication-title: Immunity – volume: 2 start-page: 545 year: 2021 publication-title: Nat. Cancer – volume: 5 start-page: 1143 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 3071 year: 2019 publication-title: Nat. Commun. – volume: 18 375 start-page: 657 2067 year: 2019 2016 publication-title: Nat. Mater. N. Engl. J. Med. – volume: 18 start-page: 345 year: 2017 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 17 start-page: 486 657 year: 2020 2020 publication-title: Nat. Mater. Nat. Rev. Clin. Oncol. – volume: 12 start-page: 4405 year: 2021 publication-title: Nat. Commun. – volume: 59 10 57 127 start-page: 8833 6400 3938 97 year: 2020 2016 2018 2017 publication-title: Angew. Chem., Int. Ed. ACS Nano Angew. Chem., Int. Ed. Biomaterials – volume: 12 start-page: 6310 year: 2021 publication-title: Nat. Commun. – volume: 52 start-page: 2703 year: 2019 publication-title: Acc. Chem. Res. – volume: 5 start-page: 773 year: 2021 publication-title: Nat. Rev. Chem. – volume: 16 start-page: 405 year: 2021 publication-title: Nat. Protoc. – volume: 19 start-page: 333 year: 2020 publication-title: Nat. Rev. Drug Discovery – volume: 48 start-page: 2053 year: 2019 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 7043 year: 2015 publication-title: Adv. Mater. – volume: 6 9 59 35 11 start-page: 7 233 1102 5258 year: 2021 2014 2020 2017 2018 publication-title: Nat. Rev. Mater. Nat. Nanotechnol. Angew. Chem., Int. Ed. Nat. Biotechnol. Nano Res. – volume: 13 start-page: 739 year: 2013 publication-title: Nat. Rev. Cancer – ident: e_1_2_7_10_1 doi: 10.1021/acsnano.9b08587 – ident: e_1_2_7_21_1 doi: 10.1038/s41596-020-00421-0 – ident: e_1_2_7_14_3 doi: 10.1021/acs.nanolett.7b05292 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-021-26697-8 – ident: e_1_2_7_12_5 doi: 10.1007/s12274-018-2135-4 – ident: e_1_2_7_3_2 doi: 10.1126/sciadv.abb0020 – ident: e_1_2_7_5_2 doi: 10.1021/acs.nanolett.0c02515 – ident: e_1_2_7_29_1 doi: 10.1038/nrc3581 – ident: e_1_2_7_6_2 doi: 10.1038/s41570-021-00326-w – ident: e_1_2_7_9_1 doi: 10.1002/adma.201503323 – ident: e_1_2_7_5_1 doi: 10.1021/acs.nanolett.1c00168 – ident: e_1_2_7_5_3 doi: 10.1002/cncr.24975 – ident: e_1_2_7_11_3 doi: 10.1038/s41551-016-0011 – ident: e_1_2_7_24_1 doi: 10.1016/j.immuni.2013.10.010 – ident: e_1_2_7_12_3 doi: 10.1002/anie.202010228 – volume: 34 year: 2022 ident: e_1_2_7_14_2 publication-title: Angew. Chem., Int. Ed. contributor: fullname: Tang D. – ident: e_1_2_7_18_1 doi: 10.1038/nrm.2017.20 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-021-24603-w – ident: e_1_2_7_30_1 doi: 10.1038/nri3175 – ident: e_1_2_7_3_1 doi: 10.1038/s41568-019-0209-6 – ident: e_1_2_7_13_3 doi: 10.1002/anie.201712550 – ident: e_1_2_7_4_1 doi: 10.1021/acs.accounts.9b00283 – ident: e_1_2_7_12_2 doi: 10.1038/nnano.2013.302 – ident: e_1_2_7_8_1 doi: 10.1038/s41563-020-0669-9 – ident: e_1_2_7_25_1 doi: 10.1126/sciadv.aaw4197 – ident: e_1_2_7_8_2 doi: 10.1038/s41571-020-0410-2 – ident: e_1_2_7_15_1 doi: 10.1038/s41573-020-0061-0 – ident: e_1_2_7_7_1 doi: 10.1039/C8CS00618K – ident: e_1_2_7_1_1 doi: 10.1038/s41467-019-10946-y – ident: e_1_2_7_28_1 doi: 10.1158/2326-6066.CIR-18-0578 – ident: e_1_2_7_10_3 doi: 10.1002/smll.201804105 – ident: e_1_2_7_23_1 doi: 10.1038/s41551-020-00673-x – ident: e_1_2_7_11_2 doi: 10.1126/sciadv.abd7614 – ident: e_1_2_7_19_1 doi: 10.1038/s43018-021-00194-9 – ident: e_1_2_7_22_1 doi: 10.1002/anie.200902672 – ident: e_1_2_7_22_2 doi: 10.1002/adfm.201604774 – ident: e_1_2_7_30_2 doi: 10.1038/s41590-017-0022-x – ident: e_1_2_7_12_1 doi: 10.1038/s41578-020-00233-4 – ident: e_1_2_7_27_1 doi: 10.1016/j.celrep.2018.10.059 – ident: e_1_2_7_13_4 doi: 10.1016/j.biomaterials.2017.03.003 – ident: e_1_2_7_17_1 doi: 10.1038/s41570-021-00323-z – ident: e_1_2_7_6_1 doi: 10.1038/s41565-022-01189-y – ident: e_1_2_7_10_2 doi: 10.1038/nature15373 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201914384 – ident: e_1_2_7_12_4 doi: 10.1038/nbt.3987 – ident: e_1_2_7_13_2 doi: 10.1021/acsnano.6b02908 – ident: e_1_2_7_16_2 doi: 10.1056/NEJMra1601561 – ident: e_1_2_7_3_3 doi: 10.1038/nrc1628 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-020-14963-0 – ident: e_1_2_7_25_2 doi: 10.1038/nature15530 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-021-22674-3 – ident: e_1_2_7_16_1 doi: 10.1038/s41563-019-0411-7 – ident: e_1_2_7_26_1 doi: 10.1002/ange.202110013 |
SSID | ssj0009606 |
Score | 2.5361307 |
Snippet | Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy is notably... Abstract Tumor vascular disrupting therapy has offered promising opportunities to treat cancer in clinical practice, whereas the overall therapeutic efficacy... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2210920 |
SubjectTerms | Biocompatibility biomimetic semiconducting polymer nanoparticles Biomimetics Blood Platelets Blood vessels Cell Line, Tumor Coagulation Disruption Hemorrhage Humans Hyperthermia light‐driven self‐recruitment Materials science Nanoparticles Nanoparticles - therapeutic use Neoplasms - drug therapy Neoplasms - pathology Polymers Polymers - therapeutic use Recruitment reversion of immunosuppression Toxicity Tumor Microenvironment tumor vascular disruption Tumors |
Title | Light‐Driven Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210920 https://www.ncbi.nlm.nih.gov/pubmed/36938865 https://www.proquest.com/docview/2825701628 https://search.proquest.com/docview/2788800937 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQJzhQ_kqXPxmpUk-BxI6d5LiwIISgQgUqbpGd2NKqJKl2Nwc48Qg8I0_CjJMNLByQ2uModux4xuNvnPFnQr7zjGVhlDNP2jCHACXjXmIByMFKHUnH-NVkW_yUpzfh2a24fXOKv-GH6DbccGY4f40TXOnxwStpqModbxCDmCVhGLQHPMKcrsGvV_4ohOeObI8LL5FhPGVt9NnBbPXZVekD1JxFrm7pOflC1LTTTcbJn_16ovezh3d8jv_zVctkqcWltN8Y0gqZM-UqWXzDVrhGHs4xkH9-fBqM0EXSK3NnQULgWQ9dsjqtLD0cVsWwwKORUKAAOyuRURZeQC-ru_vCjCg4dIjU24Q8CqCZXiLFxtjQ67oA6XebHEsHw_Godi5tndycHF8fnXrt1Q1ehquil4OPFTbwc2GFYswoKyPDtdIykRYpB3PDkPovE8IoXweh1cZkAY99I40MNf9K5suqNN8IlQCsIShUWQwaFJGKrWK-AElLHedB1CM_pqpL_zYMHWnDxcxSHM20G80e2Z5qNm1n6jjFs7sR4F4W98he9xjmGP44UaWpaiiD-wS49wONbTQW0TXFZcLjWIoeYU6vn_Qh7Q8u-p20-S-VtsgC3nnf5Kttk_nJqDY7gIwmetdZ_wv8jgdC |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvB9bChgJiVParB07yXFhqRbYVhVsEbfITmxpRZNUu5sDPfET-I38EmacR1k4IMFxEjtxbM_4m8n4M8ALkfM8igseKBcV6KDkIkgdAjlcqWPlGb_abItjNTuN3n2WfTYh7YVp-SGGgBtphrfXpOAUkD64ZA3VhScO4ui0pBy99quo84JOb5h-uGSQIoDu6faEDFIVJT1vY8gPtutvr0t_gM1t7OoXn8NbYPpmtzknX_abjdnPL35jdPyv77oNNztoyibtXLoDV2x1F278Qlh4Dy7m5Mv_-PZ9uiIryT7aM4cSYc9m6fPVWe3Yq2VdLkvaHYkFSpxqFZHK4gPYSX32tbQrhjYdnfUuJ48hbmYnxLKxtmzRlCh96vJj2XS5XjXeqt2H08M3i9ezoDu9IchpYQwKNLPSjcNCOqk5t9qp2AqjjUqVI9bBwnJi_8ultDo048gZa_OxSEKrrIqMeAA7VV3ZR8AUYmv0C3We4BDKWCdO81CiZJRJinE8gpf92GXnLUlH1tIx84x6Mxt6cwR7_dBmnbKuM9q-GyP05ckIng-3Uc3o34mubN1gGQoVUPgHX_awnRLDq4RKRZIoOQLuB_Yvbcgm06PJIO3-S6VncG22OJpn87fH7x_Ddbwu2vS1PdjZrBr7BIHSxjz1qvATW84LWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIiE4tPx3SwEjIXFKm7VjJzluWVYFSrWCFvUW2YktrWiSandzoCcegWfkSTrjZNMuHJDgOIkdO7Zn5htn_AXgtch5HsUFD5SLCgxQchGkDoEceupYecavNtviWB2eRh_O5NmNU_wtP0S_4Uaa4e01KfhF4favSUN14XmDOMYsKceg_XakEP4SLPp8TSBF-Nyz7QkZpCpKVrSNId9fr7_ulv7AmuvQ1fueyRboVa_blJNve83S7OWXvxE6_s9r3YfNDpiyUbuSHsAtWz2EezfoCh_B5RFF8r9-_BzPyUayL_bcoUTIs5n5bHVWO3Ywq8tZSWcjsUCJC60iSll8AJvW599LO2do0TFU7zLyGKJmNiWOjYVlJ02J0tcuO5aNZ4t5423aYzidvDt5exh0_24IcnKLQYFGVrphWEgnNedWOxVbYbRRqXLEOVhYTtx_uZRWh2YYOWNtPhRJaJVVkRFPYKOqK7sNTCGyxqhQ5wnOoIx14jQPJUpGmaQYxgN4s5q67KKl6MhaMmae0Whm_WgOYHc1s1mnqouMDu_GCHx5MoBX_W1UMvpyoitbN1iGNgpo8wcbe9quiL4poVKRJEoOgPt5_UsfstH406iXdv6l0ku4Mx1PsqP3xx-fwV28LNrctV3YWM4b-xxR0tK88IpwBTOHCgk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Driven+Self%E2%80%90Recruitment+of+Biomimetic+Semiconducting+Polymer+Nanoparticles+for+Precise+Tumor+Vascular+Disruption&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Haoze&rft.au=Zhou%2C+Sensen&rft.au=Wu%2C+Min&rft.au=Qu%2C+Rui&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=24&rft_id=info:doi/10.1002%2Fadma.202210920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202210920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |